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Abstract: Chronic pain is common after burn injuries, and post-burn neuropathic pain is the most
important complication that is difficult to treat. Scrambler therapy (ST) is a non-invasive modality that
uses patient-specific electrocutaneous nerve stimulation and is an effective treatment for many chronic
pain disorders. This study used magnetic resonance imaging (MRI) to evaluate the pain network-
related mechanisms that underlie the clinical effect of ST in patients with chronic burn-related pain.
This prospective, double-blinded, randomized controlled trial (ClinicalTrials.gov: NCT03865693)
enrolled 43 patients who were experiencing chronic neuropathic pain after unilateral burn injuries.
The patients had moderate or greater chronic pain (a visual analogue scale (VAS) score of ≥5), despite
treatment using gabapentin and other physical modalities, and were randomized 1:1 to receive real
or sham ST sessions. The ST was performed using the MC5-A Calmare device for ten 45 min sessions
(Monday to Friday for 2 weeks). Baseline and post-treatment parameters were evaluated subjectively
using the VAS score for pain and the Hamilton Depression Rating Scale; MRI was performed to
identify objective central nervous system changes by measuring the cerebral blood volume (CBV).
After 10 ST sessions (two weeks), the treatment group exhibited a significant reduction in pain relative
to the sham group. Furthermore, relative to the pre-ST findings, the post-ST MRI evaluations revealed
significantly decreased CBV in the orbito-frontal gyrus, middle frontal gyrus, superior frontal gyrus,
and gyrus rectus. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus
of the hemisphere associated with the burned limb in the ST group, as compared with the CBV of
the sham group. Thus, a clinical effect from ST on burn pain was observed after 2 weeks, and a
potential mechanism for the treatment effect was identified. These findings suggest that ST may be
an alternative strategy for managing chronic pain in burn patients.

Keywords: cerebral pain network; scrambler therapy; burn; chronic pain

1. Introduction

Up to one-third of patients suffer from chronic pain after burns [1,2]. Management
of chronic pain after burn injuries is critical because it affects a patient’s quality of life [3].
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There are diverse treatments for chronic pain after burn injury; however, due to the in-
completeness of information regarding the underlying causes, most burn centers use new
treatment approaches without standard treatment protocols.

Chronic pain in burn patients can be treated using pharmacological strategies (e.g., NSAIDS,
opioids, tramadol, and anticonvulsants) and non-pharmacological modalities (e.g., com-
pression garments, physical therapy, and occupational therapy) [4,5]. Many reports have
described the clinical effects of peripheral nerve electrostimulation for chronic pain [6,7].
Scrambler therapy (ST) is a non-invasive electrostimulation treatment that blocks pain, and
recently it has been proven effective for treating chronic pain syndromes [8]. This mecha-
nism involves sending synthetized “non-pain” information that looks like depolarization
currents through the C-fibers of afferent pathways to the relevant brain center(s), leading
to remodulation of the pain network [9–11]. Clinical effects related to neurons other than
C-fibers have also been demonstrated, such as numbness or tingling sensations, and there
is increasing interest in clarifying the therapeutic mechanism of ST [8].

It has been suggested that burn injuries trigger the peripheral nerves and cause
sensitization of the nociceptive fibers [12,13]; chronic pain in these cases is explained
mostly by the inflammatory response at hypertrophic scars [14]. However, chronic pain in
this setting is also related to a mechanism that cannot be explained by peripheral causes
alone; recent reports indicate that changes in the cerebral pain network occur in cases
of musculoskeletal diseases with chronic pain [15–17]. Brain imaging studies have been
conducted on the mechanisms of chronic pain aggravation and pain improvement after
pain treatment [16,18–20]. The cerebral blood volume (CBV) is a hemodynamic variable
that represents the fraction of the cerebral tissue volume occupied by blood at a given time
point, which is highly correlated with oxygen metabolism. Although lower in temporal
resolution than deoxyhemoglobin fMRI, T1-weighted post gadolinium measurement of
CBV offer resolution superior to other techniques and is the only fMRI measure that is
currently amenable to submillimeter resolution functional maps [21]. This randomized
controlled trial was to investigate the pain-suppressing effect of ST and the mechanism of
its effect on the cerebral pain network in patients with chronic neuropathic pain caused
by burns.

2. Methods

This prospective, double-blind, randomized controlled trial enrolled 36 male and
7 female patients at the Department of Rehabilitation Medicine at Hangang Sacred Heart
Hospital in Korea between March 2018 and October 2020. All patients provided written
informed consent. The trial protocol was registered at ClinicalTrials.gov (NCT03865693) and
was approved by the ethics committee of Hangang Sacred Heart Hospital (HG2017-088).
This study was conducted according to the CONSORT guidelines.

2.1. Clinical Subjects

To be included in the study, patients had to (i) be 18 years of age or older; (ii) have
burn scars that had re-epithelialized after aseptic care or skin grafting; (iii) have complained
of moderate or greater chronic neuropathic pain with reduced sensation in the burned
area (≥5 points on a 10-point visual analog scale (VAS)) lasting for >3 months after the
burn injury, despite receiving pharmaceutical treatment and/or physical therapy [22,23];
(iv) a burn on either right or left side of the body; and (v) be dominant in the right hand.
Patients were excluded based on the following criteria: (i) a history of cardiac arrest;
(ii) neurological disease, or brain surgery; (iii) unstable heart disease or presence of a
cardiac pacemaker; (iv) pain resulting from other causes (e.g., neuromuscular diseases) as
confirmed via imaging (radiography, ultrasonography, computed tomography, or MRI);
(v) psychiatric disorders; (vi) abnormal renal function; (vii) contraindication for MRI;
(viii) pregnancy; or (ix) a score of 8 or higher on the Korean version of the Hamilton depres-
sion rating scale (HDRS) [24]. Possible drug effects were minimized by excluding patients
who were receiving extended-release morphine therapy. Antiepileptic and antidepressant
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drugs, which are pain medications that affect brain activity, were maintained at their dosage
throughout the study [25]. Numbers were assigned according to the order of admission
to 43 burn patients who satisfied all the study criteria. A computer program was used to
divide the patients randomly into either the ST group (n = 20) or sham group (n = 23).

The study used an MC-5A Pain Scrambler Therapy device (Competitive Technologies,
Inc., Fairfield, CT, USA) with electrode patches applied to a 20–25 mm area surrounding the
site of the most painful burn scar. In the ST group, the stimulus intensity was treated as the
maximum intensity that the patient could tolerate without discomfort (≤70 U) (Figure 1).
In the sham group, the stimulation was maintained at a non-therapeutic threshold (0–10 U
for the duration of the session) [26,27]. Both the ST and sham groups completed a total of
10 sessions (Monday to Friday over 2 weeks), and each session lasted 45 min.
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Figure 1. Pain scrambler therapy on scar pain site in burn patients.

2.2. Clinical Assessments

Only the therapist had access to the allocation schedule, and all participants and
evaluators were blinded to the treatment details. Depressive mood was assessed using
the Korean version of the Hamilton Depression Rating Scale (HDRS) [24]. Patients were
asked to score their mean pain intensity using the VAS and Brief Pain Intensity (BPI). The
VAS uses a 10-point scale with responses ranging from 0 (no pain) to 10 (worst pain ever
experienced). The BPI consists of a sensory dimension that indicates the intensity of pain
and a reactive dimension that measures the decrease in function due to pain [28]. The
VAS tool and MRI scan were administered at baseline and after 2 weeks of treatment; it
primarily aimed to identify brain network changes and the relationship between any brain
network changes and the intensity of pain.

2.3. MRI Acquisition and CBV Mapping

All MRIs were performed using a 3.0 T magnetic resonance scanner (MAGNETOM
Skyra, Siemens; Erlangen, Germany) and an established steady-state gadolinium-enhanced
MRI technique [18,29]. Two high-resolution T1-weighted images were acquired for each
participant: one before a standard intravenous administration of gadolinium contrast agent
(0.1 mmol/kg gadoterate meglumine) and the second at 4 min after the gadolinium admin-
istration. T2-weighted and diffusion-weighted MRI images were taken to exclude patients
with suspected parenchymal injury [18]. A single-shot diffusion-weighted echo planar
imaging sequence was taken in the same manner as Joo et al. to assess the CBV changes
caused by the burn-related chronic pain [18]. Processing of the CBV mapping data was
performed using SPM12 software (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/,
accessed on 8 May 2022), as previously described [21,30]. The pre- and post-contrast
images were spatially transformed to the same standard space, and then a map of the
contrast-induced signal difference ratios was acquired using the equation: (post-contrast
signal − pre-contrast signal)/(maximum signal difference in the superior sagittal sinus)
× 100. For patients with injuries on the left extremities, the map was rotated around
the midsagittal axis. The CBV maps were analyzed using a randomization tool [31] that
implements nonparametric permutation inference on neuroimaging data. For each map,
voxel-wise comparisons between groups and voxel-wise correlations with VAS scores were

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


J. Clin. Med. 2022, 11, 4255 4 of 9

evaluated after adjusting for each individual’s age, sex, and degree of depression. The CBV
valuations were performed at baseline and after 2 weeks of ST or sham treatment.

2.4. Statistical Analysis

All statistical analyses were performed using SPSS software (version 23.0; IBM Corp.,
Armonk, NY, USA). Non-parametric measurements between the two groups were analyzed
using the Mann–Whitney test. After testing for data normality, Mann–Whitney U tests
were performed to compare pretreatment homogeneity between the groups for total body
surface area, days between the burn injury and MRI acquisition, VAS score, BPI score, and
HDRS score. Fisher’s exact test was used to assess differences in the sexes and the sites of
burn injury between the groups.

Pain scores from before and after treatment within each group were compared us-
ing the Wilcoxon signed rank sum test. The comparison between the VAS scores of the
two groups after 2 weeks of treatment was performed using the Mann–Whitney test. Af-
ter correction for multiple comparisons with threshold-free cluster enhancement, group
differences and VAS correlations with a p-value < 0.05 were considered statistically signifi-
cant [32].

3. Results
3.1. Clinical Features

Six out of 20 patients in the ST group did not need further pain treatment due to pain
improvement; therefore, follow-up MRI scans could not be performed after 2 weeks due to
lack of patients participation. In the final enrollment, there were 14 participants in the ST
group and 23 in the sham group. No significant differences in age, sex, or other baseline
characteristics were observed between the groups (Table 1). There was no significant
difference between the two groups for the baseline pain scores or CBV (p > 0.05). Relative
to the baseline value, the ST group showed a significant reduction in the pain score after ST
(p = 0.004); the sham group also had a significant reduction in the pain score after 2 weeks
of therapy (p = 0.001). After 2 weeks of treatment, it was found that the VAS scores of the
ST group were significantly decreased compared with the VAS scores of the sham group
(p < 0.001) (Table 2).

Table 1. Demographic data of subjects.

Experimental
Group (n = 14)

Sham Group
(n = 23) p

Male:Female 12:2 18:5 0.69
Age (years) 47 (39–59) 49 (30–57) 0.83
TBSA (%) 11 (5–23) 20 (5–23) 0.65

Days between burn and MRI acquisition 76 (53–93) 74 (52–107) 1.00
The sites of burn injury

Arm: Forearm/Hand: Thigh: Leg/Foot 5:5:1:3 6:8:1:8 0.82
VAS 6 (5–8) 7 (6–8) 0.17
BPI

Sensory dimension 23 (13–26) 26 (18–30) 0.29
Reactive dimension 38 (27–47) 42 (34–50) 0.41

HDRS 4 (1–4) 2 (1–4) 0.44
TBSA, total burn surface area; VAS, visual analog scale; HDRS, Hamilton depression rating scale; Values are
presented as median (IQR), p-values were calculated using Fisher’s exact test or the Mann–Whitney test.



J. Clin. Med. 2022, 11, 4255 5 of 9

Table 2. Comparison of VAS score before and after treatment between two groups.

Experimental Group Sham Stimulation Group

Baseline After 2
Weeks p Baseline After 2

Weeks p

VAS, median (IQR) 6 (5–8) 3 (3–4) 0.004 7 (6–8) 6 (5–7) 0.001

Comparison of VAS after 2 weeks
between groups <0.001

VAS, visual analog scale.

3.2. CBV Mapping before and after Scrambler Therapy

There was no difference in baseline CBV before ST between the two groups (p > 0.05).
In the ST group, the CBVs of the right orbito-frontal gyrus (p = 0.004), right middle frontal
gyrus (p = 0.004), right superior frontal gyrus (p = 0.004), right gyrus rectus (p = 0.004), left
orbito-frontal gyrus (p = 0.004), and left superior frontal gyrus (p = 0.004) were decreased
after 2 weeks of ST (Figure 2 and Table 3).
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The brain regions marked in blue are regions with decreased activation after ST treatment in the ST
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Table 3. Clusters of decreased CBV after scrambler therapy relative to CBV before scrambler therapy.

Comparison Cluster No Voxel
Count

Grey Matter Label T Value p Value
Coordinates (mm)

x y z

Decreased
CBV

1 232 Right orbito-frontal gyrus 450.661 0.004 30 60 −8
Right middle frontal gyrus 441.674 0.004 26 58 −6

Right superior frontal gyrus 337.098 0.004 26 66 −6
3 16 Right gyrus rectus 252.559 0.004 8 38 −30
4 5 Left orbito-frontal gyrus 356.164 0.004 −16 64 −12

Left superior frontal gyrus 345.580 0.004 −14 64 −12

CBV, cerebral blood volume.
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After 2 weeks of treatment, it was observed that the CBV had increased in the precen-
tral gyrus (p = 0.002) and postcentral gyrus (p = 0.004) of the hemisphere associated with
the burned limb in the ST group, as compared with the CBV of the sham group (Figure 3
and Table 4). No serious side effects occurred that were potentially related to ST.
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regions (the precentral gyrus and postcentral gyrus) marked in red are regions with increased
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Table 4. Comparisons CBV clusters between the experimental and sham groups.

Comparison Gray Matter Label T Value p Value
Coordinates (mm)

x y z

STpost – pre
>Sham post − pre

Left precentral gyrus 411.954 0.002 −30 −20 74

Left postcentral gyrus 373.215 0.004 −32 −26 72
CBV, cerebral blood volume.

4. Discussion

This study aimed to evaluate the clinical usefulness of ST and identify the pain network
alterations associated with ST for chronic neuropathic pain in burn patients. The ST group
experienced pain reduction from ST and a hypersensitization mechanism potentially related
to treatment was observed. These results suggest that ST may demonstrate an alternative
strategy to manage chronic pain in burn patients.

Pain perception is affected by alterations in the cerebral pain network [33]; chronic
neuropathic pain is caused by hyperexcitability. Studies have also identified an important
role for central plasticity, given the long-term nature of chronic pain [3,34,35]. The vari-
ous dimensions of pain intensity are associated with different areas of the pain network.
Changes in the pain and motor network have been observed when chronic pain occurs in
burn patients [29]. The treatment mechanism of ST is known to inhibit pain by stimulating
C fibers of afferent pathways with five artificial electrical stimulation and blocking the
pathways of pain information [36]. Several studies have indicated that ST provides clinical
benefits in cases of chronic and neuropathic pain, with a pain reduction effect that can last
up to 1 year after 2 weeks of therapy [9,36]. The long-term effect is thought to involve
reduced central sensitization, due to the delivery of a signal to the surface receptors of the
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C-fibers, which transmit “non-pain” information along the damaged pathways [10]. Joo
et al. evaluated symptom improvement after ST for severe pruritus, which has a similar
mechanism to neuropathic pain in burn patients, and found that ST was safe [21]. The
maintenance of pain reduction after ST is explained as a central pain processing mechanism
related to memory for pain [27].

We collected CBV maps from before ST and after 10 therapy sessions. After 2 weeks
of ST, a decrease was observed in the CBVs of the bilateral orbito-frontal gyrus, right
middle frontal gyrus, bilateral superior frontal gyrus, and right gyrus rectus in the ST
group. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus of
the hemisphere associated with the burned limb in the ST group, as compared with that
of the sham group. Burn patients may suffer from chronic pain, which is characterized by
neuroanatomical plasticity, including central sensitization. Many studies of non-invasive
brain-modulatory therapy have demonstrated a relationship between changes in the cere-
bral pain network and pain intensity. This pain network consists of the primary and
secondary somatosensory cortex, the prefrontal lobe, dorsolateral prefrontal cortex, and
medial prefrontal cortex [29]. Neuroimaging studies indicate that the dorsolateral pre-
frontal cortex may play a role in a top-down mode of inhibition via fibers descending
from the prefrontal cortex, which may modulate pain perception. Inhibiting the activity
of the dorsolateral prefrontal cortex reduces pain by removing transcallosal inhibition
and allowing an enhanced descending inhibition from the contralateral hemisphere [20].
Portilla et al. reported that non-invasive brain stimulation over the precentral gyrus causes
decreased cortical excitability that cause chronic neuropathic pain in the occipital and
frontal areas [37]. Recently, non-invasive brain stimulation has been applied to burn pa-
tients as a new treatment method for pain and neuropathy that show no improvement from
other conventional therapies. Stimulation of the precentral gyrus results in compensating
sensory nerve loss due to burns [28]. The mechanism of central sensitization in patients
with chronic musculoskeletal pain is explained by a decreased activation in the postcentral
gyrus [38–40]. Hosseini et al. reported that modulation of the sensory cortex with transcra-
nial direct current stimulation reduced pain and anxiety during burn scar treatment [41]. A
review article also indicated that changes in cerebral activation during non-invasive brain
stimulation were associated with improvements in pain symptoms, pruritus, depression,
and sleep disturbances caused by burns [42].

This study explored the effects of ST based on subjective and objective parameters,
including cerebral activity in patients with chronic neuropathic pain after burn injury.
This study had some limitations, including a small sample size and a short follow-up
period. Due to the small sample size, the effects of individual differences in the side of the
injuries could not be fully taken into account. The majority of patients with severe burns
admitted to this burn center, and consequently enrolled in this study, were male. Thus, it
would be inappropriate to generalize the study results to both sexes. For ethical reasons,
the patients’ pharmacological and non-pharmacological treatments were maintained the
same as before the start of the study; therefore, further study that excludes these aspects
is needed. Further studies are needed to develop advanced strategies for controlling
neuropathic pain caused by thermal injury, including cranial magnetic stimulation or
transcranial direct current stimulation. Future research should also assess the effects of ST
on central neurotransmitters, which play a major role in the endogenous pain facilitatory
and inhibitory pathways. In order to confirm the therapeutic effect, it is thought that more
research is needed on clinical parameters, including not only the pain level, but also sleep
disturbances and changes in daily living activities due to pain.

5. Conclusions

This study found that burn patients with chronic neuropathic pain had CBV changes
in regions of the cerebral pain network that are associated with the frontal lobe, precentral
gyrus, and postcentral gyrus. Thus, a clinical effect from ST on burn pain was observed after
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2 weeks, and a potential mechanism for the treatment effect was identified. These findings
suggest that ST may be an alternative strategy for managing chronic pain in burn patients.
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