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Abstract

Precision medicine is one of the recent and powerful developments in medical care,

which has the potential to improve the traditional symptom-driven practice of medicine,

allowing earlier interventions using advanced diagnostics and tailoring better and

economically personalized treatments. Identifying the best pathway to personalized and

population medicine involves the ability to analyze comprehensive patient information

together with broader aspects to monitor and distinguish between sick and relatively

healthy people, which will lead to a better understanding of biological indicators that

can signal shifts in health. While the complexities of disease at the individual level have

made it difficult to utilize healthcare information in clinical decision-making, some of

the existing constraints have been greatly minimized by technological advancements.

To implement effective precision medicine with enhanced ability to positively impact

patient outcomes and provide real-time decision support, it is important to harness the

power of electronic health records by integrating disparate data sources and discovering

patient-specific patterns of disease progression. Useful analytic tools, technologies,

databases, and approaches are required to augment networking and interoperability of

clinical, laboratory and public health systems, as well as addressing ethical and social

issues related to the privacy and protection of healthcare data with effective balance.

Developing multifunctional machine learning platforms for clinical data extraction,

aggregation, management and analysis can support clinicians by efficiently stratifying
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subjects to understand specific scenarios and optimize decision-making. Implementation

of artificial intelligence in healthcare is a compelling vision that has the potential in

leading to the significant improvements for achieving the goals of providing real-time,

better personalized and population medicine at lower costs. In this study, we focused on

analyzing and discussing various published artificial intelligence and machine learning

solutions, approaches and perspectives, aiming to advance academic solutions in paving

the way for a new data-centric era of discovery in healthcare.

Introduction

Over the centuries, quests for answers have led us to take
giant leaps. It was only in the last century that the discovery
of antibiotics freed us from many of the dreaded diseases of
the past. Still, in the context of recent published literature
(e.g. accessible through PubMed), over 138 000 studies
discuss medication errors, and over 450 000 include delayed
treatment (date accessed 10 October 2019, using search
query keywords including ‘medication error’ and ‘delayed
treatment’). Still, the problem of people dying from medical
care gone wrong has been vastly underappreciated and
not well recognized. Today, we stand on the threshold of
the new medical revolution, just as big and far-reaching.
Despite all of our scientific knowledge, much of medicine
is still based on the treatment of symptoms and performing
learned trials based on treatments, which works for most
patients to bring symptom relief, reduce the risk of com-
plications and improve survival chances, but not for all.
To get new insights into disease taxonomy, etiology and
pathogenesis, it is important to understand how diseases
are related to each other. Breakthroughs in prescription
medication, surgical treatment and mental health inter-
ventions are among the reasons we live longer. However,
providing the correct in-time treatment plan for patients
with knowledge about their current medications and drug
allergies is currently a tedious and error-prone task [1]. The
widespread growth of prescribing and consuming medica-
tions has increased the need for applications that support
medication reconciliation. Furthermore, living healthcare
issues include misdiagnosis, overtreatment, decreased pro-
ductivity, under-utilized clinical data handling, significant
cost and spending (Figure 1). These miscalculations can be
reduced to a great extent with the use of advancements in
information technology at every level of care.

Medical error is the third leading cause of death after
heart failure and cancer (2). According to recent studies,
approximately 180 000 to 251 000 people are dying every
year in the USA due to medical errors (2). This number
has been rising due to increasing complexity and reduced
quality of our current medical system, which includes com-
munication breakdown, misdiagnosis, poorly coordinated
care and growing cost. In recent years, the concept of

precision medicine has evolved as a central innovation pillar
for leading research in transforming health and holds great
promise in patient treatment (3,4). Precision medicine has
the potential to improve the traditional symptom-driven
practice of medicine by intelligently integrating multi-omics
profiles with clinical, imaging, epidemiological and demo-
graphic details to allow a wide range of earlier interventions
for advanced diagnostics and tailoring better and econom-
ical personalized treatment (Figure 1). This requires a pro-
gressive healthcare environment that can enable clinicians
and researchers to gain a complete picture of the patient to
deepen their understanding, using additional basic details
from healthcare data e.g. phenotypic information, life style
factors and social determinants that can impact treatment
decisions. It is primarily based on ‘4Ps’—Predictive, Pre-
ventive, Personalized and Participatory—treatment of each
individual patient and aims to enable clinicians to efficiently
understand how personalized clinical data variations can
contribute to health and accurately diagnose and predict the
most appropriate course of action for a patient (5). While
the complexities of diseases at the individual level have
made it difficult to utilize healthcare information in clinical
decision-making, some of the existing constraints have been
minimized by technological advancements (6). To imple-
ment effective personalized and population health with
enhanced ability to positively impact patient outcomes,
it is important to harness the power of electronic health
records (EHR) by integrating disparate data sources and
discovering patient-specific patterns of disease progression
to provide real-time decision support. The significance of
healthcare data mining cannot be denied, but the challenges
of big data management loom large (7).

Over the years, biotechnology has evolved immensely.
Computers are becoming faster in speed and micro in size,
heterogeneity is increasing in datasets and their volume is
growing robustly. These expansions are fueling the engine
of artificial intelligence (AI) for discovering many technical
refinements to solve complex problems in almost every field
of life, including science and medicine. AI is the branch
of computer science with the capability of a machine to
imitate and even enhance intelligent human behavior. One
of the expected roles in life and medical sciences is to
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Figure 1. Role of artificial intelligence in traditional healthcare data analytics, and in precision medicine. Addressing key issues in healthcare (e.g.

misdiagnoses, overtreatment, one-size-fits-all approaches, repetitive, decreased productivity, under-utilized data, significant cost & spending), and

finding key biomarkers to provide economic and personalized treatment by intelligently analyzing heterogeneous data.

deal with extensive research studies aimed at support-
ing real-time decision-making and producing solutions to
complex problems through knowledge and data intensive
computational and simulated analysis (8). Healthcare data
includes information about a patient’s lifestyle, medical
history, encountered visits with practices, laboratory and
imaging tests, diagnoses, prescribed medications, performed
surgical procedures and consulted providers (9). Adequate,
analytical and intelligent access to healthcare data has the
potential to revolutionize the field of medicine by improving
the quality and transition of care, improving outcomes by
reducing cost, detecting diseases at earlier stages (10,11)
and developing a better understanding of biological mecha-
nisms by modeling complex biological interactions through
a holistic integration and analysis of knowledge (12). The
ability to stratify patients, understand scenarios and opti-
mize decision-making would consistently improve based on
the myriad data obtained during the care-delivery process.
Innovative and robust big data platforms are necessary
to improve the quality and transition of healthcare by
analyzing heterogeneous healthcare, which can be of huge
volume, velocity, variety and veracity.

To effectively implement healthcare data analytic pro-
cesses, various big data management challenges (1,9,13,14,
15,16,17,18,19) have to be overcome, which include
inadequacy of analyzable clinical data (20); existence of
multiple data standards, structures, types and formats;
rapid growth in heterogeneous data; understanding of anal-

ysis algorithms for clinical data interpretation, exploration
and drawing inference; unavailability of effective open-
source tools that combine various approaches to model
biological interactions; integration of clinical and analytic
systems; interdisciplinary field barriers; high cost (21);
implementation of secure frameworks for data collection,
simplification, conversion from raw form to knowledge,
management and distribution (22,23); automatic cleansing
of faulty and error-prone EHRs; correctly identifying
prescription medication; and implementing predictive
diagnostics (10). It is not possible to easily track and
prospectively follow the clinical progress and outcomes
in patients over time (e.g. having a critical predictor of
future clinical events where a patient may show the disease
months or years down the road). In past decades, various
systems have been developed in both commercial and
academic sectors (11,24,25,26,27,28,29,30) for this pur-
pose. Academic systems put significant values on analytics,
while commercial systems focus on supporting clinical
operations. However, independently utilizing traditional
approaches, both sectors are unable to identify problems
by their effects and significantly help in clinical decision-
making. However, major concerns include handling and
evaluation of electronic medical records (EMR), and
repetitive tasks; patient medication adherence; inefficient
therapeutic treatment for cancer and other critical diseases;
cost ineffectiveness; and addressing ethical issues related to
AI and ML implementation in healthcare.
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AI & ML in health intelligence, precision

medicine and resource management

Intelligent big data platforms are necessary to improve
the quality and transition of healthcare by expediting
investigation of active hidden factors in clinical data with
machine learning algorithms to obtain actionable gap-based
information about patients for early detection and preven-
tion of constitutional disorders like cancer, and streamlining
data sharing by developing efficient communication across
healthcare units and scientific laboratories. Its application
in healthcare could be another great leap in medicine
and a transformational force for guiding personalized and
population medicine with several computational benefits.
In the recent past, multiple AI and ML-based efforts have
been made for deciphering diseases to facilitate predictive
diagnosis and thereby guide treatment factors, e.g. drawing
disease relationships using clinical manifestations, EHR
and data generated using wearable technology. To get
a detailed overview of available academic solutions, we
reviewed contributions and compared various AI and ML
claimed solutions, approaches and discussions (Table 1),
and real-time examples (Table 2) published within the last
5 years [31–63]. Our focus here was to discuss valued
contributions of all mentioned AI and ML algorithms
(section Theoretical background of AI, ML and examples
in healthcare and approaches. We provide detailed and
individualized overview of presented approaches. Overall,
the review study and the contributions of AI and ML are
divided into three categories: Health Intelligence, Precision
Medicine, and Healthcare Resource Management and
Ethical Challenges.

Health intelligence approaches

Health intelligence can play a vital role at various levels
of clinical research and analytics that can lead to sig-
nificant improvements in achieving goals for the provi-
sion of better personalized and population healthcare. In
the past decade, various operational and research-based
healthcare data management and analytic systems have
been developed in both academia and commercial sectors.
Our interest includes comprehensive solutions that imple-
ment healthcare data analytics process; provide features to
manage, analyze, visualize and share EHR in de-identified
form; help in automatically capturing information about
patient demographics, scheduled appointments, pre-exam
questionnaire results, consulted providers, conducted lab
tests, diagnoses, treatment plans, objective test results, med-
ications, surgical procedures and claims; support the clini-
cal decision-making process with AI techniques to create
classifiers, which can be trained on structured clinical data
generated from different clinical activities and can learn

similar groups of subjects, associations between subject
features and outcomes of interest; and apply natural lan-
guage processing (NLP) methods to extract information
from unstructured clinical data e.g. narrative text, such as
physical examination, clinical laboratory reports, operative
notes and discharge summaries.

AI in healthcare for better prevention, detection,

diagnosis and treatment of disease (31)

The authors emphasized the idea of embracing changes
with the advancement in technology with the potential
integration of AI into the field of healthcare in a way that
is beneficial to each healthcare worker. They focused in
utilizing AI to obviate repetitive tasks to enhance patient–
physician relationship and increase practice of empathy
and emotional intelligence. Authors focused on deep learn-
ing algorithm implementation with increased data flow
that allows machines to self-develop a complex function
with improved predictability, as long as a large amount of
data is fed as input. They developed a deep convoluted
neural network for skin cancer detection, image analysis
for diabetic retinopathy evaluation, smartphone-based AI
platform to measure adherence in patients on direct oral
anticoagulants (64) and patient’s visit length reduction (65).
The strengths of this study include the potential to augment
healthcare access in areas where specialists might not be
physically available, and medication can still be prescribed
utilizing the combined efforts of AI and a primary care
physician, especially in developing countries. However, one
missing aspect is to address the loss of privacy, as well
as possibilities of patient data exploitation. The potential
for Health Insurance Portability and Accountability Act
(HIPAA) protection is likely feasible (1,9).

ML in medicine with better patient–provider

interactions (32)

This approach is focused on examining the essential struc-
tural changes in the healthcare systems that are necessary to
unleash the full potential of ML in medicine. It emphasizes
developing the concepts of ML in medicine, which may be
centralized around the idea of personalized diagnosis and
treatment on the basis of all known information about the
patient and collective experience. Giving rationale, authors
highlighted proof-of-concept models that have been tested
so far, e.g. difficulties in finding a relationship between
current ML models and traditional statistical models, need
for a tremendous amount of data to train ML classifiers for
establishing general and complex associations and training
clinicians in AI for accurate data interpretation. Further-
more, they effectively debated about consumption of physi-
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Table 1. Feature and variability analysis of reviewed approaches, and real time implementation of ML algorithms

Approach Objectives Approach AI & ML

AI power digital
medicine (31)

Reduce repetitive tasks and
burdens of electronic medical
records through the utilization
of AI and ML.

Increased task automation
with improved image
processing. Monitor
medication adherence and
detect any changes.

Deep convoluted neural network for
skin cancer detection and reducing
visit length. Deep neural network to
evaluate images for diabetic
retinopathy. Smartphone-based AI
platform to measure adherence in
patients on direct oral
anticoagulants.

ML in medicine (32) Examining the essential
structural changes in the
healthcare system that are
necessary to unleash the full
potential of machine learning
in medicine.

Accumulation of large data
set and implement ML to
anticipate events, develop
search engine, and monitor
data flow.

Applied deep learning on the current
EHRs data to generate associations
and meaningful data for
personalized diagnosis and
treatment.

Precision medicine with
electronic medical
records (33)

Applying ML to the EHRs to
generate personalized medicine
by converting EHR into
reliable risk predictors, and
incorporating patient’s
variabilities for treatment and
prevention of disease.

Analyze patterns within the
subset of population who
present similar clinical
phenotypes of complex
disease.

Supervised learning (support vector
machine, discriminant analysis, naïve
Bayes, nearest neighbor and neural
network), unsupervised learning
encompass (linear & logistical
regression, decision tree, cluster
analysis, and neural network).

AI, ML and the evolution of
healthcare (34)

Examining AI integration in
healthcare.

AI methods for the
extraction of big data and
aid clinicians in care delivery

SVM model development for
physiological data segmentation and
analysis, disease progression
prediction, and diagnosis.

Solving healthcare problems
with precision medicine (35)

Tailoring medical treatment
with respect to the
individualized characteristics
of patients.

Use of information
technology for
multidisciplinary
collaboration establishment
between clinicians and
researchers.

ML for the implementation of
precision medicine, which includes
data storage and analysis for
determining the association between
disease outcome (e.g. disease risk,
prognosis, or treatment),
identification of patient
characteristics and optimal
treatment.

Role of AI in precision
medicine (36)

Examining role of AI in
precision medicine
implementation.

Analyzing large scaled
clinical dataset.

Combining DL with human
pathologist to improve success rate
of diagnosis.

AI towards health in
resource-poor settings (37)

Utilization of AI in poor
settings, and improving health
outcome in those areas.

Implementing NLP over
EHR for surveillance and
out breaking predictions.

Pattern identification and tracking
disease transmission through ML.

Integrated precision medicine
and role of EHR in
personalized treatment (38)

Early diagnosis of chronic
conditions through proper
extraction of clinical insights.

Feature extraction from
clinical data, and utilization
of silico dataset.

Predictive, proactive intervention in
healthcare through AI, and clinical
decision support tool development.

AI in healthcare (39) Analyzing AI applications in
healthcare, and their potential
outcome in future.

Precise analysis at the
extracted useful information
from a large patient
population.

ML algorithms to extract and cluster
data, and perform principal
component analysis, SVM to
determine model parameters, and
identify imaging biomarkers, NLP
for text processing and classification,
and DL for diagnostic imaging and
electro diagnosis.

(Continued)



Page 6 of 35 Database, Vol. 2020, Article ID baaa010

Table 1. Continued

Approach Objectives Approach AI & ML

ML Knowledge Base with
ontology for pattern
recognition in personalized
medicine (40)

Examine three main pillars
integrating personalized
medicine into everyday clinical
practice, which are phenotype
categories, population size and
statistical analysis.

Developing knowledgebase
of existing phenotypes,
patient enrollments, and
data expansion.

ML approaches for pattern
recognition and development of
statistical models (sample size and
effect size). Knowledge base of all
existing phenotype categories and
disease. Organized clinical dataset of
population size. Software platform
for statistical analysis of
high-dimensional healthcare and
multi-omics data.

Data science, AI, and ML for
laboratory medicine (41)

Predictive modeling for better
collaboration between
hospitals without sharing data
and complying privacy
regulation.

Data Science (DS) and AI to
mimics the human processes
and improve the process of
decision-making.

ML for healthcare data analysis and
optimization, and reducing cost,
improving efficiency of staff and
resources.

AI to solve the human
resource crisis in
healthcare (42)

Solve the human resource crisis
in healthcare with AI.

Implementation of AI
techniques (43).

Artificial narrow intelligence for
performing a single task. Artificial
general intelligence for
understanding and reasoning
environment like humans. Artificial
superintelligence for scientific
creativity. Deep learning for image
recognition, natural language
processing and translation.

Data analytics and ML for
disease identification in
EHR (44)

Analyzing EHR for the
identification of wide range of
medical conditions and
diagnosis.

Converting electronic
healthcare record into
reliable risk predictors.

ML algorithm for structured and
unstructured big data analysis for
the identification of wide range of
medical conditions and diagnosis.

AI, Big Data and Cancer (45) Application of AI and large
scaled database for cancer
diagnosis and treatment,
worldwide.

Application of cognitive
computer systems for
approaching cancer
diagnosis and treatment
(read, remember,
recommend, and remind).

Cognitive computer systems for
providing rapid access to accurate
information and treatment
procedures, and assisting in
decision-making.

Use of EHR in comparative
effectiveness research (46)

Reporting caveats in existing
healthcare systems.

Literature review and
reporting caveats.

Implementing ML for overcoming
existing big data limitations in
healthcare systems.

Deep learning health care
system (47)

Reporting unintended
consequences due to the
application of ML in existing
healthcare systems.

Creating more precise
analytics platform for
prognosis modeling and
pattern recognition.

ML for prognosis modeling in
oncology, and pattern recognition in
radiology and pathology.

DL to transform
healthcare (48)

Transform healthcare by using
ML.

Outperforming clinical
systems and modeling
complex relationships
among active hidden factors
of data

Implementation of DL for the digital
image analysis.

High-performance medicine
with AI (49)

Exploring importance and
pitfalls of AI in medicine.

Literature review and field
analysis.

Deep neural networks for pattern
recognition and analysis medical
images. NLP in drug discovery by
analyzing biomedical literature.

(Continued)
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Table 1. Continued

Approach Objectives Approach AI & ML

Intelligent digital
pathology (50)

Improving diagnostic accuracy
and efficiency with the use of
ML.

Implemented, examined and
compared the performance
of DL at test dataset.

DL for analyzing whole-slide
pathology images.

ML for prediction in
EHR (51)

Implementing ML for better
understanding heterogeneous
treatment effects to implement
precision medicine.

Evaluating positives and
negatives of ML algorithms.

ML algorithms for addressing
different clinical questions by
analyzing and finding nonlinear
relationships in the EHR.

Unintended consequences of
ML (52)

Safe, effective, efficient and
humanistic care.

Implementing DL in
healthcare analytic systems
development and modeling
tools.

DL for digital imaging, curating data
sets, integrative heterogeneous data
analysis, identifying novel
associations, and remote monitoring
and digital consultations.

Finding the missing link for
big biomedical data (53)

Biomedical data integration
and analysis located at
heterogeneous sources.

Identify and discussed
challenges in biomedical
data linking.

AI and ML tools development to
analyze biomedical data for better
clinical decision-making.

ML classifies cancer (54) Identification of novel tumor
classes.

Application of ML for the
identification of tumor by
analyzing histology and
genomics data.

ML for analyzing histological data.
Supervised ML for analyzing CNS
tumor type genome-wide
methylation data to identify
methylation patterns. Unsupervised
ML to search patterns in the data
sets to develop classification
categories.

Analyzing and visualizing
knowledge structures of
health informatics (55)

Finding future strands of
research, including new
algorithms, tracking tools and
Internet of Things-based
decision support systems.

Quantitative review of the
health informatics field,
employing text mining and
bibliometric research
methods.

DL, new ML algorithms and
advanced big data analytics for
better-personalized treatment.

Big data and ML algorithms
for healthcare delivery (56)

AI tools development based on
incremental learning to refine
the predictive accuracies.

Identification of clinical
problems, annotation of
extracted healthcare data,
application of appropriate
ML algorithms and its effect
on decision-making,
addressing legal and ethical
implications, assessment of
ML effect in trail, designing
freeze and submission of
dossier for medical devices,
training clinicians of ML
tool, and monitoring for
adverse outcomes.

HCI-based AI and ML applications
for different clinical developments in
oncological.

Intelligent health data
analytics (57)

AI for advanced health data
analytics.

Health data analytics
process involving a
methodical order of data
processing, modeling, and
analysis steps.

Implementation of AI and ML based
analysis with the inclusion of health
data preprocessing, selecting
algorithm based on expected
outcome, developing analytical
models, and interpreting results.

(Continued)
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Table 1. Continued

Approach Objectives Approach AI & ML

Ethical challenges of
implementing ML in
healthcare (58)

Challenges of implementing
ML in healthcare

Literature review and field
analysis.

Addressing current challenges in
healthcare systems due to the
implementation of ML.

Data science, AI, and ML for
laboratory medicine (59)

Implementing Data science, AI,
and ML for laboratory
medicine.

Framework including
defining tasks, metrics,
models and datasets.

ML for finding patterns, discovering
inefficiencies, predicting outcomes
and taking factual decisions.

Causal inference and
ML (60)

Examined the implications of
progress in observational
research design and healthcare
databases.

RWE framework. ML for data classification and
prediction in RWE to support
clinical and regulatory
decision-making.

Big data analytics in
healthcare (61)

Application of big data
analytics in healthcare.

Conceptual architecture of
big data analytics, which
includes developing multi
source data input,
transformation, structure,
management and analysis
using traditional SQL,
OLAP and mining.

ML for data mining and analysis.

ML and genomics in
precision medicine (62)

Substantial improvements to
address clinical and genomic
data security problems.

Combining the latest
computational data
protection principles with
legal and ethical perspectives
to construct a secure
framework for data sharing.

ML models to address the challenges
of gene variations and similarities
among patients.

ML in cancer prognosis and
prediction (63)

ML to detect key features by
predictive modeling of
complex and heterogeneous
datasets for progression and
treatment of cancerous
conditions, risks and outcomes.

Data preprocessing with
focus on data modification
via dimensionality reduction
and feature detection.

ML (ANNs, BNs, SVMs,
graph-based SSL and DT) to model
the progression and treatment of
cancerous conditions thru examining
complex datasets and revealing their
relevance.

cians’ valuable time due to increased features (e.g. check
boxes) in EHRs for administrative and billing purposes,
which might prevent them from providing the best quality
care for their patients. At the same time, they claimed that
the integration of ML in EHRs may lead to potential fear
of overreliance as well as decreased vigilance of errors and
automation bias. Authors claimed a training ML classifier
at EHRs for pattern detection to allow physicians to antic-
ipate future events in high-risk patients, to obtain accurate
and comprehensive diagnosis and provide with a quick
search engine in locating the pertinent information within
a patient’s chart, less clicking, voice dictation and better
predictive typing.

AI, ML and the evolution of healthcare (34)

Overview and implementation of AI and ML in healthcare
for the extraction of big data, and aiding clinicians in
providing better care delivery were recently highlighted

by authors. They discussed use of support vector machine
(SVM)- and deep learning-based model development for
physiological data segmentation and analysis, disease pro-
gression prediction and diagnosis in radiology. Authors
discussed processes, which include designing effective mod-
els to aid in the diagnosis based on the information that
resemble certain diseases, image analysis and interpretation
to improve the decision-making performance of clinicians.
Authors also raised ethical concerns in utilizing ML, primar-
ily in governance and management of big data and future
of employment.

Medical AI for increasing availability of

healthcare data and rapid development of big

data analytic methods (39)

A study analyzed different AI applications in healthcare and
discussed their potential future outcomes. Authors argued
that currently AI research in healthcare is mainly focused on
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Table 2. Real time examples of AI and ML algorithms (support vector machine, deep learning, logistic regression, discriminant

analysis, decision tree, Random forest, linear regression, naïve Bayes, K-nearest neighbor, hidden Markov, genetic algorithm)

in healthcare

ML algorithms Examples in healthcare

Support vector machine Symptoms classification and analysis to improve diagnostic accuracy.
Identifying imaging biomarkers of neurological and psychiatric disease.
Diagnosing mental illness.
SVM with leave-one-out cross-validation for multiple myeloma by analyzing SNPs.
SVM with 20-fold cross-validation for breast cancer by analyzing SNPs.
SVM with hold-out for breast cancer by analyzing clinical, pathologic and epidemiologic data.
SVM with hold-out for cervical cancer by analyzing clinical and pathologic data.
SVM with 10-fold cross-validation for breast cancer by analyzing clinical and population data.
SVM with cross-validation for oral cancer by analyzing clinical and genomic data.
SVM with leave-one-out cross-validation for breast cancer by analyzing genomic data.
SVM with cross-validation for oral cancer by analyzing clinical, molecular data.

Deep learning Evaluating images for diabetic retinopathy.

Identification of type 2 diabetes (T2D) subgroups.

Measure medication adherence via camera interface.

Detection and segmentation of lung and liver tumors by analyzing CT scans.

Diagnosing eye diseases (diabetic retinopathy) by analyzing retinal images.

Diagnosing cardiac anomalies by analyzing images of MRI of heart ventricles.

Detecting malignant lung nodules by analyzing radiographs.

Producing glioma survival predictions by analyzing histological imaging and genomic marker data.

Histological diagnoses prediction in women with cytological abnormalities.

Oncology diagnosis:

• Thoracic (lung cancer)
• Abdominal and pelvic (tomography and magnetic resonance imaging)
• Colonoscopy (colonic polyps)
• Mammography (microcalcifications)
• Brain (brain tumors)
• Radiation oncology (segmenting tumors for radiation, and quantifying specific

radiographic characteristics by analyzing 3D shape of a tumor from)
• Dermatology (skin cancer)
• Pathology (digital whole-slide of biopsy samples)
• Prostate (cancer tumors by analyzing ultrasound of biopsy cores)
• DNA and RNA sequencing (RNA-binding and DNA-binding proteins)

Logistic regression Risk assessment of complex diseases (e.g. tuberculosis, breast cancer, coronary heart disease).
Predicting patient survival rate.
Diagnosing coronary heart disease (CHD).
Non-Hodgkin’s lymphoma diagnosis with multivariable logistic regression modeling.
Identification of pulmonary thromboembolism by analyzing prognostic factors.

Discriminant analysis Identify surgical and operative factors to classify patients for surgical procedure.
Predict the clinical diagnosis of primary immunodeficiencies.
Patient data satisfaction.
Prediction of depression elements in cancer patients.
Classification of BOLD fMRI response to naturalistic movie stimuli.
Identify protein-coding regions of rice genes.
Parkinson’s disease symptoms recognition.
Risk assessment of for chronic illnesses.
Diagnosis of hypercalcemia.
Predicting patient care visits by identifying discriminatory characteristics.

(Continued)
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Table 2. Continued

ML algorithms Examples in healthcare

Decision tree Real-time healthcare monitoring medical decision support system, sensors anomaly detections, and data
mining model for pollution prediction.
Supporting clinical decisions.
Strategies alternate therapies for oncology patients.
Collaborative clinical decision-making in mental health care.
Identify predictors of health outcomes.
Find factors related to hypertension.
Discover factors associated with pressure ulcers (PUs) among elderly people.
Identify the potential recipients of telehealth services.
Patient data stratification for interpretable decision-making for precision medicine.
Content analysis for patient aids decision.
Diabetic foot amputation risk analysis.
Support understanding of antenatal lifestyle interventions.

Random Forest Diagnosing mental illness.
Detecting knee osteoarthritis.
Monitoring medical wireless sensors.
Diagnosing Alzheimer disease.
Predicting metabolic pathways.
Predicting outcomes of a patients encounter with behavioral health providers.
Healthcare cost prediction.
Mortality prediction for intensive care unit (ICU) patients.
Classification of Alzheimer’s disease.
Identifying social and economic factors to study social determinants of health.
Predicting disease risks from imbalanced data.
Identify associates of diabetic peripheral neuropathy diagnosis.
Predicting the risk of emergency admission.
Detecting patients ready to discharge from intensive care.
Nonparametric estimation of heterogeneous treatment effects.
Diagnose sleep disorders.
Predicting the depression in patients suffering with Alzheimer’s disease.
Predicting myopia by analyzing EHR.

Linear regression Identification of prognostically relevant risk factors.
Predict hand surgery.
Monitor prescribing patterns and ensure treatment appropriateness.
Mean on decision-making in health care.
Reducing high costs of the health system.
Analysis of skewed healthcare cost data.
Understand HIV/AIDS prevalence patterns.

Naïve Bayes Predictive modeling for different diseases (brain, asthma, prostate and breast cancer etc.).
Risk prediction using censored and time-to-event data.
Mucopolysaccharidosis type II detection.
Predicting Alzheimer’s disease from genome-wide data.
Measuring quality healthcare services.
Finding audit targets in performance-based financing in health.
Modeling medical diagnosis for decision support.
EHR classification.
Classifier and genetic score for risk prediction.
Decision support system for heart disease.

(Continued)
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Table 2. Continued

ML algorithms Examples in healthcare

K-nearest neighbor Diagnostic performance of the model.
Preserving privacy of medical diagnosis in e-Health cloud.
Medical dataset classification.
Classification of lymph node metastasis in gastric cancer.
Pattern classification for breast cancer diagnosis.
Pattern classification for health monitoring applications.
Pancreatic cancer prediction combining published literature and EHR data.
Disease diagnosis and detection of Parkinson.
Hand-gesture recognition for elderly individuals.
ECG features extraction for mobile healthcare applications.

Hidden Markov Analyzing sequence data (predicting exons and introns, identifying ORFs, insertions, deletions,
substitutions, functional motifs in proteins, aligning two sequences, and switching from exon to intron in a
DNA sequence)
Modeling ‘Healthy’ and ‘Unhealthy’ unobserved health states.
Analyze time-series personal health checkup data.
Improving length of stay prediction and reducing health care costs.
Mining adverse drug reactions from online healthcare forums.
Monitor, model and cluster medical inpatient journeys.
Analyzing healthcare service utilization after transport-related injuries.
Monitoring circadian in telemetric activity data.
Predicting patients entering states with a high number of asynchronies.
Analyzing subject-specific seizure, automatic segmentation of infant cry signals.

Genetic algorithm Detecting microcalcifications in mammograms leading breast cancer.
Developing non-invasive technique for cervical cancer detection.
Analyzing microarray data from cancer cell lines.
Investigating relationships between soil trace elements and cervical cancer mortality.
Parameter estimation for determining tissue elasticity.
Predicting risk of a major adverse cardiac event (MACE).
Detect QRS complexes.
Detecting hypoglycemia EEG signals.
Predicting time to reach full cervical dilation.
Selecting optimal features of cardiotocogram recordings.
Identifying autism by analyzing gene expression microarray data.
Predicting outcome of patients with non-small cell lung cancer (NSCLC).
Diagnosing patients by classifying lung sounds into normal, wheeze, and crackle.
Choosing appropriate highly active antiretroviral therapy (HAART) to control HIV.
Improving the selection of gantry angles to optimize stereotactic radiotherapy.
Training robot for physiotherapy of the lower limb.
Estimating Cobb angle from torso asymmetry in scoliosis.
Analyzing mutations in Parkinson’s disease.
Predicting of tacrolimus blood levels, scheduling patient admission in ophthalmic hospital.

only a few health conditions, e.g. cancer, neural disease and
cardiovascular disease. They criticized that existing health-
care systems do not provide incentives for data sharing and
have no structure for the implementation of AI. Further
classified applications of AI consist of ML algorithms to
extract and cluster useful information from a large patient
population to assist in making real-time inferences for
health risk alerts and health outcome predictions, perform
principal component analysis and reduce diagnostic and
therapeutic errors; SVM to determine model parameters
and identify imaging biomarkers; NLP for text processing

and classification; and deep learning for diagnostic imaging
and electronic diagnosis.

Data analytics and ML for disease identification

in EHR (44)

Managing large volumes of data is a huge challenge for
doing big data analytics. A group of researchers used an
ML algorithm for structured and unstructured big data
analysis to identify a wide range of medical conditions
and diagnosis from the large-scale EHR database, inclu-
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ding information about test results, historical information,
management plans, and billing codes, etc. Authors initially

applied their algorithm for the identification of potential

predictors and keyword associations in the EHR to find

presence of pseudoexfoliation syndrome (PXF) by using

NLP, least absolute shrinkage and selection operator. The

reported outcomes were based on positive and negative pre-
dictive values of the algorithm, which were also validated by
the glaucoma specialists. Authors highlighted the potential
of their algorithm with its application for data mining and
predictive analytics in many other applications as well.

AI, big data and cancer (45)

The application of cognitive computer systems has been
very successful for approaching cancer diagnosis and treat-
ment (read, remember, recommend and remind). Accord-
ing to a team of researchers, cognitive computer systems
can support physicians by providing rapid access to accu-
rate information and treatment procedures, assisting in
decision-making. Such systems have the potential to dis-
tribute cancer knowledge into clinical practice and remote
areas worldwide, by optimizing clinical research and tri-
als with reduced bureaucracy and cost. They presented
the possibilities of AI in future cancer care and research,
which includes developing international cancer networks,
identifying beneficial therapies for rare and highly aggres-
sive cancers, observing different therapeutic outcomes by
different parameters, analyzing associations of cancer with
other disease-specific attributes, discovering new cancer eti-
ologies, incorporating pertinent patient and cancer charac-
teristics into clinic-based uses, conducting economic broad-
based cancer trials, uncovering genomic and molecular
events sensitive to existing or new treatments and analyz-
ing and developing new treatment pathways. Furthermore,
authors predicted that large-scaled AI databases may bene-
fit cancer programs and help cancer treatment and research.

Use of operational EHR in comparative

effectiveness research (46)

EHR has a great role in improving the quality and cost of
healthcare, advancing biomedical science and facilitating
clinical research. Supporting this claim, this overview
presented some examples of running and accomplished
research projects, e.g. Electronic Medical Records and
Genomics (eMERGE) Network, Strategic Health IT
Advanced Research Projects (SHARP) Program and Health
Maintenance Organization Research Network’s Virtual
Data Warehouse Project. The authors also discussed multi-
ple caveats in existing healthcare systems e.g. inaccurate
data entry in EHRs; incomplete patient information in

EHRs; incorrect diagnosis and medication codes (e.g. ICD,
National Drug Code (NDC)), and their conversion into
research descriptions and vice versa; data extraction and
integration from clinical notes in to EHR; multiple data
sources in EHRs affecting data provenance; mismatches of
data granularity with comparative research; and differences
in research protocols and clinical care.

Deep learning in the healthcare system (47)

Deep learning is a dominant ML approach, which has been
greatly augmented in healthcare, analytic systems develop-
ment and modeling tools. This review presented potential
healthcare applications based on multiple driving factors,
including learning digital imaging (e.g. radiology, radiother-
apy, pathology, ophthalmology and dermatology) with deep
learning to facilitate effective decision-making and therapy,
digitization of EHR and applying ML for curating and
analyzing data sets, integrative heterogeneous data analysis
using deep learning, applying deep learning for hypothesis
generation by identifying novel associations to establish
causation and causal pathways, appropriate deployment of
AI and ML-based platforms for remote monitoring and
digital consultations and improving performance of deep
learning with exposure to larger datasets. Authors predicted
safe, effective, efficient and humanistic care in the future
with the successful application of ML.

Deep learning to transform healthcare (48)

Deep learning has the potential to transform healthcare by
outperforming clinical systems and modeling complex rela-
tionships among active hidden factors of data. This study
highlights the background, workflow and challenges of
deep learning with its successful implementation of digital
image analysis, and some examples like analyzing fundus
images of the retina to predict cardiovascular disease and
identifying images for melanoma, basal and squamous cell
carcinoma by matching sensitivity criteria. They suggested
developing and training classifiers based on the deep neu-
ral network to make predictions on big clinical datasets
by using the nonlinear features for modeling regularities.
Authors claimed that in the coming years, with the con-
tinuous increase in the volume of datasets and without
any enhancements to the basic learning techniques, more
promising results can be achieved by ML.

Intelligent digital pathology with deep learning

(50)

The data efficiency of deep learning can be used to augment
information by improving diagnostic accuracy and effi-
ciency by analyzing whole-slide pathology images, which
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cannot be easily observed by the human eye. Performance
of deep learning at test sets of 129 whole-slide images
was examined and compared for identifying metastases
in hematoxylin and eosin–stained tissue sections of lymph
nodes from women with breast cancer. Authors of the study
optimized deep learning algorithms for obtaining impres-
sive results, even better than the participating panel of 11
pathologists. They predicted a bright future of deep learning
applications in digital pathology and discussed the need of
new intelligent tool development for handling diagnostic
sensitivity and specificity.

ML for predictions and finding nonlinear

relationships in the EHR (51)

ML real-time applications have been used to address dif-
ferent clinical questions by analyzing and finding nonlinear
relationships in the EHR. A research study highlighted one
important aspect that could be one of the ML drawbacks
and that is the utilization of most of the ML algorithms to
solve clinical problems when they were originally proposed
for other matrices. The authors of the study provided
some examples to justify their claim and discussed that the
primary purpose of operational EHR systems development
is to not support any kind of ML implementation for
predictions. Due to the lack of robust and structured clinical
data, authors showed uncertainty in achieving high-quality
results with the use of ML. They stressed the need for new
tools based on the ML algorithms especially designed with
prior thresholds for improvements. They also stated that
the present discovery phase needs to implement ML for
better understanding of heterogeneous treatment effects to
implement precision medicine.

Analyzing and visualizing knowledge structures

of health informatics to uncover the explicit and

hidden patterns (55)

A quantitative review of the health informatics field uncov-
ers the scientific growth in this field. As discussed, despite
a long period of progress, there is still no proper char-
acterization of the knowledge and no common language,
which necessitates illumination of the knowledge struc-
tures, text mining methods, scientometric analysis, tracking
tools, Internet of Things-based decision support systems
and social network visualization to identify hidden pat-
terns. The study conducted produced six clusters and nine
research themes to support health information technol-
ogy by improving patient safety by reducing medication
errors, and associating decision support, knowledge repre-
sentation, telehealth innovations and professional behav-
ioral changes in medicine. For the provision of better-
personalized treatment, authors suggested that the health

informatics field should involve DL, new ML algorithms
and advanced big data analytics.

Intelligent health data analytics to improve health

system management, health outcomes,

knowledge discovery and healthcare

innovation (57)

Various healthcare systems are generating heterogeneous
data of significant volumes which demands exploitation
of healthcare data for resource optimization, patient satis-
faction, improved care quality and health outcomes. Rec-
ommended use of AI and ML for advanced health data
analytics with the arrangement of active partners in the
healthcare processes requires ubiquitous services, thera-
peutic decision support, ethnographic health surveillance,
integration of health-related data sources, personalized and
predictive medicine by learning non-linear associations and
drawing causal relationships among inherent data elements.
A team of scientists designed a health data analytics process
involving a methodical order of data processing, modeling,
and analysis steps categorized as data- and knowledge-
driven methods for Decision, Predictive, Descriptive, Opti-
mization, Comparative, Prescriptive and Semantic analy-
sis. They advocated implementation of AI and ML-based
analyses with the inclusion of health data pre-processing,
selecting algorithm based on expected outcome, developing
analytical models and interpreting results.

ML in cancer prognosis and prediction (63)

ML can be applied to detect key features by predictive
modeling of complex and heterogeneous datasets for
progression and treatment of cancerous conditions, risks
and outcomes. Many research groups have highlighted
the implementation of different ML algorithms in cancer
research for estimating unknown dependencies to predict
new outputs of the system, including artificial neural
network, Bayesian network, SVMs, graph-based semi-
supervised learning (SSL) and decision tree. There are
numerous ML real-world applications. The artificial neural
network has been established for breast cancer by analyzing
mammographic and demographic data with k-fold cross-
validation rate and lung cancer by analyzing clinical and
gene expression data; SVM has been used for analyzing
single-nucleotide polymorphisms (SNPs) with leave-one-
out cross-validation for multiple myeloma, with k-fold
cross-validation for breast cancer and with k-fold cross-
validation for breast cancer by analyzing clinical and
population data; the Bayesian network can efficiently
analyze clinical and pathologic data with cross-validation
for colon carcinomatosis and with k-fold cross-validation
for oral cancer by analyzing clinical and imaging tissue
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genomic; blood genomic data; SVM hold-out for breast
cancer by analyzing clinical, pathologic and epidemiologic
data and for cervical cancer by analyzing clinical and
pathologic data; graph-based SSL algorithm with k-
fold cross-validation for colon cancer; breast cancer by
analyzing protein–protein interactions (PPIs) and gene
expression data and k-fold cross-validation for breast
cancer by analyzing Surveillance, Epidemiology, and
End Results (SEER); SVM with cross-validation for oral
cancer by analyzing clinical and genomic data; SVM
with leave-one-out cross-validation for breast cancer by
analyzing genomic data; Bayesian network with hold-out
for breast cancer by analyzing clinical, microarray data;
decision tree with cross-validation for breast cancer by
analyzing SEER; SSL co-training algorithm with k-fold
cross-validation for Breast cancer by analyzing SEER.
Authors acknowledged the active contributions of ML
in accurate cancer susceptibility, recurrence and survival
predictions. However, some concerns exist due to lack of
external validation regarding the predictive performance
of models utilizing integrated clinical and genomic data.
They underlined that application of ML methods in
cancer requires significant validation in order to utilize
them in everyday clinical practice. Authors suggested
data pre-processing with focus on data modification via
dimensionality reduction and feature detection.

Precision medicine approaches

The underlying assumption here is that precision medicine
will provide tailored healthcare to patients and will yield
lower rates of associated adverse outcomes. A classic exam-
ple of precision medicine is the customization of disease
treatment for a single individual which in the old paradigm
was a one-size-fits-all medicine; an effective treatment is the
treatment known to benefit most of the target population.
However, a certain treatment may actually yield benefit
to only a few individuals. The rest of the population will
not benefit from the treatment and may even incur adverse
effects. This exemplifies the need for AI and ML-based sys-
tems bridging multiple domains in a secure environment for
heterogeneous healthcare data analysis and visualization.

Precision medicine with EMR analysis for

prevention and treatment of diseases (33)

Different healthcare institutions do not necessarily utilize
the same EMR system with the possibilities of effectively
communicating with each other, which makes it difficult for
physicians to track patients’ overall medical history. A team
of authors brought about the importance of population
perspective and need of foundation platforms for precision

medicine, which can support large-scaled clinical data inte-
gration, and communication between different EMRs acces-
sible to patients through different health centers. Authors
proposed a universal EMR platform development by inte-
grating population perspectives for the establishment of
protocols to identify subgroups that fit distinct clinical
phenotypes of complex disease and provides avenue for dif-
ferent treatment methods. Authors suggested an additional
fifth ‘P’—Population-wise Perspective—to the existing 4P
precision medicine concept. They justified this claim by
examining a study about identification of a type 2 dia-
betes subgroup through a topological analysis of a popu-
lation’s EMR and determined three major distinct clusters
(66). Authors also suggested that it might be difficult to
implement ML divisions, which include supervised learning
(SVM, discriminant analysis, Naïve Bayes, nearest neigh-
bor and neural network), unsupervised learning (linear
& logistical regression, decision tree, cluster analysis and
neural network) and deep learning. Authors recommended
multi-cluster environment implementation for analyzing
patterns within the subset of populations, which might
present similar clinical phenotypes of complex diseases with
the assumption that the treatment based on one cluster
might not be as effective for another subgroup.

Solving healthcare problems with precision

medicine (35)

Precision medicine has been groundbreaking in tailoring
individualized and effective medical treatments based on
the characteristics of each patient, and different suscepti-
bilities to a particular disease, e.g. trastuzumab for HER2-
positive breast cancer. Many authors are convinced by
the importance of information technology and ML for
the implementation of precision medicine, which includes
data storage and analysis for determining the association
between disease outcome (e.g. disease risk, prognosis or
treatment), identification of patient characteristics and opti-
mal treatment. Furthermore, authors highlight the require-
ment for multidisciplinary collaborations between clini-
cians and researchers.

Role of AI in patients the point-of-care, advanced

analytics and foundation of precision medicine

(36)

The scientific community criticizes the current healthcare
structure, to be based on one-size fits all, and not transi-
tioning from trial and error to evidence-based medicine.
The authors recognize the importance of innovative
technologies (e.g. genome sequencing, health sensors,
advanced biotech) and essential roles of AI in precision
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medicine implementation. Authors proposed three-factor-
based approaches, which include point of care, large-scaled
clinical datasets for training classifier and analytics and
finally building foundations for precision medicine. The
author’s combined deep learning prediction with human
pathologist’s diagnosis resulted in a success rate of 99.5%
and reduced human error by 85% at an early stage. Authors
also presented guidelines for implementing AI in precision
medicine, which included creating ethical standards for AI
applications, gradual and incremental development of AI
and training medical professionals about AI.

Integrated precision medicine towards

targeted and personalized treatment for a given

patient (38)

There has been a lot of debate over the current state
of clinical decision support and how it can be improved
in providing precision medicine. Many scholars have dis-
cussed involving ML in healthcare settings for the diag-
nosis and better treatment of chronic disease in clinical,
translational and public health. Furthermore, they have
highlighted the significance of big data management, pri-
vacy, de-identification and data sharing. Focus on early
diagnosis of chronic conditions through proper extraction
of clinical insights and utilization of in silico datasets could
allow the replacement of animal and human models when
conducting clinical trials by generating virtual patients with
specific characteristics that enhance the outcome of each
study. According to them, 25% of drug discovery occurs by
chance, which can be highly accidental. They signify using
predictive, proactive intervention in healthcare through AI
and clinical decision support system development for lever-
aging big data analysis to make better predictions on the
potential outcome of patients, ultimately supporting better
decision-making by the physicians.

Authors have reviewed and reported analysis of the
different clinical decision support states, improvements in
patient outcome and various limitations and challenges in
Laboratory, Medication, Diagnosis, Radiology, Pathology,
Clinical Evidence & Outcomes, and Procedures, based on
the availability of different data structures and standards in
healthcare systems. Challenges in the laboratory mainly
involve incorporation of genetic results into EMR in a
searchable way; tests conducted at external labs cannot be
incorporated due to lack of standardization, not encoding
lab tests with Logical Observation Identifiers Names and
Codes (LOINC), missing genetic information in EHR.
Challenges in Medication include over time and ineffective
drug combination. Challenges in Diagnosis surround
handling of International Classification of Diseases (ICD)
codes, as not all codes are not billable and some diagnoses

are not even encoded. Challenges in Radiology are of
metadata mostly not formatted according to Digital
Imaging and Communications in Medicine (DICOM), and
reports are unstructured. Challenges in Pathology hold
generation of unstructured reports, and frequent utilization
of unstandardized nomenclature. Challenges in Clinical
Evidence & Outcomes consist of insufficient data types, and
unavailability of universally adopted data models. Chal-
lenges in Procedures mainly cover the process for approving
new procedural codes. Authors have discussed the evolution
of EHR to effectively delivering personalized treatment.
With discussion of two case studies, they emphasized the
implementation of precision medicine for the personalized
delivery of care based on patient-specific patterns of disease
progression and determination of precise therapies.

ML knowledgebase with ontology for pattern

recognition in personalized medicine (40)

Personalized medicine is a broad and rapidly advancing
field in healthcare, primarily based on disease-related
clinical, genomic, metabolomics and environmental infor-
mation. However, failure to correctly identify disease
is one of the major reasons for misleading diagnosis,
treatment and prognosis for the patient. A research
group presented essential components (pattern recognition,
knowledge base, ontology and patient profile) for accurate
disease examination needed for successfully integrating
personalized medicine into everyday clinical practice.
Utilizing ML approaches for pattern recognition and
development of statistical models (sample size and effect
size), creating a knowledgebase of all existing phenotype
categories and disease, organization of clinical datasets of
population size and open software platform development
for statistical analysis of high-dimensional healthcare and
multi-omics data are crucial for practical realization of
precision medicine.

ML classifies cancer by visual assessment of

tumor cells (54)

One of the key technological advancements in the diagnosis
of brain tumors was microscope-based analysis. Overcom-
ing the visual limitation of such techniques for leading dif-
ferent classifications of a given sample by different individ-
uals, a group of authors discussed ML as a precise solution
for accurate diagnosis by analyzing molecular data. A pre-
vious study trained an ML classifier at a maximum number
of images of tumors that were classified by physicians, as
it is not possible to get precise conclusions, especially when
tumor is histologically indistinguishable. Authors discussed
the application of supervised ML for analyzing central
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nervous system (CNS) tumor-type genome-wide methyla-
tion data to identify methylation patterns. They mentioned
application of unsupervised ML to search patterns in the
data sets to develop classification categories. Authors sug-
gested application of ML for molecular analysis and visual
inspection, as the disease can be the manifestation of both
molecular and cellular changes.

ML and genomics in precision medicine (62)

Authors studied major concerns regarding data security
like breaches in patient privacy and also presented the
latest developments in the field of computational data
protection. They discussed advancements in the era of big
data for computer-aided diagnosis, and a recent concept
of precision medicine for providing care for clinical, envi-
ronmental and genetic characteristics. Authors emphasized
developing new ML algorithms for computational analysis
of genomic data to systematize the process of finding
genetic similarities among patients with similar prognosis,
or response to a treatment. They also stressed the need of
implementing intelligent procedures to ensure the privacy
of data, as they believe that data anonymization is not
enough to guarantee unidentifiability due to auxiliary
information. They discussed some existing solutions,
which includes de-identification by data suppression,
k-anonymization, learning from noisy data, homomor-
phic encryption, multi-party computation, cryptographic
hardware and protecting genomic databases. Authors
acknowledged the current contributions of ML but with
the expectations for substantial improvements to address
clinical data security problems and development of new
significant ML models to address the challenges of gene
variations and similarities among patients. They suggested
combining the latest computational data protection
principles with legal and ethical perspectives to construct a
secure framework for data sharing.

Healthcare resource management and

ethical challenges

Resource management is very important in any field of
life, especially in healthcare. Aligning people and technol-
ogy with organizational goals can positively impact with
efficient implementation of planned workflow in achieving
on time high-quality results. However, inefficient resource
management may lead to over-exaggeration of organiza-
tional resources, which includes, time, cost, manpower and
computational, bench and infrastructure resources. Further-
more, it is important to address the ethical and data privacy
challenges, when implementing traditional state-of-the-art
and intelligent healthcare data analytics.

AI towards health in resource-poor settings (37)

Importance and utilization of AI to improve health
outcomes in low-income settings and regions has always
been a point of discussion. One research focus has been on
clearly identifying problems and issues related to the inte-
gration of global healthcare, application and deployment
of AI in real-time environments, high-quality healthcare
data collection in under-developed areas, automatic data
extraction from hand-written notes in local languages,
availability of high-performance computing and cloud-
based environments for data management and analysis, and
construction of knowledge bases and expert systems (67).
Furthermore, concerns about data security, consent, and
ownership, and ethical, patient safety and privacy-related
issues that accompanies the utilization of AI are also
present. Many solutions have been presented to address
the problems of implementation of NLP in EHR for
surveillance and predictions, AI implementation at pre-
existing systems, weather and land pattern identification
and tracking disease transmission through ML algorithms,
implementing advanced expert systems, utilizing NLP to
translate hand-written notes according to WHO standard-
ized medical terminologies and developing local dictio-
naries, establishment of environments capable of working
offline and synchronized with the remote databases,
adopting cloud computing for the implementation of public
health without established IT structure in Low and Middle
Income Countries (LMICs), and using ‘blockchain’ for
cryptocurrency and addressing issues related to the privacy
and transparency. The scientific fraternity has predicted
tremendous cost-saving and improved care delivery in
coming years with the implementation of such along with
related tasks.

Data science, AI and ML for laboratory medicine

(41)

Data science has demonstrated success in laboratory
medicine and reinforcing its value in transforming the
healthcare system. This is a review on the perspective
applications of data science current problems in healthcare,
which includes the need of significant computational power
to contribute to solving data optimization problems, over-
fitting in experimental designs, lack of data standardization,
large-scaled datasets for training ML classifiers and other
concerns in clinical laboratories, e.g. protected health
information challenges, financial limitations and ethical
concerns. Authors discussed the concept that data science
and AI mimics human processes and improves the process
of decision-making. They reasoned the use of predictive
modeling for better collaboration between hospitals
without sharing data and complying privacy regulation
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through ML (supervised and unsupervised learning) for
healthcare data (clinical data, imaging, laboratory tests)
mining, analysis and optimization, identification of large
patient clusters with certain disease characteristics, reducing
medical errors and cost and improving efficiency of staff
and resources. Data science has its own applicability and
ethical challenges especially related to AI integration. AI
encompassing data science when adopted can even improve
human thought processes in efficient decision-making with
different ML algorithms, data mining, knowledge discovery,
improving complex analytical tasks and calculating
clinical pathways. Authors of a study acknowledged
success stories of ML in healthcare (radiology, pathology,
dermatology and genomics), weather forecasting, structural
recognition, NLP, games, analyses of financial transactions
and improvements in industrial processes by finding
patterns, discovering inefficiencies, predicting outcomes
and taking factual decisions. They provided examples
of ML application in healthcare for the detection of
cervical cancer (neural networks), prediction of histological
diagnoses (artificial neural network-based decision-support
scoring systems) and radical hysterectomies with gene
expression analysis (neuronal network), DNA (epigenetic
modifications) and RNA (messenger, long non-coding or
double-stranded) data analysis. ML is contributing to better
personalized treatment by monitoring patient activities
(analyzing data received by sensors for continuous mea-
surement, e.g. glucose); analyzing molecular biomarkers;
predicting drug efficacies, treatment responses and disease
pathways; and identifying molecular factors and genetic
variants. The authors presented an ML framework, which
includes defining tasks, matrices, models and datasets.
They showed concerns regarding implementation of human
rights by the Universal Declaration of Human Rights
at the 1948 United Nations General Assembly for data
privacy, protection, de-identification and encryption for
data handling, collection and sharing. Authors emphasized
the consideration of key ethical concerns, which include
consenting patient, AI human warranty and regulation
of healthcare data according to principles of bioethical
law.

AI to solve the human resource crisis in

healthcare (42)

The healthcare workforce crisis is widening across the
globe. With the increase in the number of chronic and
complex diseases, the demand towards efficient healthcare
system is consistently growing. However, the lack of access
to care, differing quality and doctor shortages are increasing
worldwide. Some authors have presented AI as the solution
in healthcare and discussed its progress in the direction of

predictive and proactive interventions in clinical decision
support systems. They reviewed AI approaches, dividing
them into three categories (43), artificial narrow intelligence
(performing a single task), artificial general intelligence
(agent-based system, known as human-level AI) and arti-
ficial superintelligence (agent-based system, but smarter
than better human). Authors debated the potential role
of AI in filling the human resource gaps by integrating it
with physicians to improve diagnostics and help in better
decision-making. At the same time, they also highlighted
the ethical implication of using AI technology as integrating
part of the healthcare system.

High-performance medicine with AI for

improving workflow and reducing medical errors

(49)

There are multiple challenges of implementing AI in
medicine. A research group underlined the obstacles and
caveats, especially when applied in radiology, pathology,
dermatology, ophthalmology, cardiology, gastroenterology
and mental health. They predicted adaptation of AI by
almost every type of clinician, which mainly includes deep
neural networks for pattern recognition and analysis of
medical images (e.g. medical scans, pathology slides, skin
lesions, retinal images, electrocardiograms, endoscopy,
faces and vital signs); applying deep learning to EHR for
estimating the risk of a patient’s hospital readmission;
supporting doctors in decision-making for resuscitation;
determining patients at risk of developing sepsis and
other diseases; and predicting biological age, and critical
diseases leading to death. Authors highlighted current
challenges to the field of life sciences that can be solved
by ML algorithms, like identification and isolation of rare
cells, multi-omics data analysis, classification of somatic
and germline mutations and gene–gene interactions and
prediction of protein structure and PPIs, the microbiome
and single cells. They also discussed the use of NLP in
drug discovery by analyzing biomedical literature; mining
molecular structures; predicting off-target effects, toxicity
and right dose for experimental drugs; developing cellular
assays; and using AI cryptography for determining uniden-
tified drug interactions. Together with these advantages,
authors also discussed formidable obstacles and drawbacks
due to the field of AI, which includes data privacy and
security, data hacking and breaches, uncertainty in use of
black boxes of algorithms to resolve output, state of AI hype
in validation and readiness for implementing in patient care.
Authors anticipated the bright future of AI applications
by predicting useful clinical outcomes in health systems,
algorithmic interpretation of images and data, reducing
errors, inefficiencies and cost.
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Big data and ML algorithms for better healthcare

delivery (56)

ML is considered a branch of AI encompassing algorithmic
methods to solve scientific, healthcare and various other
problems without traditional computer programming;
this involves interplay between large population-specific
datasets and model building. Suggested AI tool develop-
ment should be based on incremental learning (ability to
continuously improve with the inclusion of new data) to
refine predictive accuracies. One study proposed analytics
exercise starting with the identification of clinical problems,
annotation of extracted healthcare data, application of
appropriate ML algorithms and its effect on decision-
making, addressing legal and ethical implications, assess-
ment of ML effect in trial, designing freeze and submission
of dossier for medical devices, training clinicians on use of
ML tools and monitoring for adverse outcomes. Authors
of the study presented ML algorithms suitable for different
clinical applications and reported real-time clinical devel-
opments in oncology with the implementation of different
AI and ML applications and algorithms. Authors discussed
the importance of human–computer interaction in AI and
ML platform development to effectively support decision-
making processes in healthcare. They presented different
real-time examples, which include HealthSuite, GE Health-
care, Lumada, DISCOVERY and CURATE.AI. They recom-
mended model linking EHR in future ML platform devel-
opment for addressing healthcare data analytics concerns.

Causal inference with ML (60)

Another study examined the implications of progress of AI
in observational research design and healthcare databases,
and implementation of ML for data classification and pre-
diction in Real-World Evidence (RWE) to support clinical
and regulatory decision-making. They discussed American
Recovery and Reinvestment Act (ARRA) explicitly pro-
hibiting cost-effectiveness and focusing on broad interven-
tions for better diagnoses, treatments, disease management
programs and healthcare organization models by mainly
analyzing EHR and establishing patient-centered Outcomes
Research. Authors discussed a wide range of increased size
and nature of biomedical operational and research data,
which requires efficient utilization of ML approaches to
restructure, dimensionality reduction, clustering, modeling,
linking, classification, analysis and predictions. Meeting
RWE objectives, authors acknowledged ML as one of the
powerful tools today for bringing significant improvement
to care service. They exemplified ML with the implemen-
tation of SVMs to predict hospitalization; regression-based
methods for reducing the risk of overfitting; k-fold cross-
validation for splitting one’s sample into two models; and

deep learning models for feature extraction, development of
graphical processing units, predicting in-hospital mortality,
unplanned readmissions, prolonged stays, and discharge
diagnoses. However, they showed lack of confidence in ML
for shielding against the normal challenges in observational
data analysis, as screening some concerns require evidence.

Promise and potential of big data analytics in

healthcare (61)

The effective use of big data by digitizing, combining large
hospital networks and implementing efficient analytical
approaches has been widely successful. According to a
team of scientists, there are tremendous benefits of such
approach in detecting diseases at earlier stages; predicting
risk for medical complications; managing individual
and population health, avoiding frauds; and addressing
numerous healthcare questions. Furthermore, it can reduce
waste and inefficiency by determining clinically relevant
and cost-effective ways to diagnose and treat patients,
applying ML algorithms to predict models and analyzing
EHR and disease patterns to discover adverse treatment
effects. Authors also discussed the current challenges,
covering unavailability of user-friendly and transparent
real-time big data platforms; lags between data acquisition,
collection, cleansing, processing and standardization;
missing ability to manipulate data at different levels for
granularity, privacy and security enablement and quality
assurance; difficulties in the management of large, diverse
and complex data with traditional approaches; changing
healthcare reimbursement models; lack of professional
tools, infrastructure and techniques to leverage big data
effectively; and absence of dynamic analytics algorithms
for efficient data modeling. Authors presented a conceptual
architecture of big data analytics, from developing multi-
source data input, transformation, structure, management
and analysis using traditional SQL, OLAP, to data mining.

Unintended consequences of ML (52)

Authors reviewed some of the factors driving wide adoption
of deep learning and other forms of ML in the health ecosys-
tem. They stated that ML has the potential of promoting
changes in specialty that requires accurate prognosis mod-
els (e.g. oncology) and pattern recognition (e.g. radiology,
pathology). However, authors anticipated some unintended
consequences due to the application of ML-based deci-
sion support systems in healthcare, which includes overre-
liance on automation, more potential for decision errors
by physicians, misleading diagnosis, misinterpretation of
data, intrinsic uncertainty in medicine, inevitable intrinsic
uncertainties and rationale and inscrutable outcome of ML
algorithms. Authors presented unintended consequences in
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clinical and operational research support in reducing the
odds and better implementing ML in medicine. Authors
appealed for developing more precise analytics platforms
for pathology images, next-generation radiology tools, con-
verting EHR into reliable risk predictors and monitoring
patients’ health through wearables and personal devices.

Finding the missing link for big biomedical data

(53)

The problem of integration and analysis of large-scale
biomedical data located in heterogeneous data sources can
be solved by intelligently conforming biomedical data to
support physicians and researchers in conducting new stud-
ies and drawing new hypothesis, leading to novel inter-
ventions. This study lists challenges in biomedical data
linking, which includes identification of potential sources,
determination of linking values, lack of a national unique
patient identifier and data privacy and security concerns.
The authors also presented some potential solutions to these
challenges and support personalized treatment, urging the
identification of potential sources of health information,
considering non-traditional data (e.g. social media, pur-
chase history, census records, etc.) to assemble a universal
view of a patient and probabilistic linkage to the unique
patient identifier problem. They recommended future (AI
and ML) tools development to analyze biomedical data for
better clinical decision-making.

Ethical challenges of implementing ML in

healthcare (58)

The current trend towards AI and ML algorithm devel-
opment and application comes with its set of issues and
challenges. Despite the helpful contributions of AI and ML
in healthcare, they have some concerns, especially related
to the ethical challenges, which include unexpected risks
due to the utilization of algorithms in medicine originally
proposed for some other development; likelihood of using
ML as the source of the communal medical mind; mirroring
human prejudices in decision-making by learning from dif-
ferent unforeseen biases; in extreme premature conditions
relying on ML results can lead to fatal conclusions; mostly
applied ML algorithms are designed to perform in uneth-
ical conditions; ethical strain of gaining industrial profits
with clinical decision-support systems without informing
its users; increase in ethically problematic outcomes due
to constructed ML black boxes; and reimagining of con-
fidentiality due to ML. A review justifies these limitations
in AI and ML with some examples, e.g. Uber’s software tool
Greyball and Volkswagen’s algorithm. Authors are hopeful
that these issues will be addressed in future ML-based
healthcare systems, with the involvement or professionals

and researchers from policy enactment, programming, task-
forces (59), etc.

Theoretical background of AI, ML and

examples in healthcare

AI aimed to improve the intellectual capabilities and perfor-
mances of machines to solve complex and big data-oriented
problems by classifying interaction patterns among vari-
ables, learning from experiences, strategizing and predicting
better orientations. AI has been in business for almost over
50 years, and its applications are heavily demanded in
numerous fields of life, science, technology and medicine
(68,69). AI developments are based on supervised, unsuper-
vised and reinforced learning principles, which include com-
putational command line, desktop, web-based, robotics and
smartphone applications with different analytics capabili-
ties, e.g. machine translation, speech recognition, NLP, data
mining, risk modeling, image recognition, machine vision,
knowledge bases, expert systems and agent-based systems.
AI is categorized in four main types for decision-making,
which are reactive machines (based on the current situation
without learning from experiences), limited memory (based
on short memory, and learning from experiences), theory
of mind (based on humanlike capabilities and abilities
to attribute mental states) and self-awareness (based on
human-level consciousness).

In the last few years, AI has become more popular and
seriously considered for analyzing diverse clinical data
(EHR, images, etc.) for accurate diagnosis and effective
treatment in different practices (70), e.g. radiology (71)
(early diagnosis, enhance visualization of pathologies and
predicting emergency situations (64,73,71)), oncology
(diagnosis of breast (75), skin (76), lung cancer (77)), cardi-
ology (interpreting electrocardiogram readings, echocardio-
graphy with 3D cardiac imaging, cardiac CT angiography
for calcification of the coronary vessels, cardiac MRI for
measuring perfusion and blood flow and longitudinal
evaluation to find predictors of heart failure (78,79,80)),
gastroenterology (analyzing endoscopic images for screen-
ing regimens to abnormal findings (81)), ophthalmology
(detection of diabetic retinopathy in retinal fundus
photographs (64)), pediatric (augmenting diagnostic
evaluations (82)) and surgery (robotic-assisted surgery
(83,84)), but not limited to these (85). One of the
most recent trends is the utilization of AI in Precision
Medicine (86,87,88) with the application of ML algorithms
for analyzing heterogeneous patient data, e.g. clinical,
genomics, metabolomics, imaging, claims, labs, nutrients
and life-style.

ML is a branch of AI that utilizes and proposes different
algorithms for learning from numerous data variables and
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Figure 2. Data classification, clustering and regression for healthcare data analytics. ML application process includes creating and labeling of raw

data, training classifier for data modeling using appropriate algorithm and analyzing and reporting results.

revealing multifaceted relationships among data features
to predict accuracies in different contexts and support
decision-making processes. The overall ML process starts
with the manifestation of either or both data and labels,
training classifier to learn and model using an algorithm and
then performing data evaluation and analysis to estimate
final results. ML is mainly categorized in three learning
approaches: classification, cluster, and regression (Figure 2).
Classification and regression are based on supervised learn-
ing, while clustering involves unsupervised learning. Clas-
sification predicts discrete, categorical response values by
using labels and parameters, e.g. determining if a biopsy
sample is cancerous or not (positive/negative). Cluster is to
partition data into sub-groups, e.g. what is the prevalence
of disease recurrence (positive/negative) in a certain pop-
ulation due to pollution or chemical spill (common rela-
tionship between dataset). Regression predicts continuous-
response numeric values to identify distribution trends, e.g.
how long before a patient is readmitted to the hospital
following his/her discharge (positive/negative).

ML is becoming the transformational force in health-
care (89) for guiding individual and population health
with several computational benefits, which includes real-
time patient monitoring; disease patterns analysis (90);
disease diagnosis and prescription of medicines; patient-
centric care provision with enhanced treatment (91); clinical
errors reduction (92); prognostic scoring (93); therapeutic
decision-making (94); identification of sepsis and high risk
for medical emergencies (95); identification of phenotypes;
screening claims data (96); extraction of clinical codes

from death certificates and autopsy reports; identification
of heart failure, cancer and other chronic disease causing
symptoms; risk predictions, interventions, paneling and
resourcing (97,98) and clinical decision-making (99). Most
commonly used ML algorithms in medicine includes SVM,
deep learning, logistic regression, DA, decision tree, random
forest, linear regression, Naïve Bayes, K-nearest neighbor
(KNN) and hidden Markov model (HMM) (Figure 3).

SVM (100) is one of the most widely used ML algorithms
in bioinformatics and healthcare (101). It is considered a
great supervised learning method (102,103) for accurately
working in general practice. SVM was proposed in 1963
(100) to model diverse and high-dimensional data (101)
with kernel methods to generate nonlinear decision bound-
aries and train classifier (104,105,106). It assists in the
field of medicine with vast variety of contributions, e.g.
symptoms classification and analysis to improve diagnostic
accuracy, identifying imaging biomarkers of neurological
and psychiatric disease, validation for multiple myeloma
and breast cancer by analyzing SNPs, hold-out for breast
and cervical cancer by analyzing clinical, pathologic and
epidemiologic data, validation for oral cancer by analyzing
clinical, molecular and genomic data, and diagnosing men-
tal illness (106,107,108). Its ML benefits include modeling
nonlinear class boundaries, unlikely overfitting, reduced
computational complexity to quadratic optimization prob-
lems and controllable complexity of decision rule and fre-
quency of error (109). However, the complex structure
of this algorithm is its limitations leading to slow data
processing speed, and difficulties in determining optimal
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Figure 3. Applying machine learning algorithms for clinical, genomics, metabolomics, imaging, claims, labs, nutrients and life style data fusion,

integration and analysis. Machine learning algorithms include, support vector machine, deep learning, logistic regression, discriminant analysis,

decision tree, Random forest, linear regression, naïve Bayes, K-nearest neighbor, hidden Markov model and genetic algorithm.

parameters especially when training dataset is not linearly
classified (108).

Deep learning is a dominant approach based on artificial
neural network. It was inspired by the ability of the brain
to learn complicated patterns, and one of the most popular
ML algorithms in healthcare today, aiming to advance
clinical medicine and care delivery (47). The artificial neural
network base gives its several nested layers of neurons
(110) to learn complex relationships between features and
labels from heterogeneous clinical data (32). Deep learning
has four categories: deep belief network, deep neural net-
work, convolutional neural network and recurrent neural
network (39) for implementing pattern recognition and
predictive modeling at high-dimensional big data sets. It is
fundamentally a uniquely different paradigm in ML
(111,112) and its capabilities include multitasking, auto-
matic construction of complex features, digitization of
EHR and image-based data, integrating heterogeneous
data sets assembled from diverse sources, combining
with wearables for remote monitoring (47). Its ML
benefits include application in classification or regression
with ability to represent Boolean functions (AND, OR,
NOT), handling noisy inputs and classifying instances for
more than one output. However, its limitations include
difficulties in understanding structures of algorithms,
possibility of too many overfitting attributes and its
optimal network structure which can only be created by
experimentation (108). Deep learning is one of the most

widely used algorithms in medicine for analyzing different
types of images from various healthcare disciplines but
especially oncology, e.g. thoracic (lung cancer); abdominal
and pelvic (computed tomography (CT) and magnetic
resonance imaging (MRI)); colonoscopy (colonic polyps);
mammography (microcalcifications); brain (brain tumors);
radiation oncology (segmenting tumors for radiation,
and quantifying specific radiographic characteristics by
analyzing 3D shape of a tumor (113,114)); dermatology
(skin cancer (115,76)); pathology (digital whole-slide
of biopsy samples) (115); prostate (cancer tumors by
analyzing ultrasound of biopsy cores); malignant lung
nodules by analyzing radiographs; glioma by analyzing
histological imaging and genomic marker data; and
DNA and RNA sequencing (RNA-binding and DNA-
binding proteins). Furthermore, deep learning has been
applied for the diagnosis of several other diseases, e.g.
nodular BCC, dermal nevus and seborrheic keratosis in
dermatopathology (116); diabetic retinopathy (64); type 2
diabetes subgroups (66); diabetic retinopathy by analyzing
retinal images; histological prediction in women with
cytological abnormalities; measure medication adherence
via camera interface (65); and cardiac anomalies and
congestive heart failure by analyzing images of MRI of
heart ventricles (117).

Logistic regression is a statistical method to assess the
relationships between various predictor categorical and
continuous variables and dichotomous binary outcome
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(118). It has been applied in the fields of medicine (clinical
practice, surgery), epidemiology and biochemistry to
perform predictive and explanatory modeling by obtaining
odds ratios and risk factors explaining variations in
specific outcomes (119,120,121,122). Its examples of real-
time implementation in the field of medicine include risk
assessment of complex diseases (123) (e.g. tuberculosis
(124), breast cancer (125)), predicting patient survival
rate and diagnosing coronary heart disease (CHD) (123),
non-Hodgkin’s lymphoma diagnosis with multivariable
logistic regression modeling (126), and identification
of pulmonary thromboembolism (PTE) by analyzing
prognostic factors (127). Its ML benefits include concurrent
multiple explanatory variables analysis with reduced effect
of confounding factors and modeling categorical dependent
variables (128,129). However, its limitation lies in handling
continuous explanatory variables with more than two levels
as it is based on variables with a constant range of values
(122), difficulties in understanding odds and probabilities
(119), right predictor variable selection (118,122), reference
group setup and managing relationships between input and
output variables.

Discriminant analysis is a widely applied technique in
medical studies for pattern recognition (130). Discriminant
analysis is used to predict and classify group members by
building one or multiple functions (131,132,133) based
on normal distribution and equal variance–covariance of
independent variables (134,135). Its real-time applications
include identifying surgical and operative factors to accu-
rately classify patients for surgical procedure (136), predict
the clinical diagnosis of primary immunodeficiencies
(137), patients’ symptom-relief satisfaction data (138),
prediction of depression elements in cancer patients (135),
classification of BOLD fMRI response to naturalistic movie
stimuli (139), identify protein coding regions of rice genes
(140), Parkinson’s disease symptoms recognition (141),
risk assessment for chronic illnesses (142), diagnosis of
hypercalcemia (143) and predicting patient care visits by
identifying discriminatory characteristics (144). Its ML
benefits include robustness, reduced dimensionality, easy
implementation as it requires fewer parameters to be
estimated (137). However, its limitations include over-
fitting to dataset (131), limit performance at novel datasets
(145) and lack of cross-validation (137).

The decision tree utilizes a tree structure modeling
approach with conditional control statements for establish-
ing an efficient decision-making process (146). The decision
tree is based on the concept of classification rules, following
paths from root to leaf. Its internal nodes represent ‘test’
on an attribute, branch represents the outcome of the
test and leaf represents decision taken after computing all
attributes. Its ML benefits include ease of understanding,

order of training algorithm instances with no effect,
and no overfitting problem while pruning, allowing
predictive model implementation with high precision,
permanence and ease of clarification, well-mapped non-
linear relationships and suitability for both classification
or regression problems. However, its limitations include
mutually exclusive classes, dependency on order of attribute
selection, being error-prone when training on excessively
complex decision tree, time-consumption and branching
of missing values for an attribute (108). It has been well
applied in the field of medicine for real-time healthcare
monitoring, medical decision support system, anomaly
detecting and sensor and a data mining model for pollution
prediction. A few real-time examples include supporting
clinical decisions (147), strategies for alternating therapies
in oncology patients (148), collaborative clinical decision-
making in mental health care (149), identifying predictors
of health outcomes (150), finding factors related to hyper-
tension (151), discovering factors associated with pressure
ulcers (PUs) among elderly people (152), identifying the
potential recipients of telehealth services (153), patient
data stratification for interpretable decision-making for
precision medicine (154), content analysis for patient aids
decision (155), diabetic foot amputation risk analysis
(156) and support understanding of antenatal lifestyle
interventions (157).

Random forest is also known as the random decision
forest, a combination of algorithms to build predictive
models for classification and regression problems (158).
Its classifier generates a set of decision trees based on
training of randomly selected subsets to aggregate the elects
from different decision trees to get final object. Its ML
benefits include overcoming the problem of overfitting,
less variance, not requiring input data preparation, flexi-
bility and high accuracy even with missing large portions
of the data. However, its limitations include its complex-
ity, difficulty in implementing, requirements for additional
computational resources, less intuitiveness and more time
consumption than most other algorithms. Nevertheless, it
has been applied in the field medicine for data mining,
real-time patient monitoring, disease classification, imple-
mentation in wearables and personal devices and mod-
eling big data based on engine recommendations. Some
of its reported contributions include diagnosing mental
illness (106), detecting knee osteoarthritis (159), monitor-
ing medical wireless sensors (160), diagnosing Alzheimer’s
disease (161), predicting metabolic pathways (162), pre-
dicting outcomes of a patient’s encounter with behavioral
health providers (163), healthcare cost prediction (164),
mortality prediction for intensive care unit (ICU) patients
(165), classification of Alzheimer’s disease (166), identify-
ing social and economic factors to study social determinants
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of health (167), predicting disease risks from imbalanced
data (168), identifying associates of diabetic peripheral neu-
ropathy diagnosis (169), predicting the risk of emergency
admission (170), detecting patients ready to discharge from
intensive care (171), nonparametric estimation of hetero-
geneous treatment effects (172), diagnosing sleep disorders
(173) and predicting depression in patients suffering from
Alzheimer’s disease (174).

Linear regression is an ML approach to model relation-
ships between dependent and independent variables using
linear predictor functions to identify errors of prediction
in a scatter plot and characterize relationships among
multiple factors (175). Linear regression has been applied
in the field of medicine for many computational analyses
and predictions, from identification of prognostically
relevant risk factors (175), predicting hand surgery (176),
monitoring treatment prescribing patterns and ensuring
its appropriateness (177), averaging decision-making in
healthcare (178), reducing high costs of the health system
(179), analyzing skewed healthcare cost data (180) and
understanding human immunodeficiency virus (HIV)
prevalence patterns (181).

Naïve Bayes is a supervised ML technique based on
Bayes’ theorem for data mining, classification, and predic-
tive modeling (182) to find a maximum probability value
from a conditional probability chain (183). Naïve Bayes
is well applied in the field of health performing predictive
modelling for different diseases (brain, asthma, prostate,
and breast cancer etc.) (184), predicting risk using censored
and time-to-event data (185), detecting Mucopolysaccha-
ridosis type II (186), predicting Alzheimer’s disease from
genome-wide data (187), measuring quality healthcare ser-
vices (188), finding audit targets in performance-based
financing in health (189), modeling medical diagnosis for
decision support (190), classifying EHR (191), classifying
and genetic scoring for risk prediction (192), and designing
a decision support system for heart disease (193). Its ML
benefits include modelling based on statistical foundation,
ease to understand and train algorithm, and usefulness
across multiple domains. However, its limitations include
difficulties in handling redundant attributes, distribution
of statistically independent attributes, and management of
class frequencies affecting accuracy (108).

KNN is also a supervised learning-based algorithm used
for classification and regression in pattern recognition, data
mining and intrusion detection by classifying points to given
categories from a training dataset (194). Its ML benefits
include implementation of instances for fast non-linear data
classifications, robustness in addressing irrelevant or novel
attributes, well-handled instances with noise and missing
attribute values and applicability for both regression and
classification. However, its limitations include languidity in

updating description concept, expecting similar classifica-
tions and relevancy from instances with similar attributes
and increase in computational complexity with the number
of attributes (108). KNN has been used in many scientific
fields but with limited applications in the field of medicine
(195). Some of real-time examples include modeling diag-
nostic performance (195), preserving privacy of medical
diagnosis in e-Health cloud (196), medical dataset classi-
fication (197), classification of lymph node metastasis in
gastric cancer (198), pattern classification for breast cancer
diagnosis (199), pattern classification for health monitor-
ing applications (200) and pancreatic cancer prediction
combining published literature and EHR data (201).

HMM was originally proposed to solve speech problems
by making complex and instinctive probabilistic models for
finding and processing hidden states and paths (202,203,
204). Since the late 1980s, it has been effectively applied in
the field of life sciences, especially in biology for analyzing
sequence data (e.g. predicting exons and introns, identifying
ORFs, insertions, deletions, substitutions, functional motifs
in proteins, aligning two sequences and switching from
exon to intron in a DNA sequence (205)) by capturing
hidden information from observable sequential symbols.
Later, it was well adapted in the field of medicine and
its real-time contributions include modeling ‘Healthy’ and
‘Unhealthy’ unobserved health states (206); analyzing time-
series data on personal health check-up (206); improving
length of hospital stay prediction and reducing health care
costs (207); mining adverse drug reactions from online
healthcare forums (208); monitoring, modeling and clus-
tering medical inpatient journeys (209); analyzing health-
care service utilization after transport-related injuries (210);
monitoring circadian in telemetric activity data (211); pre-
dicting patients entering states with a high number of
asynchronies (212); and analyzing subject-specific seizure
and automatic segmentation of infant cry signals (213).
However, its modeling limitations include computing prob-
ability of sequence observation, choosing an accurate corre-
sponding state, adjusting parameters (214) and dealing with
correlations between residues due to the underlying decency
assumption problem (215).

The genetic algorithm was inspired by Charles Darwin’s
theory of natural evolution to solve constrained and
unconstrained data optimization and standardization prob-
lems by repeatedly modifying a population of individual
solutions (215). Primarily, it is based on heuristic search
with three active rules: selection of data elements (parents),
crossover rules for two parents from children and mutation
for random change (216). Its ML benefits include easier
implementation than other algorithms; application for fea-
ture classification, selection and optimization; and relative
success. However, its computational limitations include
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development of non-trivial scoring function, complications
in training classifiers of given data, and its being not the
best method to find optima. It has been vigorously involved
in the fields of life and medical sciences for benefitting
analytics, development in radiology, oncology, cardiology,
endocrinology, pediatrics, surgery, pulmonology, infectious
diseases, radiotherapy, rehabilitation medicine, orthopedics,
neurology, pharmacotherapy, health care management,
obstetrics and gynecology (217). It has been successful in
detecting microcalcifications in mammograms of breast
cancer (218,219), developing a non-invasive technique for
cervical cancer detection (220), analyzing microarray data
from cancer cell lines (221), investigating relationships
between soil trace elements and cervical cancer mortality
(222), parameter estimation for determining tissue elasticity
(223), predicting risk of a major adverse cardiac event
(MACE) (224), detecting QRS complexes (225), detecting
hypoglycemia EEG signals (226), predicting time to reach
full cervical dilation (227), selecting optimal features
for cardiotocogram recordings (228), identifying autism
by analyzing gene expression microarray data (229),
predicting outcomes of patients with non-small cell lung
cancer (NSCLC) (230), diagnosing patients by classifying
lung sounds into normal, wheeze and crackle (231),
choosing appropriate highly active antiretroviral therapy
(HAART) to control HIV (232), improving the selection of
gantry angles to optimize stereotactic radiotherapy (233),
training robots for physiotherapy of the lower limb (234),
estimating Cobb angle from torso asymmetry in scoliosis
(235), analyzing mutations in Parkinson’s disease (236),
predicting tacrolimus blood levels and scheduling patient
admission in an ophthalmic hospital (237).

Discussion

AI and its application in healthcare could be another great
leap in medicine and a transformational force for guiding
personalized and population medicine with several compu-
tational benefits. The extent of its popularity in healthcare
can be easily determined by the number of AI related pub-
lished work in medicine. At the time of the study (09 April
2019), a total of 16 166 AI and ML papers were available
through PubMed. The growth of scientific literature in AI
increased in the last 10 years with 14 469 papers (2009–
2019), and more than 70% work was published in the last
five years. While the growing importance and relevance of
AI in healthcare is indisputable, to improve public sector
clinical practice, there is a critical need for development of
intelligent frameworks to connect operational and analyti-
cal healthcare systems in a way that experts from multiple
domains can perform measurement and predictive analysis.
AI has the potential to play a vital role at various levels

of clinical operations, research and analytics to achieve
significant improvements in providing better individualized
and population healthcare at lower costs, and together
with better work-life style for clinicians and staff. The
major barriers in successfully implementing AI in healthcare
include gaps in AI building blocks and infrastructures;
low quality data availability; business model sustainabil-
ity; regulations and policies for data collection, usage and
sharing; disruption in the physician–patient relationships;
integration to operational health systems; reduced evidence
and reproducibility; selection of most appropriate ML algo-
rithm; lack of understanding of AI and ML processes to
predict; hazard of dehumanization of healthcare data and
job insecurity threat; conflicts of interest and impartial
access; accountability exploitation of AI; ‘sanity’ check to
minimize any bias; handling of misleading and erroneous
results; and data privacy, ethics, consent and ownership
(108,238,239,240).

Determining which AI approach to use for which task
is a challenge in itself. Classifying tasks based on available
predictor variables is a key step to correctly addressing
the problem. Traditional AI models can be used for simple
prediction tasks while complex tasks require more complex
models. The next step is to consider how the model will
be used in practice. Setting rules to identify if a task needs
to pre-process data before execution or if a complex task
can be broken down into simple tasks is amenable to a
traditional model. Creating and updating these rules is very
time-consuming but is very useful. Availability of training
data is another key factor in intelligent automation. Simple
models can work with little data and few variables, but
complex models require huge amount of data with mul-
tiple examples and scenarios as it is expected to remove
noisy data and learn to identify complex statistical patterns
(32). Numerous approaches have been proposed recently
to successfully target current challenges of implementing
AI and ML. We studied and reviewed contributions and
variability analysis of various approaches in healthcare.
We defined 15 different features to assess the potential
of discussed approaches (Table 3). These features are (i)
intelligent interface development; (ii) next-gen radiology
and imaging tools development; (iii) global expansion of
medical resources; (iv) automated ETL, linkage and data
mining in HER; (v) risk prediction and containment of
antibiotics resistance; (vi) pathology image analysis; (vii) AI
in machines and medical devices; (viii) smart solutions and
methods for cancer treatment; (vix) EMR analysis for accu-
rate risk predictors; (x) wearable devices for monitoring
patients health; (xi) smartphone applications as diagnostic
tools; (xii) AI-based clinician decision-making; (xiii) search
engine for healthcare data flow; (xiv) data privacy and
security; and (xiv) personalized treatments.
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Although many AI and ML-based approaches have
embraced the data gold rush in biomedicine, many
concerns remain, which include integration of biomedical
data located in heterogeneous data sources; handling
extensively available irrelevant, error-prone and missing
data; unnecessary follow-up diagnosis and treatment as a
result of overloaded health information; loss of data privacy
and reimagining of confidentiality; ethical strain of gaining
industrial profits with clinical decision-support systems
without informing the users; possibilities of patient data
exploitation, employment insecurity due to governance
and management of big data; regulation of healthcare
data analysis according to principles of bioethical law;
evidence-based observational data analysis and screening,
slow data processing speed and difficulties in determining
optimal parameters; difficulties in understanding structures
of algorithms; possibility of too many overfitting attributes
and its optimal network structure; handling continuous
explanatory variables with more than two levels; difficulties
in understanding odds and probabilities (119); correct
predictor variable selection, reference group setup, and
managing relationships between input and output variables
(118,122); error-prone branching of missing values for
an attribute (108); lack of data availability on social
determinants of health; difficulties in handling redun-
dant attributes, distribution of statistically independent
attributes and management of class frequencies affecting
accuracy (108); increased computational complexity with
increasing number of attributes; computing probability of
sequence observation; choosing accurate corresponding
states and adjusting parameters (214); dealing with
correlations between residues due to underlying decency
assumption problem (215); and prediction modeling
with biases in confounding, causal inference, complexity-
based model selection, benchmark development and
pragmatic interoperability including reproducibility and
generalizability.

Potential solutions to these concerns are based on design
and implementation of healthcare IT infrastructure (35,49);
EMR documentation and automation of repetitive tasks
with ML algorithms (31); deep learning to mine (41), train
(39) and learn complex relationships between features and
labels (32); ML algorithms to effectively link data between
different platforms (33); development of effective clinical
decision support systems (CDS) through the utilization of
ML algorithms (38); translation of local languages into
EHRs and cloud-based data sharing (37); deep learning
for integrative EMR analysis from diverse sources (47);
computer vision algorithms to identify accurate indigestion
of medications for patient (31); deep learning for speech
recognition, image interpretation and language translation
(48); AI algorithms for diagnostic disease modeling and

computer-aided design (CAD) (34); ML models to create
knowledge base systems of phenotypes (40); ML algorithms
to predict outbreak patterns and surveillance for new
emergence (37); integrative approach to help decision-
making processes between physicians and AI (89); ML
algorithms to enhance and optimize cancer treatment and
development of new drug treatments (45); ML algorithms
to perform longitudinal population studies for analyzing
the effects of treatments (56); ML-based hybrid model
classifier to enhance overall healthcare predictability (72);
and ML algorithms to transform clinical research into
a much higher capacity and lower cost information
processing care service (74).

We also considered most adaptable traditional (statis-
tical) AI and ML algorithms (SVM, deep learning, logis-
tic regression, discriminant analysis, decision tree, random
forest, linear regression, naïve Bayes, KNN, HMM and
genetic algorithm) in healthcare and justified their contri-
butions with living examples for different clinical appli-
cations, e.g. deep neural network for diagnosing eye dis-
eases (diabetic retinopathy) by analyzing retinal images;
diagnosing cardiac anomalies by analyzing MRI images
of heart ventricles; detecting malignant lung nodules by
analyzing radiographs; grading prostate cancer tumors by
analyzing ultrasound of biopsy cores; and producing glioma
survival predictions by analyzing histological imaging and
genomic marker data. Some other non-traditional algo-
rithms were used, e.g., ‘Watson for Oncology’ (241,242)
and ‘CURATE.AI’ (243,244), for analyzing EHR of can-
cer patients and recommend treatments and drug doses;
TREWScore (245,246,247,248) for analyzing EHR for pre-
dicting septic shock risk and analyze CT brain scans for
three-dimensional convolutional neural network neurolog-
ical disorder classification; ‘PowerLook Density Assessment
3.4’ (249) for analyzing mammogram images for breast
density assessment; ‘OsteoDetect’ (84,250,251) for detect-
ing distal radius fractures in the wrist; cloud-based deep
neural network algorithm for diagnosing cardiac anoma-
lies and segmentation of lung and liver tumors by ana-
lyzing CT scans (56); and AI system for breast cancer
prediction (252). Furthermore, major clinical oncological
developments with the implementation of different AI and
ML applications and algorithms include Chatbot; breast
MRI interpretation; breast lesion classification; colorec-
tal polyp classification; identification of colorectal can-
cer biomarkers in cell-free blood assays; gastric mucosal
disease classification; detection of lung nodules in low-
dose lung CT screening; prediction and evaluation of risk
and malignancy and classification of dysplastic nevi, spitz
nevi and basal and squamous cell carcinoma; detection of
esophageal cancer; and identification of pancreatic cancer
biomarkers (56).
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The goal of this study is to highlight recent contributions
and effectiveness of AI and ML in the development of com-
putational systems towards better healthcare and precision
medicine. We have reviewed and discussed multiple AI and
ML-based approaches (Tables 1, 2 and 3) and algorithms
with variable colors. Deep learning (253,254) has proven to
be one of the most trending algorithms today, but this does
not undermine the importance of other machine learning
algorithms. We believe that a right approach and algorithm
should be chosen for the development of the most effective
solutions to the targeted problems. In spite of various
traditional and AI-based solutions, current limitations and
challenges by the healthcare community include uneven dis-
tribution of resources towards the future of digital health-
care; business model unsustainability; disruption in the
physician–patient relationships; hazards of dehumanization
of healthcare data and job insecurity threat; prevention
of early adopters for dragging down to the lowest com-
mon technology denominator; inconvenient adoption of
digital processes for healthcare interoperability; shortages
in development of customized IT infrastructure for data
science; global unavailability of de-identified healthcare
data for research; understanding of how healthcare data of
different people relates to one another; need to harmonize
big data with the definitions of the clinical phenotypes and
diagnosis; limited EHR systems for assimilating operational
and analytics interests; EHR offering limited patient par-
ticipation; unavailability of high-quality open-source EHR
systems inviting third-party extensions and assertions; and
inflexible EHR database schemas not geared for precision
medicine.

To effectively meet the goals of healthcare data analytics,
while dealing with the aforementioned community, and
traditional and AI-based challenges, significant efforts are
required from experts in multidisciplinary sciences. To
facilitate and improve public sector clinical research and
practice, there is a critical need for academic frameworks
that can connect operational and analytical systems in
a way that experts from multiple domains can perform
measurement and descriptive analysis, even without strong
computational background. There is a need to develop
standalone, user-friendly, standardized, open-source, and
comprehensive solutions, which implement healthcare
data analysis by connecting all kinds of patient data
generated from any of the existing commercial EHR
systems at any level, which includes patient’s demographic
information, personal life style, medical history, recent visits
to the practices, providers attended, diagnosis performed,
lab tests conducted, longitudinal images, medications
and procedures, samples taken for wet and dry lab
experimentations for research and treatment of disease with
no cure. Furthermore, the ideal system should be capable

of automatically linking and communicating with similar
systems.

Unmet clinical research and operational data analytics
needs development of intelligent and secure systems to
support practice transformation for implementing precision
medicine at a global level. Overarching goals include new
multi-functional platforms founded on the clinical, AI and
scientific premise that integrates and analyzes heteroge-
neous clinical data received from multiple platforms. We
need to implement and train AI classifiers at available
structured clinical dataset of over a million subjects to help
in early detection and diagnosis of common, frequently
occurring and rare diseases and predicting the performance
of provided treatments. We need to further explore AI
methodologies to design models segregating disorders, iden-
tify causative medical conditions and determine the best
drug therapies, especially when adjusted for age, race and
gender. The goal should be to accelerate clinical care and
discovery by satisfying research aims, improving quality
and transition of care, obtaining actionable care gap-based
information about patients and developing communication
and coordination across hospitals, specialists, community-
based providers, sub-acute care, nurses, quality inspectors,
management, researchers and analysts. We need to strive
to address possible challenges that continue to slow the
advancements of this breakthrough treatment approach.

Along with AI- and ML-based methodological devel-
opments, it is important to address the issues related to
healthcare data privacy and security. In most of the cases,
academic and applied research environments do not have
access to the healthcare data. The major reason is secure
handling of protected health information (PHI) and lack of
trust by the healthcare institutions in providing access to
their medical records. We need to develop secure research-
based HIPAA-compliant frameworks for efficient PHI stor-
age, pre-processing, de-identification and integration to
serve a large community of users, support organizational
policies and provide efficient access and connectivity. It
is mandatory to implement HIPAA rules for system user
data security, which includes application and data crit-
icality, risk management and analysis, information sys-
tem activity review, contingency plan, device and media
controls, disaster recovery plan, data backup plan, emer-
gency mode operations plan, device and media controls,
access controls, security incident procedures, vulnerability
assessment, penetration testing, physical security, business
associate agreements, polices and procedures, evaluation,
audit, assignment of responsibility sanctions, workstation
use and security. Furthermore, it is important to provide
an external layer to the overall healthcare data analytics
systems for placing clinical data in a distributed centralized
structure; administering security by encrypting data as well
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as offering a multi-user-based graphical interface with con-
trolled access; and supporting data backup with redundant
data management plans.

Conclusion

Precision medicine is progressing but with many challenges
lying ahead (255), which require addition of useful analytic
tools, technologies, databases and approaches (4,6) to effi-
ciently augment networking and interoperability of clinical,
laboratory and public health systems, as well as address eth-
ical and social issues related to the privacy and protection of
healthcare and omics data with effective balance. This will
also require more efficient management of massive amounts
of generated data, as well as earlier mined consensus and
actionable data. Most efforts involved currently are manual
and time-consuming, whether it is extraction of healthcare
data from operational clinical systems, identification of
common and rare functional variants, metabolite pene-
trance using listed features and abnormalities, examining
relations between genomic variations and metabolite lev-
els, analyzing biochemical pathways in metabolites with
patterns of multimodal distributions for candidate genes
and management and assimilation of healthcare, along with
epidemiological and omics data generated at each step of
entry, production and analysis. Cutting-edge, new AI and
ML-based big data platform development has the potential
to revolutionize the field of medicine and improve the
quality and transition of healthcare by intelligently ana-
lyzing structured clinical data available in great count and
volume, posing unprecedented challenges in data storage,
processing, exchange and curation, and developing a better
understanding of biology.
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