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Abundant microbiota resides in the organs of the body, which utilize the

nutrition and form a reciprocal relationship with the host. The composition

of these microbiota changes under different pathological conditions,

particularly in response to stress and digestive diseases, making the microbial

composition and health of the hosts body interdependent. Probiotics are living

microorganisms that have demonstrated beneficial effects on physical health

and as such are used as supplements to ameliorate symptoms of various

digestive diseases by optimizing microbial composition of the gut and restore

digestive balance. However, the supplementary effect does not achieve the

expected result. Therefore, a targeted screening strategy on probiotic bacteria

is crucial, owing to the presence of several bacterial strains. Core bacteria work

effectively in maintaining microbiological homeostasis and stabilization in the

gastrointestinal tract. Some of the core bacteria can be inherited and acquired

from maternal pregnancy and delivery; others can be acquired from contact

with the mother, feces, and the environment. Knowing the genera and

functions of the core bacteria could be vital in the isolation and selection of

probiotic bacteria for supplementation. In addition, other supporting strains of

probiotic bacteria are also needed. A comprehensive strategy for mining both

core and supporting bacteria before its clinical use is needed. Using

metagenomics or other methods of estimation to discern the typically

differentiated strains of bacteria is another important strategy to treat

dysbiosis. Hence, these two factors are significant to carry out targeted

isolation and selection of the functional strains to compose the resulting

probiotic preparation for application in both research and clinical use. In

conclusion, precise probiotic supplementation, by screening abundant strains
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of bacteria and isolating specific probiotic strains, could rapidly establish the

core microbiota needed to confer resilience, particularly in bacterial

dysfunctional diseases. This approach can help identify distinct bacteria

which can be used to improve supplementation therapies.
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1 Introduction

Probiotics are live bacteria that confer health benefits to the

host when administered in adequate quantities (1). Recent

studies have demonstrated that the host’s microbiota plays an

important role in maintaining overall health, and is thus an

attractive target for clinical interventions (2, 3). In humans and

animals, the gastrointestinal tract (GIT) contains a dense

population of microorganisms that cohesively interplay with

the host’s digestion and help to fight against infections (2, 4).

Some of the bacterial strains present belong to core genera that

may represent a significant proportion of the GIT microbiota or

form smaller dominant microbial groups (5). However, many

factors, such as alcohol consumption and high-energy diets

containing lots of carbohydrates and proteins, can cause

dysbiosis of the GIT (6). Significant consequences of

nutritional and metabolic diseases are disturbance of the GIT

microbiota, especially under stress conditions (7, 8). Treat these

diseases involves restoring the microecological environment of

the GIT. Thus, as an alternative to administering antibiotic
02
drugs, supplementation with probiotic bacteria has been found

to be an effective approach. Scientists have developed a growing

interest in assessing the ability of probiotics to enhance the

health of humans or animals experiencing microbial dysbiosis

(9). Numerous strains of bacteria, from both humans and

animals, have been isolated from different organs (10).

Furthermore, these isolated probiotic bacteria have been used

in products designed and developed for clinical use, both in

human medicine and animal husbandry and breeding (6, 11).

Currently the most widely used probiotics such as

Bifidobacteria, Propionibacteria, Lactobacillus, Bacillus,

Akkermansia muciniphila, and Saccharomyces play important

roles when used and administrated in certain strains and

approaches. Supplementing these probiotics can help modulate

the GIT microbiota, thereby alleviating symptoms of

inflammatory bowel diseases. The myriad of benefits associated

with probiotic supplementation are shown in Table 1 (12–27).

However, it is unclear if probiotic bacteria containing products are

effective in treating all cases of dysbacteriosis or if they can

function as a nutritional supplement (28). The probiotic
TABLE 1 Examples of beneficial effects of probiotics on humans and animal models.

Probiotic bacteria Health effect Models References

Bifidobacteria: B. infantis, B. longum B.
animalis, B. pseudocatenulatum

Ulcerative colitis, Crohn’s disease (CD), Ameliorate inflammation caused by gliadin,
Reduce IBS symptoms, Reduce plasma C-reactive protein and IL-6 in UC
Control metabolic disorders, Improved glucose tolerance

Human, Rat 12–15.

Propionibacteria:
P. freudenreichii, P. jensenii 702, P.
acidipropionici

Clostridium difficile
infection (CDI), Immunomodulation,
Microbiota modulation, Binding of toxic compounds, Diarrhea

Human, Mice 16–18

Lactobacillus: L. plantarum, L. acidophilus,
L. salivarius, L. reuteri, L. bulgaricus

Microbiota modulation, Inhibition the colonization of pathogen, Human, Mice,
Poultry, Calves,

Swine.

2, 19, 20

Bacillus:
B. subtilis, B. icheniformis, B. coagulans, B.
egaterium

Secretion of digestive enzymes, antimicrobials, vitamins & elements. Human, Poultry,
Calves, Swine

6, 21, 22

Akkermansia muciniphila Degrade mucin, synthesize multiple amino acids, vitamins, and cofactors,
Immunomodulation.

Human, Mice. 9, 23.

Saccharomyces:
S. boulardii, S. cerevisiae
S. boulardii.

Treatment of diarrhea, inflammatory bowel diseases, antibacterial action on
Salmonella enterica serovar Typhimurium or Clostridium difficile.

Human, Mice. 24–26

Pseudomonas, Staphylococcus,
Acinetobacter

Existing in colostrum, help to establish core bacteria for neonate Human, Cow.
fr
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bacteria used in clinical did not realize the respected aims even

meaningless (29–31). Optimal methods of isolating and

identifying suitable probiotic bacterial strains for use in humans

and animals are yet to be determined.

The review discusses the intrinsic roles of bacteria in the GIT

and typical microbial differences observed in digestive diseases

and stress-induced micro dysbiosis. Identifying the unique

strains of bacteria associated with intestinal microbial

dysfunctional diseases is greatly important for developing

effective treatments for the disease. This review also aims to

discuss strategies for the precise choice of probiotic bacteria

based on how the host’s microbiota needs to be modulated to

restore balance, to provide researchers with effective methods to

isolate probiotic bacteria and reduce candidate strains to

achieve effective targeting and precise supplementation for

clinical applications.
2 Causal relationship between
dysbacteriosis and diseases

The gut microbiota consists of trillions of microbial cells

belonging to many different strains of bacteria. This complex

group of microorganisms is established shortly after birth and is

subsequently influenced by factors such as diet, geography,

genetics, medications, and lifestyle (32). Since the GIT is the

site of digestion and absorption of nutrients, the microbial

composition is primarily influenced by nutritional changes

(33). Under homeostatic conditions, the gut microbiota is in a

reciprocal relationship with the host and has important roles in

maintaining health in relation to food metabolism, pathogen

defense, immune training, production of important metabolites,

and neuro-endocrine regulation (34). Most of the constituent

strains are the same across different healthy individuals. The

diversity and similarity in microbial composition of the GIT can

both be caused by or result in digestive disease, especially under

stress conditions (8).

Nutritional and metabolic disease threatens human health,

and are therefore a focus of studies on the relationship between

altered microbial composition and poor physical health (35, 36).

Nutritional and metabolic diseases include obesity, gout, and

non-alcoholic fatty liver disease. Consuming a diet rich in

carbohydrates and proteins usually causes an alteration in the

composition of GIT bacteria (37). Obesity is an epidemic

phenomenon and is a prime risk factor for type 2 diabetes,

gout, and cardiovascular diseases (38). In general, obese

individuals show lower microbial diversity and gene richness

than do non-obese individuals, and the difference in phylum

levels appeared to be significant (39). An increased abundance of

the phylum Firmicutes and a decreased abundance of

Bacteroidetes have been observed in obese individuals. In

mouse models, the caecum was found to normally be
Frontiers in Immunology 03
dominated by Firmicutes (60–80% of the phylotypes) and

Bacteroidetes (20–40% of the phylotypes) , but an

approximately 50% reduction in the abundance of

Bacteroidetes can be observed in obese mice relative to lean

mice (40, 41). An increased ratio (5:1 to 6:1) of Firmicutes to

Bacteroidetes is regularly be observed in obese humans and

animals. According to the conceptual framework of Koch’s

postulates, microbial dysbiosis is both a symptom and cause of

many diseases (42, 43). Gut microbiota transplantation

experiments have revealed a causal correlation between the gut

microbiota and the development of obesity and type 2 diabetes

(42). When germ-free (GF) mice were colonized with GIT

microbiota isolated from obese mice, the GF mice acquired

more body fat than mice colonized with microbiota from lean

mice, indicating a contributory effect of the microbiota

composition to obesity (5, 37).

Obesity, type 2 diabetes, and inflammatory bowel diseases

(IBDs), including Crohn’s disease and ulcerative colitis, are

chronic inflammatory conditions of the intestinal tract that

affect humans and cause significant morbidity and occasional

mortality (44, 45). IBD patients tend to have low bacterial

diversity as well as lower numbers of Bacteroidetes and

Firmicutes. These factors, together, reduced concentrations of

microbial-derived butyrate. Butyrate and other short chain fatty

acids are thought to have a direct anti-inflammatory effect in the

gut (45). IBDs are often accompanied by microbial dysfunction

which is not simply caused by a single pathogen. Furthermore,

different indices of IBD activities have each been characterized

by specific gut mucosa-attached bacteria. Strains of probiotic

bacteria have proved effective in reducing IBD symptoms by

improving the microbial composition and repairing the mucous

membrane (46). However, there are no suitable cures containing

probiotics and studies on the use of probiotics in clinical

applications have mixed results (47, 48).
3 Distinguishing microbial
differences associated with diseases

In nutritional and metabolic diseases, significant microbial

differences have been observed at the phylum and genus levels.

Similar results were observed for colon cancer, obesity, and non-

alcoholic fatty liver disease (49).

Especial in little fatties’ children, with some obesity was

inheritable, the overweight caused hyperglycemia, hypertension,

and dyspnea. This situation has been popular in high

carbohydrate contained diet. The fecal transplanted from the

obesity children to germ free mice caused the same syndromes

(Figure 1A). The strain of Enterobacter cloacae B29 was proved

as the prime culprit to little fatties’ children syndrome. The toxin

produced by Enterobacter cloacae B29 can promote the

syndrome (43). Toxins such LPS produced through playing
frontiersin.org
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pleiotropic role one pathway was recognized by toll like receptor

4 (TLR4) (Figure 1B) to upstream signal pathway to regulate gut

permeability. Classic mitogen-activated protein kinases

(MAPK), which were divided into 4 subgroups: ERK/p38/JNK

and BMK1 (50). The signaling pathways involved include the

ERK/p38/JNK and nuclear transcription factor (NF-kB)

pathways were enrolled to control adipose tissue metabolism

through mediating cannabinoid-driven adipogenesis, which

accelerated the syndrome of obesity (50, 51). Cross talk

between the endotoxins produced by the strain and the TLR4

of the host is the most upstream and vital molecular event

responsible for inducing all the phenotypes of obesity and other

digestive diseases (52–54). Overgrowth in the human gut of

these nonvirulent endotoxin-producing strains of pathogenic

bacteria species, may collectively become a predictive biomarker
Frontiers in Immunology 04
or serve as a novel therapeutic target for treatment of obesity,

non-alcoholic fatty liver disease, and other related metabolic

disorders (55).

The commensal bacterial species Bacteroides fragilis,

Fusobacterium nucleatum, and Escherichia coli (E. coli) seem

to emerge as pathogens and contribute to colorectal

carcinogenesis through their inflammatory and oncogenic

properties (53). Additionally, Bacteroides fragilis has been

shown to be enriched in the gut microbiota of patients with

colorectal cancer (54). Along with an increased abundance of

Bacteroides fragilis, a decreased population of Bacteroides

vulgatus and Bacteroides stercoris has also been observed in the

guts of patients with human colorectal cancer (52, 55, 56).

Studies on specific bacterial species associated with obesity and

non-alcoholic fatty liver disease, and their molecular cross talk
A

B

FIGURE 1

The differential bacteria in obesity and as a causation to obese. (A) Intestinal bacteria was both the cause and syndrome for the obesity.
Causation relationship between the disease and organic bacteria. Microbiota transplanted from the obesity children to germ free mice caused the
same syndromes. The strain of Enterobacter cloacae B29 was proved as the prime culprit to little fatties’ children syndrome. Toxins such LPS produced
through playing pleiotropic role one pathway was recognized by toll like receptor 4 to upstream signal pathway to regulate gut permeability, and
control adipose tissue metabolism through mediating cannabinoid-driven adipogenesis, which accelerated the syndrome of obesity. (B) Then possible
molecular signal pathway of Enterobacter cloacae B29 regulated the adipose tissue metabolism. The toxin produced by Enterobacter cloacae B29 can
promote the syndrome. Toxins such LPS produced through playing pleiotropic role one pathway was recognized by toll like receptor 4 to upstream
signal pathway to regulate gut permeability. The signaling pathways involved include the ERK/p38/JNK and nuclear transcription factor pathways were
enrolled to control adipose tissue metabolism through mediating cannabinoid-driven adipogenesis, which accelerated the syndrome of obesity.
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with the host, have suggested that overgrowth of nonvirulent

endotoxin-producing strains of pathogenic bacteria, such as

Enterobacter cloacae B29, E. coli PY102, and Klebsiella

pneumoniae A7, in the gut of obese humans can act as

causative agents for non-alcoholic fatty liver disease (54).

The microbial composition of the GIT is affected by diet and

disease, and is also a typical symptom of many diseases. Further,

microbial translocation to the rest of the body can make them

causative agents of disease (57). All these results suggest that the

microbial composition is not only the causative agent, but also

an outcome of the development of various diseases.

Diarrhea and common infectious diseases of the GIT are

mainly caused by infection-causing pathogens or endogenous

opportunistic pathogens, accompanied with other typical clinical

symptoms (58). In patients with diarrhea, the water content of

the excreta increases more than that under healthy conditions.

The microbial composition is disturbed by endogenous

opportunistic pathogens. The functioning of the intestinal

barrier is reduced and water filters more readily through the

mucous membrane to reach the inner lumen of the intestine.

Additionally, an increase in the abundance of endogenous E. coli

or Salmonella typhi results in further deterioration of symptoms

(59–62). The microbial composition of the gut can be both a

causative agent and result of diarrhea and infectious

gastrointestinal diseases. Toxins and endotoxins produced by

pathogens or overgrowth of opportunistic pathogens act to

impair and destroy the mucous membrane through a cascade

of molecular signals, which is recognized by TLR4 (63), which

presents the signal to MyD88, thereby stimulating the

downstream expression of interleukin-1b (IL-1b) and tumor

necrosis factor a (TNF-a). The signaling pathways involved

include the classic nuclear transcription factor (NF-kB) or c-Jun

N-terminal kinase pathways (Figure 1B) which act to up-

regulate inflammation and suppress the activity of T

regulatory cells (Tregs) (64), which were partly agreed with the

obesity caused by Enterobacter cloacae B29. Under unfavorable

environmental conditions, such as high ammonia concentration,

heat, cold, and transportation, animals can suffer abnormal

bodily stress. Stress can induce alterations in the microbiota of

the digestive and respiratory tracts. Furthermore, the altered

microbiota can negatively impact the health of the animal

through microbial translocation.
4 Common supplementary methods
of probiotic bacteria

Considering the relationship between organs of the body

and microbiota, the restoration of microbiota should be the

first step in the treatment of dysbiosis-related diseases.

Resilience of dominant bacteria in the GIT of patients can be

the most meaningful strategy for in restoring digestive balance
Frontiers in Immunology 05
(52, 65, 66). Fecal microbiota transplantation (FMT), which

involves preparation and administration of distal gut

microbiota-containing fecal material from healthy donors to

a patient with a disrupted gut microbiota is, a promising

strategy in the treatment of microbiota dysbiosis diseases.

FMT acts to directly interfere with gut microbiota receptors,

thus normalizing the microbial composition and producing

therapeutic effects (67, 68). FMT has widely employed since

2013, when the United States Food and Drug Administration

approved FMT for treatment of Clostridium difficile infection

(69, 70). Since then, the range of its applications extended

rapidly and broadly, not only for the treatment of

gastrointestinal disorders, but also for extra-gastrointestinal

disease, such as obesity, type 2 diabetes, and even cancer (71).

Patients with Crohn’s disease, obesity, type 2 diabetes, and

chronic IBD who received FMT treatment experienced

therapeutic benefits (72, 73). Thus, the restoration of the

microbial community is important to overcoming disease.

Reduce the over-growth of bacteria and conditioned

bacteria, eliminate the pathogen. For the treatment of diarrhea

and infectious gastrointestinal diseases, physicians often

prescribe tablets containing strains of probiotic bacteria, as an

alternative to antibiotic drugs, owing to the numerous side

effects of antibiotics, particularly antibiotic resistance. Many

strains of drug resistant bacteria, such as carbapenem-resistant

Enterobacteriaceae, vancomycin-resistant Enterococcus, and

extended spectrum beta-lactamase carrying strains, represent a

major public health concern, as they are potential pathogens

associated with a high mortality rate (74). Thus, the common

genera of probiotic bacteria, including Bacillus, Bifidobacterium,

Akkermansia, and Clostridium have often been used to inhibit E.

coli or Salmonella growth (71, 75, 76). However, if the microbial

composition of the patient is unknown, a generalized use of

probiotic bacteria may not provide the desired effect.

An alternative means to prevent diarrhea and improve

body health is dietary supplementation with probiotic

bacteria or with fermented food containing probiotic

bacteria, namely those in the genera Lactobacillus, Bacillus,

Saccharomyces, and Bifidobacterium (77, 78). Effects of

probiotic supplementation include improving intestinal

secreting mucins, enhancing mucosal barrier function,

increasing tight junctions in mucous cells, providing

colonization resistance, increasing production of secretory

lgA, producing bacteriocins, producing balanced T-helper

cell response, and increasing production of IL-10 and Tregs

(79, 80). However, the origin of some used probiotic bacteria

was not clear, and the physiological characters of bacteria was

lack of sufficient studied. In clinical use, the diagnosis effect

maybe off-target and not achieved. Many probiotic bacteria

were overused. Analyze the composition of microbiota in GIT

of patient, provided the precise supplementary strategies

could be needed.
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5 Precise supplementary strategies

5.1 Core bacteria and its function

Following the common supplementary pathway,

supplementation with the scarcer bacteria of the gut is not an

ideal strategy. It is hypothesized that the core bacterial community

ecology (showing in Figure 2) plays an important role in

maintaining the dynamic equilibrium of microbiota in the organs

(81). Core bacteria are defined as one or several functional strains,

that play important roles in maintaining the physiological wellness

(82). Although the number of core bacteria is small, they serve

various key functions, and several core strains are inherited in

different breeds of the same animal (83). The core bacteria may also

be cross-inherited from an ancestral generation or from interactions

with the outer environment (84–86), shown in Figure 3. There is

evidence that some of the microbial taxa found in the placenta, such

as those in the genus Lactobacillus, and the common pathogen

Streptococcus agalactiae, may have an oral origin (87–89). It is also

known that vaginal microbiota mainly consists of Lactobacillus,

namely Lactobacillus crispatus, Lactobacillus iners, and Lactobacillus

jensenii, as well as Gardnerella vaginalis. The abundance and

diversity of vaginal microbiota vary across different periods of

pregnancy. Such data further showed that the housekeeping

bacteria were part of the core bacteria can be inherited from

matrix and play a key role in establishing a healthy bacterial

community (2).

Certain core bacteria were commonly owned by rodent

animals. In humans, using 16S rDNA cloned sequences from
Frontiers in Immunology 06
17 individuals found seven genera that were common in 50% of

the cohort (90). On the other hand, a study investigating

metagenomes from 124 European individuals discovered that

90% of the individuals of the cohort share a common core of

nine genera, at a 10% sequence coverage threshold through

sequenced metagenome (91). The comparative analysis of six

mouse gut microbiota datasets (92, 93) showed that the core

mouse gut microbiota plateaus were partly overlapped

with human.

The genera of Lactobacillus, Akkermansia, Bacillus,

Bifidobacterium, Clostridium and Prevotellacea form the core

bacteria in the GIT of humans, and their merits in the recovery

from various diseases have been documented (2, 4, 94, 95). Oral

administration of Akkermansia muciniphila has been used as a

treatment to reduce the symptoms of IBD (92). Supplementation

with the strains Lactobacillus reuteri and Lactobacillus johnsonii

has been useful in optimizing the bacterial composition of both

humans and pigs (5, 82). Addition of the strain Clostridium

propionate helped to improve body health and overcomes stress

(93). Co-correlation network analysis revealed that the genus of

Prevotellacea UCG-003 was the key bacterium in microbiota of

piglets. Furthermore, changes in bacterial metabolic function

between diarrheic piglets and non-diarrheic piglets were

estimated by picrust analysis (contained in Metagenomic

analysis), which revealed that the dominant functions of fecal

microbes were membrane transport, carbohydrate metabolism,

amino acid metabolism, and energy metabolism. Also, the 16S

rDNA cloned sequence on colostrum of cows found that ten core

genera contained Bacillus, Bacteroides, Staphylococcus,
FIGURE 2

The role of core bacteria in organs. Organs such as mouth, gastrointestinal tract, lung, and genitourinary tract harbored many strains of bacteria,
like the virgin forest existing many floras. The core bacteria were the exuberant floras, which presided in the microbiome. Although the number
of core bacteria covered a few proportions in total flora. The function was the biggest in defending the equilibrium of microecology, which was
essential to establish the dominate bacteria in organs.
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Acinetobacter, and Pseudomonas. A part of the found core

bacteria belonged to the common intestinal bacteria and were

also identified as the core ones.
5.2 Established the domination
of core bacteria

Gut microbial diversity and the dominate microbiota

changed in disease. It is assumed that the core strains of

bacteria play more direct roles in assisting the receptors to

restore bodily health (96). From these studies, it can be

concluded that the core strains of bacteria should be further

identified and their functions in different stages of growth should

be determined (97). Replaced with bacteria at the site of

microbial translocation by replacement with the core bacterial

strains, following supplementation, can be done based on the

relationship between the disease and bacterial composition (98).

Restore the dominant flora, and repair the equilibrium of

microecology (Figure 4). The supplementation of core bacteria

is essential to promote resilience of bacterial abundances. The

theory of dominant flora in microbiology suggested that the core

bacteria inherited form ancestors dominated in all strains of

bacteria in gastrointestinal tract. More than 1700 strains of

bacteria found in obese volunteers and these accept the dietary

intervention with high fibers, suggested that the total of 141

strains of bacteria composed 2 different sets, with one set

increased and the other decreased. Otherwise, the situation

was reverse after dietary intervention. Nearly, 50 strains of
Frontiers in Immunology 07
bacteria were composed core bacteria increased after dietary

intervention and suppress the remained strains. The 141 strains

of bacteria covered less than 10% total bacteria in GIT. Others

were owing no ecological network in micro-system (99–101).

Supplementation with the reduced abundance of fiber

fermenting bacterial strains such as Lactobacillus acidophilus,

Lactobacillus casei, Lactococcus lactis, Bifidobacterium bifidum,

and Bifidobacterium lactis were helpful in obese patients (102),

which can reduce the abundance of Desulfovibrio species and

increase in the abundance of Clostridium species, are key

features restore the dominate bacteria in obesity model and

are seen in humans with age-associated metabolic syndrome

(81). Cases in animal model such as poultry and mouse were also

found the core bacteria supplementation could alleviate the

symptoms. Chicks fed with high crude protein diet induced

gout, and supplementation with Lactobacillus reuteri can restore

the bacterial composition (99, 103).

By identifying the differences in bacterial composition

associated with different diseases, microbiota transplantation

can be tailored to supplement the deficient bacterial genera. In

unhealthy individuals, outnumbered and short-numbered

microbiota can be identified through meta-genome sequencing

(104) after which the dominant genera of bacteria in the healthy

status must be defined (105, 106). The goal of such research is to

develop powerful probiotic regimens that can replace FMT.

However, there is still a lack of sufficient meta-data to

distinguish bacterial differences in patients with different

disease currently. Storage of core bacterial database in health

condition to establish a unique individual sets is necessary for
FIGURE 3

Housekeeper bacteria are the strains can be inheritable from mother to infant. Once these strains of housekeeper bacteria can be acquired
from the placenta or amniotic fluid. The bacteria could be founded as a primary microbiome data to cure and prevent the dysbiosis in future
GIT dysfunction.
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self-aid for whom in disease. Differences in the microbiota

profile have been reported to be related to known clinical risk

factors for many diseases, such as metabolic diseases, asthma,

arthritis, and cancer. In this sense, personalized probiotic

therapies aiming to manipulate the host microbiota using

specific and different strains have gained considerable interest

in recent years. If we continue to learn about other gut

microorganisms and their roles in human health, we may

obtain a complete rationale for selecting the next generation of

probiotics, such as Clostridia clusters IV, XIVa and, XVIII and

Faecalibacterium prausnitzii, which have emerged as non-

traditional probiotics and studies on their effects on

inflammatory diseases have been met with promising results.

F. prausnitzii is a commensal bacterial strain that has been

reported to be less abundant in colitis patients. However, F.

prausnitzii exhibited an important anti-inflammatory response

in mouse experimental colitis models. Most of these effects were

linked to the high capacity of this strain to produce metabolites

with anti-inflammatory effects. Clostridium butyricum is another

potential non-traditional candidate probiotic that can produce

metabolites with anti-inflammatory effects, such as butyrate

(30, 107).

With the development of sequencing technology, microbiome

data such as strain-level variation, transcriptomics, proteomics,

and metabolomics (108), can be determined. Future avenues and

challenges for understanding the interplay between human

nutrition, genetics, and microbial genetics, need to be addressed.

In addition, integrating microbiome data with human multi-
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omics data, such as genetics, transcriptomics, epigenetics, and

metabolomics, should be considered to develop successful

treatments in the future.

In the treatment of these diseases, beneficial microbial

functioning decreases, thus, supplementation with core

functional probiotics can restore the resilience of the microbial

community (5). Second, identification of suitable core probiotics

to inhibit the growth of specific pathogenic bacteria in patients

seems to be an effective strategy to control deterioration in health

caused by disease (65, 109).
5.3 Strategies of probiotic isolation and
selection for supplementation

5.3.1 Metagenomic and comparative genomics
Culture-independent metagenomic approaches to

characterize the microbiota, enabled by next-generation

sequencing, have increased the sensitivity and power of such

associative studies by enabling high throughput analysis.

Microbiota in dysbiosis-mediate diseases could be analyzed

and compared with health condition in many cases of illness

(110–114). Such culture independent methods of bacterial

species analysis where >99% of microbial species can be

unculturable (81). Taxonomic diversity can also be determined

from shotgun sequenced metagenomics data sets (84, 85).

The storage of core bacterial database in health condition to

establish a unique individual sets is necessary for self-aid for
FIGURE 4

The core bacteria in diseases and restore the microbiota first supplementation with the core bacteria. The core bacteria such as the genus of
Lactobacillus, Akkermansia, Bifidobacterium, the abundance was depleted in gut bacteria of patient with obesity and gout. The abnormal
increasing of the bacteria namely, Enterobacter, Alistipes, Bilophila, and Bacteroides can be detected. Supplementation with core bacteria such
as Lactobacillus reuteri, Lactobacillus salivarius, Akkermansia muciniphila Bifidobacteria infantis, Bifidobacteria longum and Bifidobacteria
animalis, Faecalibacterium prausnitzii, restore the dominant flora, and repair the equilibrium of microecology. Storage of core bacterial database
in health condition to establish a unique individual sets is necessary for self-aid for whom in disease. The cases in animal model such as poultry
and mouse were also found the core bacteria supplementation could alleviate the symptoms. Chicks fed with high crude protein diet induced
gout, and supplementation with Lactobacillus reuteri can restore the bacterial composition. Through comparing the differences of bacterial
composition of health and diseased conditions, get the common useful strains of core bacteria through culture-independent metagenomic
approaches is essential, which would be achieve the targeted supplementation of bacteria.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1034727
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1034727
whom in disease. Also, compare the differences between donors or

animals to conduct the common useful strains of core bacteria

through culture-independent metagenomic approaches is

essential (Figure 4). Acknowledged that core bacteria and

dominant bacteria, use culture-dependent approaches to acquire

the needed bacteria to supplement become urgent. The strategies

for targeted choice of probiotic bacteria were suggested.

5.3.2 Homogenous origin
In restoring a healthy microbial composition, the

supplementary bacteria must be ascertained to mine the

probiotic strains needed to achieve precise supplementation.

Currently, the most frequently used genus of bacteria in

human and animal probiotic products are Bacillus ,

Lactobacillus, Bifidobacterium, and Clostridium (115).

However, the origin of the strains being used is diverse. Many

candidate strains of bacteria can be harvested through various

isolation methods (116–118). The strains can be further

narrowed down after certain conditional settings. In different
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animals, the isolation conditions of the core bacteria can be

diverse (94, 119–121). Homogeneous isolation involves

origination of the probiotic bacterial strains from the organs of

used animals (Figure 5A). There are slight differences between

the organs in different animal species (122, 123) and the core

probiotic strains do not correspond with each other. Thus, the

adaption of using bacteria colonized in the organs of animals

could be more optimal than the use of non-homogeneous strains

of bacteria (124). The mechanism of action is mainly related to

the digestive enzymes and their roles in the gastrointestinal

microenvironment. For Bacillus isolated from chicken,

homologous feeding of probiotic bacteria for the same breed

of chick could play more beneficial roles than non-homologous

feeding (89, 125). Targeted supplementation in animals also

considers the regular pattern of microbial development (126). In

addition, supplementation with scarce strains of bacteria seems

to be a limiting factor in disease recovery. The growth stage and

health status should be considered as additional elimination

conditions during isolation of bacteria.
A

B

FIGURE 5

Targeted isolation in choosing probiotic bacteria. (A) Homogeneous isolation: Probiotic bacteria isolated from mankind used in human beings.
Also, the porcine origin of bacteria used in pigs can be more consistent in physiological condition. Lactobacillus, Akkermansia, Bacillus,
Bifidobacterium, Lactococcus, Streptococcus, Clostridium and Prevotellacea were harvested from organs and supplemented homogenously in
same animals. (B) Targeted methods in choosing probiotic bacteria.
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5.3.3 Screening conditions
Through selective culturable medium and culturing

conditions, the target genus of bacteria could be isolated, such

as isolation of Lactobacilli grown in de Man, Rogosa, and Sharpe

medium, the use of BBL Trypticase soy agar with sheep blood

(TSA II) broth medium for Bifidobacteria isolation, and M17

broth for culturing probiotic lactic streptococci (127).

High temperatures such as 80 °C can be used to isolate heat

resistance bacteria and the oxygen content used in the culturing

conditions can be adjusted to narrow the scope of isolated

bacteria. Other assays of beneficial factors produced by bacteria

have also proven useful in minimizing the candidate strains. These

include inhibition of pathogens or conditional pathogens (128,

129); secretion of digestive enzymes, lactic acid, and digestive

enzymes (130–133), the production of bioactive peptides, and

vitamins such as bacteriocins and vitamin B6, K, and gamma

amino butyric acid. The ability to perform bile salt degradation,

cholesterol lysis (89, 134) and tolerance bile salts, gastric acid, and

heat stress (116, 135, 135) are often used as elimination conditions

(Figure 5B). Through a series of isolation methods, two or three

strains of bacteria can finally be identified for clinical use (136–

138). Details of various strategies for isolation and

characterization including adhesion and colonization in the

mucous membrane of the GIT (27) and safety assessments (139,

140) such as oral acute toxicity, sub-chronic toxicity, chronic

toxicity, and reproductive and developmental toxicity (140, 141);

antibiotic resistance; and lack of DNase (95, 139), gelatinase, and

hemolytic activity (142) are shown in Table 2. Through a series of

target conditional choice, the remained strains can be used to

monitor the supplementary effect.
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5.3.4 Other omics technologies
While the dominant strains of bacteria play a crucial role in

overall bodily health, it is also important to isolate undiscovered

strains and study their functions, to aid in targeted isolation

(147–150). Some bacteria are still difficult to isolate due to being

unculturable in aerobic conditions (151–153). For culturable

bacteria, there are abundant strains whose physiological

characters can be studied to determine their benefits to the

body (154, 155). Meanwhile, progress in culture techniques

along with high-resolution mass spectrometry have provided

an additional sight through which to identify small molecules

correlated with disease, setting new direction for more rigorous

studies. Multi-omic technologies, such as metagenomics,

metabolomics, and culturomics, should be applied in

combination to further explore core strains of probiotic

bacteria. Culture-independent metagenomic approaches have

increased the sensitivity and power of such associative studies

by enabling high-throughput analysis (156). By applying shotgun

metagenomic sequencing, the bacterial species present in the

original fecal samples that grew as distinct colonies under

different culture conditions can be compared and profiled.

When compared with a comprehensive gene catalogue that was

derived from culture-independent methods used to assess the

intestinal microbiota of normal healthy individuals, identified

genes in the larger database were represented, and derived

metagenomic species were detected in the cultured samples

(148, 157, 158). Through these methods an increasing number

of unidentified microorganisms can be cultured and recognized.

By harvesting the targeted probiotic bacteria, the whole

genome can be sequenced and blasted to ascertain the function
TABLE 2 Strategy of the isolating measurement.

Targeting strategies Assays References

Nutrition utilization selective culturable medium 124;

cultured condition High temperature, different oxygen content 143; 59

Inhibitory action on food-borne pathogenic bacteria: Staphylococcus aureus, Escherichia coli,
Klebsiella pneumoniae, Clostridium difficile or Salmonella typhi

Inhibitory assays: Plate methods, Oxford cup method, Co-
culture of probiotic bacteria and pathogen.

24, 123, 124

Secretion of digestive enzymes, lactic acid, bioactive peptides, vitamins Plate methods on nutritional substances lysis, High
performance liquid chromatography

89, 125, 126;
144

Lysis of cholesterol Enzymatic lysis assay in vitro. 128

Tolerance of bile salt Plate live bacteria counting methods 129

Tolerance of gastric acidic 111;

Tolerance of heat 130;

Tolerance of digestive enzymes in GIT 130;

Adhesion in mucous membranes of GIT Fluorescence in situ hybridization 6, 78

Safety Assessment Oral toxicity of animal model (mouse) 134; 140

Toxicity
Pathogenicity/toxicogenicity

Glucose concentration, glutamic-oxalacetic transaminase
activity, C-reactive protein

135, 146

Reproductive and developmental toxicity Animal model testing 145

Antibiotic resistance, lack of DNase, gelatinase, and hemolytic activity Meta-genome sequencing 101, 134
fr
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employed in matrix assisted laser desorption ionization (MALDI)

to identify the unknown bacteria in the database.

Although the omics technologies have improved the capacity

of bacterial analysis and culture. A total of less than 1% bacteria

can be successfully cultured in vitro, a greater number of core

bacteria and cross the animals still need to further unveiled to

help patient reconstruct the health microbiological flora.
6 Conclusion

Considering the causal relationship on intestinal bacteria and

disease, supplementary probiotics to restore the bacterial

composition to cure disease is performed in human and animals.

In their clinical use, probiotic bacteria were not conforming with the

differential scared bacteria owning the symptom, which functioned

in healthy condition. Supplemented with core bacteria to re-

construct the dominant flora and repair the differential bacteria

was the rule. Then repair the conditioned and supper growth-ed

bacteria to restore the intestinal bacteria. Skills in choice of bacteria,

such as isolated from homogenous animal, conditioned with

colonization, temperature, inhibition on certain pathogen, and

others could minimize the candidate strains should be focused.

Also, research on metagenomics and culturomics can further help

to unveil the microbial composition in the organs. Strategies for

targeted selection of strains directly corresponding to the

deficiencies can be used to tailor precise probiotic bacterial

supplementation. Considering the core bacteria in regulation

bodily function, get the personal bacterial database in young and

health period andmake the personal tabs to distinguish the disabled

conditions, which can be efficient to achieve targeted

supplementation. Our review provided a venue on precise

supplementation of probiotic bacteria in clinical use.
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33. Alves J, Peres S, Gonçalves E, Mansinho K. Anaerobic bacteria with clinical
relevance: morphologic and taxonomic classification, distribution among human
Frontiers in Immunology 12
microbiota and microbiologic diagnosis. Acta Med Portuguesa. (2017) 30:409–17.
doi: 10.20344/amp.8098

34. de Vos WM, de Vos EA. Role of the intestinal microbiome in health and
disease: from correlation to causation. Nutr Reviwes (2012) 70:S45–56.
doi: 10.1111/j.1753-4887.2012.00505.x

35. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut
microbiota from twins discordant for obesity modulate metabolism in mice. Science
(2013) 341:1241214. doi: 10.1126/science.1241214

36. Raisch J, Dalmasso G, Bonnet R, Barnich N, Bonnet M, Bringer MA. How
some commensal bacteria would exacerbate colorectal carcinogenesis? Médecine
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