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Abstract: The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities
of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces
naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter
actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for
up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for
24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in
bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed,
and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov.
during biofilm development did not affect the structure of the community, but an anti-biofilm effect
against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h
of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans
(p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm
and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal
pathogens, were demonstrated in an in vitro biofilm model.

Keywords: oral biofilm; Streptococcus downii sp. nov.; caries; Streptococcus mutans; periodontal
diseases; Aggregatibacter actinomycetemcomitans

1. Introduction

The oral cavity has one of the richest microbial communities within the human micro-
biome, with around 200 cultivable bacterial species and approximately 1000 phylotypes
detected by 16S rRNA gene sequencing [1,2]. In healthy subjects, the majority of these
species are commensal and maintain a symbiotic relation with the host, being the predomi-
nant phyla: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria [3].
Among Firmicutes the most abundant species belongs to Streptococcus, Veillonella, and Lacto-
bacillus genera [4]. However, under specific environmental conditions, existing pathobionts
may overgrow and become pathogenic, mainly by disturbing the homeostasis between
the bacterial challenge and the host immune responses (dysbiosis) [5], which can also
be associated with changes in microbial metabolism and/or shifts in bacterial diversity.
Moreover, within the oral cavity, overgrow of microorganisms usually occurs forming
highly structured poly-microbial communities, as biofilms, what may hinder the efficacy of
host defenses and natural antimicrobial strategies.
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Intervention studies have confirmed the etiological importance of biofilms by demon-
strating that mechanical biofilm disruption is a key step in the effective management
of biofilm-related oral conditions, caries, and periodontal diseases. In the treatment of
the most aggressive/severe cases of periodontitis, more effective outcomes have been
demonstrated when mechanical debridement has been supplemented with the adjunctive
use of antibiotics [6] and antiseptics [7]. The use of antimicrobials, however, is controver-
sial, due to the possible occurrence of secondary effects and the development of bacterial
resistances [6–9], which calls for exploring alternative strategies.

One of these alternative strategies is to foster a health-associated microbiota that will
transform the dysbiotic state into re-establishing homeostasis. One strategy in this direction
has been the use of live microorganisms (probiotics), mainly bifidobacteria and lactobacilli,
which have shown adjunctive benefits in the prevention and treatment of periodontal
diseases [10–20]. This benefit has been attributed to the ability of these probiotics (i) to
occupy a habitat, and thus reduce pathogen adhesion and colonization; (ii) to boost the host
immune response; and (iii) since they have inherent antimicrobial activity [21]. Another
strategy, seldom explored and investigated, has been the use of indigenous oral species,
which will occupy and ecological niche, and thus will reduce the adhesion and growth of
opportunistic pathogens and pathogenic species [22–26]. Streptococcus spp., such as Strepto-
coccus sanguinis, Streptococcus cristatus, Streptococcus salivarius, or Streptococcus mitis, have
shown their ability to inhibit the in vitro colonization of epithelial cells by Aggregatibacter
actinomycetemcomitans [24,25], S. mitis showed antagonism in the adhesion of Porphyromonas
gingivalis [23], and Streptococcus dentisani, isolated from caries-free individuals, showed
growth inhibition of periodontal pathogens and against pathogens implicated in dental
root infections, in pure culture [22,27,28]. Moreover, S. dentisani, attached to gingival
cells in vitro, inhibits periodontal pathogens by competition, adherence, and displacement
mechanisms [28]. Similarly, bifidobacteria may have the capacity of suppressing the growth
of P. gingivalis by reducing key nutritional factor(s) in the environment [26].

Recently, derived from the analysis of the oral microbiota of patients with Down
syndrome a novel species of bacteria of the Streptococcus oralis group, Streptococcus downii
sp. nov., has been described [29]. By inhibition assays, S. downii sp. nov. has exhibited
a potentially antimicrobial effect against the cariogenic bacteria Streptococcus mutans and
against the periodontal pathogens Veillonella parvula and A. actinomycetemcomitans [29].

However, despite the fact that oral bacteria are organized in biofilms, most of these
in vitro studies cited have investigated this antibacterial potential against bacteria in the
planktonic state, rather than assessing this effect on biofilm models, thus mimicking a
situation closer to what happens in vivo. Therefore, based on the results of individual
species—species that determined the specific effect on S. mutans, V. parvula and A. actino-
mycetemcomitans, the purpose of this investigation was to assess (i) the potential anti-biofilm
activity of S. downii sp. nov., either by inhibiting the growth of selected oral bacteria and/or
by interfering with biofilm formation when growing on an in vitro biofilm model, and (ii)
the potential antibacterial effects against oral bacteria in mature biofilms.

2. Materials and Methods
2.1. Isolates, Culturing, and Bacterial Growth Conditions

S. downii sp. nov. strain CECT 9732T, isolated from a supragingival dental biofilm
sample of an individual with Down syndrome [29], and the reference bacterial strains S. mu-
tans ATCC 25175, V. parvula NCTC 11810, Actinomyces naeslundii ATCC 19039, F. nucleatum
DMSZ 20482, A. actinomycetemcomitans DSMZ 8324, and P. gingivalis ATCC 33277 were
used to develop a multi-species biofilm model. Bacteria were cultured anaerobically (10%
H2, 10% CO2, and balance N2) on blood agar plates (Blood Agar Oxoid No 2; Oxoid,
Basingstoke, UK), supplemented with 5% (v/v) sterile horse blood (Oxoid, Basingstoke,
UK), 5.0 mg mL−1 hemin (Sigma-Aldrich, St. Louis, MO, USA) and 1.0 mg mL-1 menadione
(Merck, Darmstadt, Germany) for 72 h at 37 ◦C.
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2.2. Anti-Biofilm Activity of S. downii sp. nov. in an in Vitro Biofilm Model

Figure 1 shows the experimental design followed for the study of the anti-biofilm
properties of S. downii sp. nov. strain CECT 9732T against bacteria in an oral biofilm model.
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2.2.1. Biofilm Development

Biofilms were developed on hydroxyapatite (HA) discs in a static biofilm model,
based on the model described by Sánchez et al. [30] with some modifications. In brief,
representative colonies of all species were selected randomly and were grown on brain-
heart infusion (BHI) medium (Becton, Dickinson and Company, Franklin Lakes, NJ, USA)
supplemented with 2.5 g L−1 mucin (Oxoid, Basingstoke, UK), 1.0 g L−1 yeast extract
(Oxoid, Basingstoke, UK), 0.1 g L−1 cysteine (Sigma-Aldrich, St. Louis, MO, USA), 2.0 g
L−1 sodium bicarbonate (Merck, Darmstadt, Germany ), 5.0 mg L−1 hemin (Sigma-Aldrich,
St. Louis, MO, USA), and 1.0 mg L−1 menadione (Merck, Darmstadt, Germany) and
0.25% (v/v) glutamic acid (Sigma-Aldrich, St. Louis, MO, USA), in anaerobic condition at
37 ◦C for 24 h. The bacterial growth was harvested at late exponential phase (measured by
spectrophotometry), and a mixed bacterial suspensions in supplemented BHI medium were
prepared in order to develop biofilms, using different starting concentrations, depending
on their growth rate: 103 colony forming units (CFU) mL−1 of S. mutans, 105 CFU mL−1 of
V. parvula and A. naeslundii, and 106 CFU mL−1 of F. nucleatum, A. actinomycetemcomitans,
and P. gingivalis.

Sterile HA discs [7-mm diameter and 1.8 (standard deviation—SD = 0.2) mm thickness
(Clarkson Chromatography Products, Williamsport, PA, USA)] were placed in a multi-
well tissue culture plate (Greiner Bio-one, Frickenhausen, Germany). Each well was
inoculated with 1.5 mL of the mixed bacterial suspension, and to assess the anti-biofilm
activity, treated wells were inoculated with 103 CFU mL−1 of S. downii sp. nov. final
concentration (recovered at late-exponential phase by centrifugation of an overnight culture
and resuspended in fresh modified BHI medium). Control biofilms, not exposed to S. downii
sp. nov., and treated ones were then incubated in anaerobiosis at 37 ◦C, for 12, 24, 48, 72, 96,
and 120 h. Plates only containing culture media were also incubated to check for sterility.
Three independent trials (on three different occasions) were carried out.
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2.2.2. DNA Isolation and Quantitative Polymerase Chain Reaction (qPCR)

Before the DNA isolation, discs were sequentially rinsed in 2 mL of sterile buffer
saline (PBS) (immersion time per rinse, 10 s), three times, in order to remove non-adherent
bacteria. Biofilms were then disrupted by vortex for 2 min in 1 mL of PBS. The DNA from
the biofilm was extracted using an ATP Genomic DNA Mini Kit® (ATP biotech. Taipei,
Taiwan) according to the manufacturer’s recommendations. The bacterial 16S rRNA gene
sequence was amplified by qPCR, according to the hydrolysis probes 5´nuclease method
(Table 1). The qPCR amplification was performed in a total reaction mixture volume of
10 µL. The reaction mixtures contained 5 µL of 2×master mixture (LC 480 Probes Master;
Roche, Mannheim, Germany), optimal concentrations of primers and probes (300, 300 and
300 nM, respectively, for S. mutans, Streptococcus spp., A. naeslundii and P. gingivalis; 750, 750,
and 400 nM for V. parvula; 300, 300, and 200 nM for A. actinomycetemcomitans; and, finally,
600, 600, and 300 nM for F. nucleatum) and 2 µL of DNA from samples. The negative control
was 2 µL of sterile water (Water PCR grade, Roche Mannheim, Germany). The samples
were subjected to an initial amplification cycle of 95 ◦C for 10 min, followed by 40 cycles
at 95 ◦C for 15 s and 60 ◦C for 1 min. Analyses was performed with a LightCycler® 480 II
thermocycler (Roche Mannheim, Germany). LightCycler® 480 Multiwell Plates 384 and
sealing foils were used (Roche Mannheim, Germany). Each DNA sample was analyzed
in duplicate.

Table 1. Primers and probes used for quantification of genomic DNA from the target bacteria. Primers and probes were
targeted against 16S rRNA gene (Obtained from Life Technologies Invitrogen (Carlsbad, CA, USA) and Roche (Roche
Diagnostic GmbH; Mannheim, Germany)).

Bacteria Sequence (5′–3′) Length (bp)

Streptococcus spp.
Forward CAACGATACATAGCCGACCTGAG

97Reverse TCCATTGCCGAAGATTCC
Probe 6FAM-CTCCTACGGGAGGCAGCAGTAGGGA-BBQ

S. mutans
Forward GCCTACAGCTCAGAGATGCTATTCT

58Reverse GCCATACACCACTCATGAATTGA
Probe 6FAM-TGGAAATGACGGTCGCCGTTATGAA-TMR

V. parvula
Forward TGCTAATACCGCATACGATCTAACC

66Reverse GCTTATAAATAGAGGCCACCTTTCA
Probe 6FAM-CTATCCTCGA+T+GCC+GA-BBQ

A. naeslundii
Forward GGCTGCGATACCGTGAGG

103Reverse TCTGCGATTACTAGCGACTCC
Probe 6FAM-CCCTAAAAGCCGGTCTCAGTTCGGAT-BBQ

P. gingivalis.
Forward GCGCTCAACGTTCAGCC

67Reverse CACGAATTCCGCCTGC
Probe 6FAM-CACTGAACTCAAGCCCGGCAGTTTCAA-TAMRA

A. actinomycetemcomitans
Forward GAACCTTACCTACTCTTGACATCCGAA

80Reverse TGCAGCACCTGTCTCAAAGC
Probe 6FAM-AGAACTCAGAGATGGGTTTGTGCCTTAGGG-TAMRA

F. nucleatum
Forward GGATTTATTGGGCGTAAAGC

162Reverse GGCATTCCTACAAATATCTACGAA
Probe 6FAM-CTCTACACTTGTAGTTCCG-TAMRA

Quantification of bacteria by qPCR was based on standard curve. The correlation
between Cq values and CFU mL−1 was automatically generated through the software (LC
480 Software 1.5; Roche Mannheim, Germany). Since the primers and probes targeting
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Streptococcus spp. detected all Streptococcus present in the sample, the number of S. downii
sp. nov. was calculated by subtracting the number of S. mutans.

2.2.3. Analysis of Biofilms by Confocal Laser Scanning Microscopy (CLSM)

Biofilms grown on HA discs were stained with LIVE/DEAD® BacLightTM Bacterial Vi-
ability Kit solution (Molecular Probes B. V., Leiden, The Netherlands) at room temperature,
with 1:1 fluorocromes ratio, in the dark for 10 min (SD = 1). The obtained fully hydrated
biofilms were studied with a confocal laser scanning microscope, using a fixed-stage Ix83
Olympus inverted microscope, coupled to an Olympus FV1200 confocal system (Olympus;
Shinjuku, Tokyo, Japan) with a ×63 water-immersion lenses (Olympus, Shinjuku, Tokyo,
Japan). At least three separate and representative locations were selected from the HA discs
covered with biofilm. With the use of a dedicated software (Olympus® software (Olympus,
Shinjuku, Tokyo, Japan) and Image analysis FIJI® software (Image J v. 2.0.0-rc-65 /1.52b) a
z-series of scans (xyz) of 0.5 µm thickness (8 bits, 1024 × 1024 pixels) were analyzed.

2.2.4. Analysis of Biofilms by Scanning Electron Microscope (SEM)

Specimens were fixed in a solution at 4% paraformaldehyde and 2.5% glutaraldehyde
for 4 h, at 4 ◦C. The discs were washed once in phosphate buffer saline (PBS) and another
time in sterile water (immersion time per washed 10 min) and then dehydrated through
a series of graded ethanol solutions (30, 50, 70, 80, 90, and 100%; immersion time per
series 10 min). After that, specimens were critical point dried, sputter-coated with gold
and analysed by electron microscopy JSM 6400 (JSM6400; JEOL, Tokyo, Japan) with a
back-scattered electron detector and an image resolution of 25 kV.

2.3. Antibacterial Effect of S. downii sp. nov. Against Oral Species in an Already Established in
Vitro Biofilm

Figure 1 presents the experimental design of the study on the antibacterial activity of
S. downii sp. nov. strain CECT 9732T against bacteria, in an in vitro oral biofilm model.

2.3.1. Biofilm Development

Biofilms were developed as described previously (Section 2.2.1), and a mixed bacterial
suspensions in supplemented BHI medium were prepared in order to develop biofilms,
containing 103 CFU mL−1 of S. mutans, 105 CFU mL−1 of V. parvula and A. naeslundii,
and 106 CFU mL-1 of F. nucleatum, A. actinomycetemcomitans, and P. gingivalis. HA discs
(Clarkson Chromatography Products, Williamsport, PA, USA) and 1.5 mL of the bacterial
suspension were placed in the multi-well tissue culture plate (Greiner Bio-one, Fricken-
hausen, Germany) and incubated at 37 ◦C in anaerobiosis for 24 h. After that, the 24 h
developed biofilms were: (i) exposed to 1 mL of S. downii sp. nov. at 108 CFU mL−1 in
supplemented BHI medium or (ii) in the case of controls, exposed to 1 mL of fresh supple-
mented BHI medium. Biofilms were then incubated for additional 24 and 48 h at 37 ◦C in
anaerobiosis. Three independent trials (on three different occasions) were carried out.

2.3.2. Biofilm Analysis

The 24 h biofilms and the biofilms re-incubated another 24–48 h in the presence or not
(controls) of S. downii sp. nov., were analysed. Confocal laser scanning microscopy and
scanning electron microscopy (Sections 2.2.3 and 2.2.4) displayed the biofilms structures
and bacterial viability. Quantitative polymerase chain reaction was used to assess the effect
of S. downii sp. nov. in bacterial load (amounts of each bacterium expressed as CFU mL−1;
Section 2.2.2).

2.4. Statistical Analysis

The primary outcome variable was the count of viable bacteria present in the in vitro
developed biofilms, expressed as viable CFU mL−1 of S. downii sp. nov., S. mutans,
V. parvula, A. naeslundii, A. actinomycetemcomitans, P. gingivalis, and F. nucleatum. An
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experiment-level analysis was performed for each parameter of the study (n = 3). Shapiro–
Wilk goodness-of-fit tests and distribution of data were used to assess normality. Data were
expressed as means and standard deviations (SD).

In order to evaluate the impact of S. downii sp. nov. and the time of biofilm-
development (up to 120 h) and their interaction with the primary outcome variable (counts
expressed in CFU mL−1), a general linear model was constructed for each bacterial species,
using the method of maximum likelihood and Bonferroni corrections for multiple compar-
isons. A p-value < 0.05 was considered statistically significant. A software package (IBM
SPSS Statistics 21.0; IBM Corporation, Armonk, NY, USA) was used for all data analysis.

3. Results
3.1. Anti-Biofilm Activity of S. downii sp. nov. in an in Vitro Biofilm Model

The impact of S. downii sp. nov. on the obtained multispecies biofilms was assessed
from 12 to 120 h. Figure 2 depicts the kinetic profiles of the six bacterial species used
in this in vitro biofilm model (strains S. mutans, A. naeslundii, V. parvula, F. nucleatum,
P. gingivalis, and A. actinomycetemcomitans), quantified by qPCR, when forming biofilms
with or without the presence of S. downii sp. nov. In biofilms exposed to S. downii sp. nov.,
it could be detected this bacterial species incorporated in the biofilm as early as 12 h of
biofilm evolution and up to 120 h, with an average concentration of 2.7 × 107 CFU mL−1

(SD = 1.5 × 107).
In both obtained biofilms, with or without the presence of S. downii sp. nov, the six

bacterial species were incorporated already after 12 h of incubation, and were present for
up to 120 h. Only the growth of S. mutans was significantly different when S. downii sp. nov.
was present in the biofilms (Figure 2). This impact was not observed in the early stages
of biofilm formation, since at 12 h, both biofilms were similar (p > 0.05). From 24 to 72 h
there was a clear trend, but without being statistically significant (p > 0.05 in all cases).
However, differences were evident and statistically significant in the stationary phase (96
and 120 h) of the biofilm formation (p < 0.001, in both cases) (Figure 2). The kinetics of the
rest of initial colonizers (V. parvula and A. naeslundii), and that of the periodontal pathogens
(F. nucleatum, A. actinomycetemcomitans, and P. gingivalis) was not affected by the presence
of S. downii sp. nov. during the 120 h of incubation (p > 0.05 in all cases).

Biofilm structure and bacterial viability were studied by CLSM. During the initial
growth phase, and after 24 h of incubation, biofilms containing S. downii sp. nov. depicted
a well-structured bacterial community, similar to biofilms without S. downii sp. nov.
(Figure 3a,b), with a live/dead ratio of 2.75 (SD = 0.2) for biofilms without S. downii sp. nov.
and 2.4 (SD = 0.8) for biofilms containing S. downii sp. nov. This tendency was maintained
during the exponential phase of biofilm development and, after 72 h, both modalities of
biofilms showed a similar architecture, corresponding to a mature bacterial community
(Figure 3c,d), with a live/dead ratio of 3.0 (SD = 0.1), for biofilms without S. downii sp. nov.,
and 2.7 (SD = 0.2), for biofilms containing S. downii sp. nov. However, and in agreement
with the previously described qPCR data, in the stationary phase of biofilms (from 96
to 120 h, Figure 3e,f), it could be observed a higher percentage of dead cells in biofilms
containing S. downii sp. nov., when compared with biofilms without S. downii sp. nov. The
live/dead ratio was 2.0 (SD = 0.1) for biofilms without S. downii sp. nov. and 1.4 (SD = 0.4)
for biofilms containing S. downii sp. nov.
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(a,b), 72 h (c,d) and 120 h (e,f) of growth. LIVE/DEAD® BacLightTM Bacterial Viability Kit stain
was used to assess the vitality of cells (live cells in green and dead cells in red color; yellowish
corresponded to damage cells but still alive).

The analysis by SEM showed similar findings (Figure 4). After 120 h or growth,
it would seem that the proportion of S. mutans forming chains of cocci was reduced in
biofilms containing S. downii sp. nov., compared to grown biofilms without S. downii sp.
nov. (Figure 4e,f).
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Figure 4. Scanning electron microscope images of the control biofilms (a,c,e), composed by Strep-
tococcus mutans, Veillonella parvula, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter
actinomycetemcomitans and Porphyromonas gingivalis, and experimental biofilms, incorporating also
Streptococcus downii sp. nov. (b,d,f), after 24 h (a,b), 72 h (c,d) and 120 h (e,f) of growth. A similar
architecture of biofilms can be observed, in both presence and absence of S. downii sp. nov., with
biofilms covering the disc surfaces with flat homogenous layers of cells, combined with bacterial
clusters, showing channels inside the structure.

3.2. Antibacterial Effect of S. downii sp. nov. Against Oral Species in an Already Established in
Vitro Biofilm

After 24 h of incubation, well-structured biofilms were developed. The presence of
the six inoculated bacterial species was confirmed by qPCR, and their live/dead ratio,
measured by CLSM, was 2.0 (SD = 0.1) (Figure 5).

These biofilms were then exposed to 108 CFU mL−1 of S. downii sp. nov. for 24
and 48 h and examined by CLSM (Figure 6). The obtained 24 h biofilms showed similar
well-structured bacterial communities when compared those non-exposed versus exposed
to S. downii sp. nov. (Figure 6a,b, respectively) and with live/dead ratio of 3.0 (SD = 0.3)
and 4.2 (SD = 1.7), respectively. In those exposed to S. downii sp. nov., a thicker live biomass
could be observed, possibly caused by the additional bacteria incorporated (Figure 6a,b).
After 48 h of exposition, in spite of having a similar biofilm structure, the percentage
of dead bacteria was significantly higher in the biofilms exposed to S. downii sp. nov.
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when compared with those without S. downii sp. nov. (Figure 6c,d; live/dead ratio of 1.1
(SD = 0.2) and 1.8 (SD = 0.2), respectively.)
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Figure 7 depicts the concentration (expressed in CFU mL−1) of the six inoculated
bacteria when comparing those biofilms exposed and non-exposed to S. downii sp. nov. for
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24 and 48 h. After 24 h of contact with S. downii sp. nov., the concentration of S. mutans
(p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced, when
compared to non-exposed biofilms (Figure 7a). After 48 h of contact, a similar tendency
was observed, but with statistically significant higher concentrations for A. naeslundii, in
exposed biofilms (p = 0.003) (Figure 7b).

Microorganisms 2021, 9, x FOR PEER REVIEW 11 of 16 
 

 

Figure 6. Analysis by confocal laser scanning microscopy of: (a,b) 24-h biofilms exposed for 24 h to 
1 mL of brain heart infusion (BHI) medium (control biofilms) and to 1 mL of 108 colony forming 
units (CFU) mL−1 of S. downii sp. nov. in fresh BHI medium (exposed biofilms), respectively; (c,d) 
24-h biofilms exposed for 48 h to 1 mL of BHI medium (control biofilms) and to 1 mL of 108 CFU 
mL−1 of S. downii sp. nov., in fresh BHI medium (exposed biofilms), respectively. 

Figure 7 depicts the concentration (expressed in CFU mL−1) of the six inoculated bac-
teria when comparing those biofilms exposed and non-exposed to S. downii sp. nov. for 
24 and 48 h. After 24 h of contact with S. downii sp. nov., the concentration of S. mutans (p 
= 0.019) and A. actinomycetemcomitans (p=0.020) were significantly reduced, when com-
pared to non-exposed biofilms (Figure 7a). After 48 h of contact, a similar tendency was 
observed, but with statistically significant higher concentrations for A. naeslundii, in ex-
posed biofilms (p = 0.003) (Figure 7b).  

With longer time of incubation (from 24 to 48 h), the concentration of the selected 
bacteria increased in both types of biofilms, but for P. gingivalis, a significant increase (p = 
0.018) was observed in non-exposed biofilms, while the increase in exposed biofilms was 
not statistically significant (p = 0.395). A similar trend was observed for V. parvula (p = 
0.050 in non-exposed biofilms and p = 0.295 in exposed biofilms, respectively). 

 
Figure 7. Counts (expressed as logarithm of colony forming units per mL, CFU/mL) of Streptococ-
cus mutans (Sm), Veillonella parvula (Vp), Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), 
Aggregatibacter actinomycetemcomitans (Aa), and Porphyromonas gingivalis (Pg) in biofilms using spe-
cific primers and probes directed to the 16S rRNA gene: (a) 24-h biofilms after contact with 108 
CFU/mL of S. downii sp. nov. for 24 h more; (b) 24-h biofilms after contact with 108 CFU/mL of S. 
downii sp. nov. for 48 h more. * p < 0.005. 

4. Discussion 
The novel species S. downii sp. nov. has been recently isolated from a supragingival 

dental biofilm sample of an individual with Down syndrome [29]. The orofacial and skel-
etal developmental disturbances associated with Down syndrome contribute to frequent 
oral conditions and diseases in these patients, as periodontal diseases, malocclusion, 
mouth breathing, macroglossia, delayed teeth eruption, missing and malformed teeth, mi-
crodontia, diastema, and bruxism [31]. In spite of this, Down syndrome individuals have 

Figure 7. Counts (expressed as logarithm of colony forming units per mL, CFU/mL) of Streptococcus
mutans (Sm), Veillonella parvula (Vp), Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), Ag-
gregatibacter actinomycetemcomitans (Aa), and Porphyromonas gingivalis (Pg) in biofilms using specific
primers and probes directed to the 16S rRNA gene: (a) 24-h biofilms after contact with 108 CFU/mL
of S. downii sp. nov. for 24 h more; (b) 24-h biofilms after contact with 108 CFU/mL of S. downii sp.
nov. for 48 h more. * p < 0.005.

With longer time of incubation (from 24 to 48 h), the concentration of the selected
bacteria increased in both types of biofilms, but for P. gingivalis, a significant increase
(p = 0.018) was observed in non-exposed biofilms, while the increase in exposed biofilms
was not statistically significant (p = 0.395). A similar trend was observed for V. parvula
(p = 0.050 in non-exposed biofilms and p = 0.295 in exposed biofilms, respectively).

4. Discussion

The novel species S. downii sp. nov. has been recently isolated from a supragingival
dental biofilm sample of an individual with Down syndrome [29]. The orofacial and skeletal
developmental disturbances associated with Down syndrome contribute to frequent oral
conditions and diseases in these patients, as periodontal diseases, malocclusion, mouth
breathing, macroglossia, delayed teeth eruption, missing and malformed teeth, microdontia,
diastema, and bruxism [31]. In spite of this, Down syndrome individuals have shown
significantly lower prevalence of dental caries when compared with matched individuals
without the syndrome [31]. In this regard, previous evidence has indicated antibacterial
activity of S. downii sp. nov. against pathogens involved, not only in caries, but also in
periodontal diseases, carried out by inhibition assays on solid culture medium [29].

Based on the previous findings, and in order to provide additional information, but
with a model that better resembles what occurs in the oral cavity (bacteria organized
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in biofilms), the potential effect on oral health of S. downii sp. nov. was studied using a
validated in vitro biofilm model. The present manuscript describes the in vitro antibacterial
and anti-biofilm effects of S. downii sp. nov. when inoculated with oral bacteria included
in a multispecies biofilm. Although there was no significant impact in the early stages of
biofilm formation, during the stationary phase of biofilm growth, there was a significant
reduction in the growth of S. mutans and A. actinomycetemcomitans that was evident with
qPCR analysis.

This antibacterial activity on oral bacteria forming biofilms are in accordance with
previous studies reported antibacterial activity of S. mitis group [23–25]. Similarly, other
streptococci have demonstrated an impact on periodontal pathogens [22,28,32–36]. How-
ever, most of these in vitro studies were done using planktonic in vitro cultures, unlike the
present study, carried out with an in vitro multispecies biofilm model. This difference may
be relevant since not only translates closer the real bacterial growth in the oral cavity, but
also demonstrates the antibacterial effect in an environment where these bacteria are more
tolerant against antimicrobial agents. Another reason for choosing this in vitro biofilm
model was to test the potential of the tested bacteria to adhere to oral surfaces, which can
only be mimicked in such a model. Finally, the role of dental biofilms in the etiology of
caries and periodontal diseases justifies the use of the present validated in vitro biofilm
model [30], which was modified by changing the early colonizer S. mutans instead of
S. oralis, since S. mutans has demonstrated a stronger association with both the onset and
progression of dental caries [37–39].

When assessing the anti-biofilm capacity of S. downii sp. nov., an indigenous species
of the oral cavity in subjects with Down syndrome, it was observed that it was able to
effectively colonize the in vitro developed biofilms, without interfering with its structure
and bacterial composition, since it did not affect the kinetics of colonization of secondary
colonizers (V. parvula and A. naeslundii) or periodontal pathogens (F. nucleatum, A. actino-
mycetemcomitans, and P. gingivalis). However, its presence significantly interfered with the
colonization kinetics of S. mutans, suggesting that the presence S. downii sp. nov. may
control S. mutans levels, thus promoting health compatible biofilms or modifying their
pathogenic potential [40].

Our findings agree with previous publications, which describe that some bacterial
species, closely related to S. downii sp. nov., and isolated from caries-free subjects, exhibited
antibacterial capacity against S. mutans. Bao et al. and Tong et al. [32,33] reported the
inhibition of S. mutans by Streptococcus oligofermentans, due to the production of hydrogen
peroxide, while Ogawa et al. [34], observed that Streptococcus salivarius inhibited the devel-
opment of S. mutans biofilms, via bacteriocin production. More recently, the antibacterial
capacity of Streptococcus A12 [35] and S. dentisani [22] against S. mutans was also described.
Other studies reported that exogenous bacteria from the oral cavity could affect S. mutans,
such as Bifidobacterium spp. isolated from human intestine [41], Lactobacillus reuteri strains,
which were able to inhibit the growth of S. mutans in different degrees [42] or different
Lactobacillus spp., which exhibits a notable degree of antagonism against S. mutans [41,43].

In regard to the ability to inhibit the formation and/or biofilm growth, as observed in
the present research, this has been documented for other oral exogenous bacteria, including
Enterococcus faecium WB2000, Bifidobacterium adolescentis SPM1005, or heat-inactivated
Bifidobacterium BB12 [44–46]. Söderling et al. [47] observed that the probiotic strains L. reuteri
SD2112 and L. reuteri PTA5289, Lactobacillus rhamnosus GG, and Lactobacillus plantarum 229v
inhibited S. mutans biofilm formation on glass surfaces. Marttinem et al. [48] confirmed
that L. reuteri ATCC PTA5289 could interfere with the adhesion of S. mutans to HA discs
and inhibited biofilm formation. Lin et al. [49] refereed to the ability to inhibit S. mutans
formation and biofilm growth on glass surfaces of other Lactobacillus strains, including
L. rhamnosus HN001, L. plantarum ST-III, Lactobacillus casei strain Shirota, L. casei LC01, and
Lactobacillus paracasei Lpc-37.

When assessing the antibacterial capacity of S. downii sp. nov. against a well-structured
biofilm, this bacterial species was able to induced a significant lower concentrations of
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S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020), significant higher concen-
trations of A. naeslundii (p = 0.003) and prevented a statistically significant increment for
P. gingivalis and V. parvula (p = 0.395 and p=0.295, respectively), compared to non-exposed
biofilms. These results may suggest a potential probiotic effect of S. downii sp. nov. in the
maintenance of oral homeostasis, decreasing the amounts of potential pathogenic species,
and stimulating the growth of health-associated, potentially beneficial bacteria, such as
A. naeslundii.

In periodontitis, both indigenous and exogenous bacterial strains have been in vivo
and in vitro assessed, testing the hypothesis that they could help in the suppression of
periodontal pathogens by competitive exclusion mechanisms and/or via the production of
antimicrobial substances [28,36,50]. In vitro studies have shown positive results for differ-
ent endogenous bacterial strains. S. dentisani showing inhibition of growth of periodontal
pathogens and other pathogens implicated in root canals infections by the production of
antimicrobial substances, although the study was conducted in planktonic in vitro cul-
tures [22]. S. mitis demonstrated a successful antagonism in the adhesion of P. gingivalis [23],
and also reduced the growth of P. gingivalis in presence of salivary bifidobacteria by re-
ducing growth factor(s) from the environment [26]. Among exogenous strains, in vitro
viability of A. actinomycetemcomitans was affected by human intestinal Bifidobacterium
spp. [41]. Bdellovibrio bacteriovorus has been shown to significantly reduce the number
of viable A. actinomycetemcomitans, both in planktonic and mono-species in vitro biofilm
cultures [51]. However, it was observed that the efficiency decreased as the complexity
of the model increased, i.e., with a model including six bacterial species (P. intermedia,
A. actinomycetemcomitans, P. gingivalis, F. nucleatum, S. mitis, and A. naeslundii) [52].

This study presents clear limitations: an in vitro biofilm model consisting of six
bacterial species has been used, and the effects of S. downii sp. nov. could be less evident in
more diverse biofilms, closer to in vivo conditions; the application of the present findings
could be limited due if there were relevant differences in the oral microbiota among
Down syndrome subjects and other systemically healthy individuals and/or periodontitis
patients [53,54], in whom S. downii sp. nov. may exhibit less capacity to colonize oral
biofilms in vivo. The selected biofilm model consists in a common consortium of bacteria,
including commensal bacteria and common periodontal pathogens strongly associated with
periodontitis and caries, and the present study has shown, for the first time, antibacterial
and antibiofilm activities of the tested novel species; thus, more studies are granted to
better understand the mechanisms of action behind these findings.

5. Conclusions

In summary, the results of the present study have shown that an indigenous bacterial
strain, S. downii sp. nov., had a moderate impact in oral biofilm formation and composition,
as tested in a validated multi-species in vitro biofilm model. Firstly, it was shown that it was
able to colonize the formed biofilms; secondly, and although the structural development
was not affected by the presence of S. downii sp. nov., significantly lower amounts of
A. actinomycetemcomitans (a periodontal pathogen, strongly associated with periodontitis)
and of S. mutans (strongly associated with caries) were incorporated in the biofilms, in
the presence of S. downii sp. nov. The present results, together with the previous findings
showing α- and β-galactosidase activities of S. downii sp. nov. [29], which indicates that
S. downii sp. nov. can use several saccharides as carbon source, including lactose, represents
an advantage for its potential application as an oral probiotic [55].
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