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Abstract

Large-scale assessments often use a computer adaptive test (CAT) for selection of
items and for scoring respondents. Such tests often assume a parametric form for the
relationship between item responses and the underlying construct. Although semi-
and nonparametric response functions could be used, there is scant research on their
performance in a CAT. In this work, we compare parametric response functions ver-
sus those estimated using kernel smoothing and a logistic function of a monotonic
polynomial. Monotonic polynomial items can be used with traditional CAT item selec-
tion algorithms that use analytical derivatives. We compared these approaches in
CAT simulations with a variety of item selection algorithms. Our simulations also var-
ied the features of the calibration and item pool: sample size, the presence of missing
data, and the percentage of nonstandard items. In general, the results support the use
of semi- and nonparametric item response functions in a CAT.
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Introduction

Despite Stout (2001) declaring that nonparametric item response theory (IRT) is

viable for the scaling of educational and psychological tests, significant barriers
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remain to the use of these approaches. For example, large-scale assessments are more

likely to use models such as the two-parameter logistic (2PL), three-parameter logis-

tic (3PL; Birnbaum, 1968), or generalized partial credit model (Muraki, 1992) when

modeling the relationship between a latent trait and item responses. These parametric

models are often used despite the fact that nonparametric and flexible IRT approaches

typically make fewer restrictive assumptions. One challenge to the use of more flex-

ible modeling approaches is the desire to use estimated item response functions

(IRFs) in a computer adaptive test (CAT).

The performance of flexibly estimated response functions when used in a CAT is

largely unknown as many techniques are not easily tractable with existing testing

programs. Classical CAT item selection algorithms, such as maximum Fisher infor-

mation (MFI; Lord, 1980) or maximum weighted posterior information (MPWI; van

der Linden, 1998) are still heavily used in operational CAT settings. These tech-

niques typically require derivatives of the IRF with respect to the latent trait, which

are not always readily available for flexibly estimated IRFs. Thus previous applica-

tions of CATs to nonparametric IRFs have used alternative item selection algorithms,

as otherwise numerical derivatives may be unstable (Y.-P. Chang et al., 2019; Xu &

Douglas, 2006).

A novel monotonic polynomial (MP) approach to IRF estimation could be more

easily used with traditional item selection algorithms but has not yet been evaluated

with a CAT. In brief, the MP approach consists of replacing the linear predictor of

parametric IRT models with an MP (Falk & Cai, 2016a, 2016b; Feuerstahler, 2016;

Liang, 2007; Liang & Browne, 2015). Although the approach technically has addi-

tional parameters and results in more flexibly estimated IRFs like those from non-

parametric approaches, these parameters are not easily interpretable. Thus, the MP

approach has been called ‘‘semiparametric’’ or ‘‘quasi-parametric’’ (Liang, 2007;

Liang & Browne, 2015). In addition, the MP approach has some distinct practical

advantages that we believe permit its further study. In particular, the MP approach

can allow calibration of IRFs by maximizing the marginal likelihood or posterior

using the expectation-maximization algorithm (EM-MML; Bock & Aitkin, 1981;

Mislevy, 1986). This feature is distinct from kernel smoothing (KS; Ramsay, 1991)

and smoothed isotonic regression (Lee, 2002, 2007), in which estimation was devel-

oped by relying on a proxy of the latent trait that is computed from observed scores.

The MP approach is therefore more readily usable in settings where a planned miss-

ing data design is used for field testing (i.e., there are missing item responses; Falk,

2019, 2020), in multiple group settings (Falk & Cai, 2016a), and for linking

(Feuerstahler, 2019). The MP approach can also be used in conjunction with parame-

trically modeled items on the same test, which may facilitate a more seamless inte-

gration into operational settings. However, simulations studies have also shown that

the MP approach is most suitable for large-scale testing as good estimation typically

requires larger sample sizes and many items.

Little prior research has studied the performance of flexible or nonparametric IRFs

with a CAT. Xu and Douglas (2006) developed two item selection algorithms for the
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KS approach based on Kullback–Leibler (K-L; H.-H. Chang & Ying, 1996) informa-

tion and Shannon entropy (Shannon, 1948). These item selection algorithms avoid

the need to compute derivatives of the IRF in order to perform item selection. These

authors evaluated the item selection algorithms with a fixed 50-item CAT. Other

details of simulations included a 500-item test bank (with true IRFs from a 2PL) cali-

brated using KS with 1,000 subjects’ complete responses. Although the item selection

algorithms with KS were found to perform well, the scope of simulations was limited.

In particular, KS with both item selection algorithms was compared only with a ‘‘ran-

dom’’ item selection algorithm and comparisons of this approach with traditional IRT

models (2PL, 3PL, etc.) was not made. Furthermore, it is unlikely that calibration

sample students would be able to complete 500 items each. In later research, Y.-P.

Chang et al. (2019) used similar item selection algorithms to evaluate the perfor-

mance of a nonparametric technique with a cognitive diagnosis model. They found

that a nonparametric approach performed better than parametrically estimated IRFs,

yet the focus of their study was on smaller sample educational testing contexts.

We therefore have little knowledge of the performance of nonparametric or flex-

ible IRF estimation techniques versus parametric techniques in a CAT under condi-

tions that may be typical of a large-scale test, and no prior research evaluating MP-

based models in a CAT. On the one hand, simulations do suggest that flexible IRF

estimation techniques such as the MP can improve recovery of the true IRFs, which

in turn often leads to better recovery of latent traits (e.g., Falk & Cai, 2016a;

Feuerstahler, 2016). However, these previous studies have typically only studied the

case where calibration and latent trait estimation is performed on the same sample,

and all items on the test are used for all respondents. Use of one calibration sample

followed by a CAT using a separate sample is perhaps more similar to cross-

validation of the estimated IRFs, and we may not be able to easily extrapolate based

on the results of limited previous simulations.

In this article, we present a simulation study that compares the performance of the

MP approach, KS, and 2PL in a CAT. We begin by describing each IRF estimation

technique, followed by item selection algorithms. Then, we present the method and

results of a Monte Carlo simulation study. We finally make concluding remarks.

Method

Studied Item Response Function Estimation Techniques

For the purpose of notation for calibration, consider i = 1, 2, . . . , N respondents who

complete some subset of j = 1, 2, . . . , J items in the item pool. The 2PL is one of the

most commonly used item response models for dichotomous items on both educa-

tional and psychological tests. The functional form is essentially that of a logistic

regression, in which the item response is regressed on the latent construct, u. For item

j, one way to write the 2PL is as follows:
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Pj(u) =
1

1 + exp (� (cj + aju))
ð1Þ

where cj is an intercept and aj is a slope. Conceptually this function traces the prob-

ability of a ‘‘correct’’ (or 1; as opposed to an incorrect or 0) response at different lev-

els of the latent trait, u. The basic idea behind the MP version of this dichotomous

item model is to replace the term aju with a monotonic polynomial, mj(u):

Pj(u) =
1

1 + exp (� (cj + mj(u)))
ð2Þ

Here, the MP is a function of u:

mj(u) = b1, ju + b2, ju
2 + � � � + b2kj + 1, ju

2kj + 1 ð3Þ

where kj is a nonnegative integer for item j that controls the order of the polynomial.

Due to the form of Equation (2) being a logistic function of mj(u), sometimes this

approach is called a ‘‘filtered’’ MP (Feuerstahler, 2016, 2019). Typically coefficients

of the polynomial are not directly estimated but are a function of other parameters

(e.g., Falk & Cai, 2016a; Feuerstahler, 2016; Liang, 2007). In this way, Pj(u) is

monotonically increasing in u but has additional flexibility beyond the 2PL. For both

the 2PL and MP approaches, we obtained parameter estimates via EM-MML (e.g.,

see Falk & Cai, 2016a) with polynomial order selection for the MP done using simu-

lated annealing (Falk, 2019).

KS (Ramsay, 1991) is one of the most popular nonparametric techniques for IRF

estimation, possibly due to its availability in programs such as TESTGRAF (Ramsay,

2000) and now in KernSmoothIRT (Mazza et al., 2014). In the context of dichoto-

mously scored items, KS estimated IRFs at any given point along u resemble a

weighted sum of the following form:

Pj(u) =
XN

i = 1

wi(~ui)yij ð4Þ

where wi(u� ~ui) are weights, yij is examinee i’s response to item j, assuming com-

plete data, and ~ui is typically a surrogate estimate of the examinee’s score on the

latent trait. Values for ~ui are often chosen based on a (weighted) sum score of all item

responses for respondent i. Weights are then often Nadaraya–Watson (Nadaraya,

1964; Watson, 1964) weights as follows,

wi(u� ~ui) =
K u�~ui

h

� �
P

i K u�~ui

h

� � ð5Þ

where K(�) is a kernel function and h is a bandwidth. In addition, although Equation

(4) appears to be continuous along u, typically evaluation points along u are
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determined, and this may have an impact on scoring and any additional calculations

that are performed as part of a CAT. Thus, the grid that is chosen for KS can have

implications for how any follow-up scoring or CAT is performed as an item bank

would typically need to store such information and would not be able to recompute

Pj(u) at new u points on the fly from the original calibration data.

Studied Item Selection Algorithms

In the present article, we consider a fixed-length, item-by-item CAT with

j = 1, 2, . . . , J indexing items in the item pool, m = 1, 2, . . . , M indexing iterations of

the CAT algorithm, and jm therefore serving as the index of the item administered at

iteration m. Then, yi, jm�1
= yi, j1 yi, j2 . . . yi, jm�1
½ � are the item responses to admi-

nistered items prior to iteration m. Let ~ui, m be the score estimate for examinee i at

the beginning of iteration m and ~ui, m + 1 as the updated score estimate after adminis-

tering item m. At iteration m, item selection algorithms try to choose the next item

that will most improve ~ui, m + 1.

To briefly cover the logic behind MFI (Lord, 1980) and MPWI (van der Linden,

1998), suppose that the true latent trait score for examinee i, u�i , were known and we

wished to administer the item(s) that would most reduce the sampling variability of

their score estimate, ûi, under maximum likelihood or expected a posteriori (EAP;

Bock & Mislevy, 1982) scoring, for example. Items that have the highest Fisher infor-

mation at u�i would be the most optimal to choose. Assuming item parameters implied

by a parametric model or the exact shape of the true IRFs were known, Fisher infor-

mation for dichotomously scored item j is often written as

Ij(u) =
P
0
j(u)

h i2

Pj(u)Qj(u)
ð6Þ

where P
0
j(u) =

∂Pj(u)

∂u
and Qj(u) = 1� Pj(u). Note that this expression is generally given

when defining expected Fisher information, yet for exponential family item response

models such as those in Equations (1) and (2) is equivalent to that of observed infor-

mation. Note also that this requires partial derivatives of Pj(u) with respect to u,

which are easily obtained for the 2PL and MP approaches but not in general with

KS. As u�i is unknown, MFI uses the current interim estimate ûi, m as a substitute for

u in Equation (6) and then the top item is chosen.

Due in part to instability in ûi, m, especially in the early stages of a CAT, the item

chosen under MFI may not be optimal for the examinee. MPWI quantifies uncertainty

in ûi, m by computing information for each item integrating across the posterior distri-

bution for ûi, m. Let p(u) be the prior density and

L(ujyi, jm�1
) =
Ym�1

k = 1

Pjk (u)yi, jk Qjk (u)1�yi, jk ð7Þ
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be the likelihood for examinee i at the start of iteration m. Then, the posterior

weighted information is defined as follows (see also Magis & Raiche, 2012):

PWIj(u) =

Z
Ij(u)L(ujyi, jm�1

)p(u)du ð8Þ

where the integral may be computed using numerical methods (e.g., rectangular quad-

rature). MPWI then proceeds at any given iteration by computing PWIj for all items

under the current posterior, and choosing the item with the largest value.

Finally, K-L information (H.-H. Chang & Ying, 1996) resembles the likelihood

ratio between the unknown but true value u�i , and some other value, u:

Kj(u
�
i jju) = Eu�i log

Lj(u
�
i ; Yij)

Lj(u; Yij)

� �
ð9Þ

with the expectation over possible responses for the item (values for the random vari-

able Yij), which in this case is Lj(u; Yij) = Pj(u)YijQj(u)1�Yij . Conceptually, K-L deter-

mines which newly administered item would allow us to tell the difference between

u�i and some other value on the latent scale using a likelihood ratio.

While MFI and MPWI computations for each item rely on some estimate or pos-

terior for u�i , computation of K-L in Equation (9) relies on a stand-in for both u�i and

some other possible value(s) for u. To achieve this, K-L information is computed

using the current interim estimate ûi, m for u�i , and a range of values for u in the vici-

nity of ûi, m are considered via an integral:

Kj(ûi, m) =

Z ûi, m + dm

ûi, m�dm

Kj(ûi, mjju)du ð10Þ

with a typical choice for dm = c=
ffiffiffiffi
m
p

. In simulations, c = 3 is often chosen (e.g., H.- H.

Chang & Ying, 1996) though could be chosen to determine the range of integration corre-

sponding to a desired coverage probability for u�i based on an interval around ûm. The

term dm thus controls the range of integration and is wide in the early stages of the CAT,

to effectively obtain a ‘‘global’’ index of information. At later stages of the CAT (i.e., a

larger value for m), the range of integration decreases and Equation (10) would become

more local, properly reflecting better information regarding the latent trait estimate.

Note that computation of Equation (10) does not require any derivative computa-

tions, only the ability to evaluate Pj(u) at particular values of u. Thus, it is well-suited

for use also with KS (in addition to 2PL and MP) approaches to IRF estimation.

However, evaluation of the integral may require numerical integration, which still

requires choosing quadrature nodes or grid points along u. These nodes will typically

not match the exact evaluation points under KS obtained during calibration. Thus, to

obtain the values of the IRF under KS at each quadrature node to compute Equation

(10), we used linear interpolation based on the already estimated IRF. We suppose

this is the most likely situation if KS were to be used to in an item bank.
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Study Design and Simulation Details

For clarity, we separate the study design details into two sections. First, we describe

how calibration data were simulated and how models were estimated. On the basis

of IRF estimation from calibration data, we describe how CAT simulations were then

conducted.

Calibration and Data Generating Models. To attempt to construct realistic field testing

conditions, we generated calibration sample data under two broad conditions:

Complete data and missing data. Within each of these two conditions, we also varied

sample size and the percentage of items that had an IRF that departed drastically

from the traditional 2PL model (nonstandard items). This resulted in a total of eight

different data generating conditions for the calibration samples.

For the complete data conditions, all respondents completed all items. The num-

ber of items was fixed at J = 100, as we expect this to be approximately the largest

amount of items that respondents may reasonably complete, especially if such items

represent educational test items. The number of respondents (N = 1, 000 or

N = 3, 000) was fully crossed with the percentage of nonstandard items (30% or

70%).

For the missing data conditions, each respondent completed only a random subset

of 40 items, which is similar to some recent large-scale educational tests (e.g.,

Smarter Balanced Assessment Consortium, 2017). Since the number of items under

this condition was fixed at J = 200, this represents 80% missing data. To compensate

for missing data, we would expect research teams under similar testing conditions to

utilize more respondents. Thus, the sample size conditions were larger. Sample size

(N = 5, 000 or N = 10, 000) was again crossed with the percentage of nonstandard

items (30% or 70%).

All items were dichotomous, and standard items were generated using a normal

cumulative distribution function (CDF) as the IRF, Pj(u) =F(ujm1j, s2
1j), with

m1;unif(� 2:75, 2:75) and s1;N (2, :42) drawn randomly across items. Although

this does not strictly follow the 2PL, it may be reconceived as following a

normal ogive model for which the 2PL provides a very close approximation.

Nonstandard items were generated with the following mixture of normal CDFs:

Pj(u) = p1F(ujm1j, s2
1j) + p2F(ujm2j, s2

2j) + p3F(ujm3j, s2
3j). Proportions were gener-

ated randomly across items, p1;unif(:1, :6), p2;unif(:1, :3), p3 = 1� p1 � p2, as

were standard deviations, s;N (:7, :22) for s1, s2, s3 with any values less than .2

winsorized at .2. To provide variation in overall difficulty, means of the CDFs were

pieced together in the following way: m1 = m + d1, m2 = m + d2, m3 = m + d3. Thus,

m;unif(� 2:5, 2:5) provided some overall control of difficulty, and the remaining

parameters controlled the center of the CDFs, d1;N (� 2:2, :22), d2;N (2:2, :22),

d3;N (0, :22).

For each data generating condition, a single calibration sample was generated,

with a standard normal u assumed. Although it may be preferable to have several

calibration samples per data generation condition, and then repeatedly conduct CAT
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simulations with each calibration sample, such an approach is still very computation-

ally intensive if conducting thousands of CAT simulations for each calibration sam-

ple. We therefore decided against this approach and comment further on this issue in

the Discussion section.

To each calibration sample, several models were fit to obtain IRF estimates for

later use in CAT simulations. The exact models depended on the data generating con-

ditions. The KS approach using KernSmoothIRT (Mazza et al., 2014) with default

settings was utilized for all complete data generating conditions. As noted, this

method is possible but not ideal when there are missing item responses and so was

used with only complete data conditions. To obtain ui for smoothing, the default

behavior is to compute sum scores (equal weight for each item), obtain percentile

ranks (with ties broken in order of appearance), and then use a normalizing transfor-

mation using quantiles of a standard normal distribution. Although multiple choices

for a kernel function are possible, a Gaussian kernel is default and a reasonable

choice. The bandwidth defaults to the so-called Silverman rule of thumb (Silverman,

1986), which was .266 when N = 1, 000 and .214 when N = 3, 000. And finally, the

evaluation grid defaults to 51 equally spaced points between 63:09 when N = 1, 000

and 63:40 when N = 3, 000.

In addition, a 2PL model was fit to all data sets. Finally, an MP-based model was

fit to each data set. For the MP models, the order of the polynomial was determined

through use of simulated annealing as described by Falk (2019) with up to k = 3 con-

sidered, a starting temperature of 5, a logarithmic temperature schedule as described

by Stander and Silverman (1994), and using Akaike information criterion as the opti-

mization criterion. The number of iterations was set to 800 for complete data and

1,600 for missing data since the latter had a larger item bank and may require more

iterations to find a good solution. Simulated annealing was used as not all items fol-

low a nonstandard IRF and a relatively large number of items is not easily amenable

to a step-wise approach for selecting polynomial order for each item. OpenMx and

rpf packages were used for fitting the 2PL and MP approaches with custom R code

for simulated annealing (Neale et al., 2016; Pritikin, 2016; R Core Team, 2017). For

both 2PL and MP models, EM-MML was used with integrals evaluated by rectangu-

lar quadrature with 101 equally spaced nodes on 65, and M-step and E-step toler-

ance for convergence was 1:0310�9 and 1:0310�7, respectively.1

Computer Adaptive Test Simulations. We first describe simulation conditions that were

fixed across all CAT simulations, followed by manipulated factors. First, u for simu-

lees was generated in one of two ways: from a standard normal distribution and at

discrete points along u (22 to 2 in 0.5 increments). Under each of these conditions

and each manipulated condition described below, 1,000, simulees were generated

and the true IRFs were used to generate their hypothetical item responses. Such a

data generation technique allowed us to tell whether overall some IRF estimation

techniques resulted in better recovery of u as well as whether there were certain loca-

tions along u where recovery was better/worse. For all simulees, a fixed CAT length
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of 25 items was utilized, with interim and final u estimates using the EAP scoring

method. Depending on the item selection algorithm, a starting û of 0 (MFI and K-L),

or a starting prior of a standard normal distribution (MPWI), was used. To make the

simulations as ‘‘fair’’ as possible for KS, the grid points used for both interim EAP

scoring (with MFI and K-L) and for representing the posterior distribution under

MPWI were chosen as the same 51 grid points used for KS estimation as defined in

the Calibration and Data Generating Models section. Programming for CAT simula-

tions was based on custom R code with analytical derivatives for the MP and 2PL

provided by rpf.

Manipulated factors for CAT simulations involved (1) the source of IRF estima-

tion, and (2) the item selection algorithm. The IRFs used in the CAT involved up to

four conditions: those from the calibration samples (2PL, KS for complete data only,

and the MP approach), as well as use of the true IRF. Use of the 2PL allowed us to

gauge whether KS or MP have much of an advantage over a parametric model and

use of the true IRF allows a benchmark for the best possible IRF that could be used.

Three possible item selection algorithms were crossed with the available IRF estima-

tion techniques (where possible): MFI and MPWI (for the 2PL and MP only) and K-

L information.2

Results

In what follows, we first briefly present results pertaining to the IRF recovery for the

eight calibration samples. These results are presented to frame understanding of how

different IRF estimation techniques may recover true IRFs, which may indirectly

affect CAT performance. Following such results, we will turn to the primary results

of interest regarding performance of each type of IRF and item selection method in

CAT simulations. As the amount of data collected for the study is vast, this repre-

sents our best attempt at understanding the pattern of results.

Calibration Results

Recovery of IRFs was assessed using root integrated mean square error (RIMSE),

which is computed as a squared discrepancy between the true, Pj(u), and estimated

IRF, P̂j(u), integrated across the latent distribution with the square root taken of the

final quantity. Here the integral was approximated using rectangular quadrature with

Q = 101 nodes between 25 and 5:

RIMSEj =

PQ

q = 1
P̂j(uq)�Pj(uq)ð Þ2f(uq)PQ

q = 1
f(uq)

 !1=2

3100

where f(�) is the standard normal density function. For KS items, the sum was taken

over the evaluation points defined by the KS model. RIMSE was computed for each

individual item using a standard normal latent trait distribution. Averaging over items

within each cell of the design, MP tended to outperform the 2PL under most
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conditions (Tables 1 and 2). This was especially true when there was a larger percent-

age of nonstandard items (70%) or a larger sample size (N = 3,000 with complete data

or N = 10,000 under missing data). Otherwise, the MP and 2PL performed similarly,

and the 2PL performed better under one condition (N = 5000, missing data, 30% non-

standard items). Recall KS was used in complete data conditions, yet performed

worse than the MP under all these conditions and equal to or worse than the 2PL in

all but the N = 3,000, 70% nonstandard item condition.

Examining the distribution for RIMSE for standard and nonstandard items sepa-

rately, it was apparent that gains with the MP were due mainly to better estimation

for nonstandard items (Figure 1). The MP did not perform better than the 2PL for

standard items, and sometimes performed slightly worse. The KS approach per-

formed on par with MP for nonstandard items but clearly worse than the 2PL and

MP approaches for standard items.

Table 1. Mean RIMSE for Item Banks Under Complete Data Collection Design.

Model

Sample size (N) Proportion nonstandard (%) 2PL MP KS

1,000
30 .07 .07 .10
70 .11 .10 .11

3,000
30 .04 .03 .04
70 .09 .04 .05

Note. RIMSE = root integrated mean square error; 2PL = two-parameter logistic; MP = monotonic

polynomial; KS = kernel smoothing.

Table 2. Mean RIMSE for Item Banks Under Missing Data Collection Design.

Model

Sample size (N) Proportion nonstandard (%) 2PL MP

5,000
30 .07 .09
70 .12 .09

10,000
30 .05 .05
70 .09 .07

Note. RIMSE = root integrated mean square error; PL = parameter logistic; 2PL = two-parameter logistic;

MP = monotonic polynomial.
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We also compared the recovery of item-level information among the estimated

2PL and MP items. As shown in the Supplemental Material, available online, MP and

2PL items provided equally accurate information, although nonstandard items tended

to have worse information accuracy than standard items when fit to both models.

Figure 1. Recovery of response functions for standard (std) and nonstandard (nonstd) items
for each calibration.
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Computer Adaptive Test Simulations

The primary outcome of interest from CAT simulations was recovery of true latent

trait scores. For this purpose, we examined root mean square error:

RMSE = N�1
PN

i = 1 (ûi � ui)
2

� �1=2

3100, where ûi is the estimated latent trait score

and ui is the true latent trait for simulee i. When latent traits were drawn from a stan-

dard normal distribution and when complete data was available for calibration, both

MP and KS tended to outperform the 2PL approach, regardless of the item selection

algorithm (Table 3). Under complete data calibration, for example, the 2PL only led

to lower average RMSEs than the MP in a single cell: MPWI item selection with

N = 1, 000 and 30% nonstandard items.

When the data calibration had missing data, the MP and 2PL often led to similar

average RMSEs as each other (Table 4). MP always led to equal or lower average

RMSEs with MFI item selection, but these patterns were more mixed with KL and

MPWI item selection. As an example with KL and MPWI, with 70% nonstandard

items and N = 5, 000, MP had average RMSE that was � :025 better than the 2PL.

Table 3. Average RMSE of Latent Trait Scores for CAT Simulations Under Complete Data
Calibration, Standard Normal Latent Traits.

Model

Item selection Sample size (N) Proportion nonstandard (%) True 2PL MP KS

KL 1,000
30 .363 .381 .379 .386
70 .341 .385 .384 .378

3,000
30 .375 .396 .396 .395
70 .360 .412 .378 .380

MFI 1,000
30 .359 .383 .377
70 .343 .384 .380

3,000
30 .373 .396 .395
70 .361 .412 .361

MPWI 1,000
30 .361 .383 .375
70 .349 .384 .390

3,000
30 .375 .398 .395
70 .364 .407 .375

Note. Excluding the true model condition, the best performing method in each row appears in bold.

Sample size refers to that used in calibration. RMSE = root mean square error; KL = Kullback–Leibler

information; MFI = maximum Fisher information; MPWI = maximum posterior weighted information;

True = true model; 2PL = two-parameter logistic; MP = monotonic polynomial; KS = kernel smoothing.
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With 70% nonstandard items and N = 10, 000, the 2PL was better but by a much

smaller amount (� :004). In summary, based on examination average performance

with normally distributed latent traits, use of MP calibrated items performed as well

as or better than the 2PL and similarly to KS.

Turning to RMSE at discrete points along u, we concentrate primarily on results

using KL item selection as this allows comparison with KS estimated IRFs (Figures 2

and 3).3 Based on such results, it is clear that any performance advantage of one

method of IRF estimation versus another is not necessarily consistent across the entire

range of the latent trait. For example, the MP had an advantage over the 2PL for

much of the latent trait for conditions with a larger proportion of nonstandard items

(70%), yet in some regions of the latent trait (especially near u = :5 or 1), these differ-

ences were small or the 2PL outperformed the MP. Differences among approaches

with 30% nonstandard items were more difficult to visualize, thus indicating similar

performance, except perhaps for the KS performing slightly worse than other meth-

ods in the middle of the distribution when N = 1, 000. It is also possible that these pat-

tern of results may vary across calibrated item banks.

Table 4. Average RMSE of Latent Trait Scores for CAT Simulations Under Missing Data
Calibration andStandard Normal Latent Traits.

Model

Item selection Sample size (N) Proportion nonstandard (%) True 2PL MP

KL 5,000
30 .331 .370 .374
70 .286 .361 .335

10,000
30 .327 .352 .350
70 .311 .347 .350

MFI 5,000
30 .318 .373 .372
70 .284 .364 .339

10,000
30 .327 .351 .348
70 .310 .347 .347

MPWI 5,000
30 .331 .369 .367
70 .288 .360 .329

10,000
30 .327 .350 .343
70 .312 .346 .350

Note. Excluding the true model condition, the best performing method in each row appears in bold.

Sample size refers to that used in calibration. RMSE = root mean square error; KL = Kullback–Leibler

information; MFI = maximum Fisher information; MPWI = maximum posterior weighted information;

True = true model; 2PL = two-parameter logistic; MP = monotonic polynomial; KS = kernel smoothing.
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Discussion

The presented simulation study examined the performance of MP and KS IRF esti-

mation techniques for use with a CAT, and compared them with a standard 2PL

approach using item selection techniques based on KL information, MFI, and MPWI.

Our results demonstrate that MP and KS approaches lead to comparable or better

latent trait recovery than the 2PL.

Despite the promise of the MP and KS approaches, it is difficult to pinpoint exact

conditions under which such an approach is universally preferable to standard

approaches such as the 2PL. In retrospect, different IRFs can still result in very simi-

lar latent trait estimates (e.g., Yen, 1981). More substantial departures from the 2PL

in the form of more extreme IRFs (including nonmonotonic) may need to be present

in the item bank for the various methods to perform much more differently than one

Figure 2. RMSE of latent trait scores at discrete points along u with KL item selection,
complete data calibration.
Note. KL = Kullback–Leibler information; RMSE = root mean square error; non-std = nonstandard.
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another. Our manipulated conditions mainly varied features of the calibration sample

to mimic conditions that might be used for a large test (item banks of 100 or 200,

and complete or planned missing data collection). While prior simulation studies

have found that MP and KS can on average recover IRFs better than the 2PL when

nonstandard items are in an item bank (e.g., Falk & Cai, 2016a; Feuerstahler, 2016),

in any given calibration sample it may be that such gains do not always clearly mate-

rialize or do not then lead to subsequent gains in scoring or CAT performance. With

some exceptions, the MP tended to perform better with larger calibration samples

and with a larger proportion of nonstandard items. It is suggested that future research

may focus on features of the CAT itself (test length, stopping criteria) that may affect

performance, as well as on identifying the conditions for which flexible IRF estima-

tion provides a clear advantage over the standard approaches. Our study utilized a

Figure 3. RMSE of latent trait scores at discrete points along u with KL item selection,
missing data calibration.
Note. KL = Kullback–Leibler information; RMSE = root mean square error; non-std = nonstandard.
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realistic calibration phase prior to conducting CAT simulations. We thought this nec-

essary for studying the relative performance of IRF estimation techniques in a CAT.

However, this approach also makes it slightly difficult to know whether the relative

performance observed in any given cell of the CAT simulation design was due in

part to random sampling fluctuation from doing only a single calibration per cell.

Although this issue could be addressed by doing multiple calibrations per cell and

then multiple CAT simulations, such analyses demand a large amount of computa-

tional time and space. In addition, given the size of the item banks (100 and 200

items, depending on the condition) relative to the length of the CAT (25 items), we

expected that doing only a single calibration would still be informative.

This study was also apparently the first to utilize a flexible IRF estimation tech-

nique (the MP) in conjunction with item selection algorithms that require analytical

derivatives and are often used in operational settings (MFI and MPWI). We found lit-

tle difference among item selection algorithms,4 though we did not present any prior

theory to favor any particular technique. This result holds promise for operational

programs that may consider a nonparametric or semiparametric approach to IRF esti-

mation but may prefer to use familiar, derivative-based item selection algorithms or

would prefer to implement changes in stages to better ensure quality control.

In closing, we believe that the MP approach may be particularly well-suited to

applications in CAT because it allows for both flexibly estimated IRFs and analytic

derivatives. The initial results presented in this article indicate that the MP approach

estimates latent traits as well or better than a standard approach when a significant

proportion of nonstandard items exist and in the context of a planned missing data

field test design.
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Notes

1. The code base that enables this estimation approach is now available as an R package on

GitHub: https://github.com/falkcarl/mpirt.git

2. K-L information that additionally weighted by the likelihood or by the posterior (similar

to that implemented in the catR package) was also attempted but did not appear to result

in any better performance than the K-L results we report here.

3. Results for other item selection methods are available in Supplemental Material, available

online.

4. Though we mention in Note 2 that KL item selection weighting across the likelihood and

posterior, as implemented in catR (Magis & Raiche, 2012), does not perform very well.
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