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Whether tumor mutational burden (TMB) is related to improved survival outcomes or the promotion of
immunotherapy in various malignant tumors remains controversial, and we lack a comprehensive under-
standing of TMB across cancers. Based on the data obtained from The Cancer Genome Atlas (TCGA), we
conducted a multiomics analysis of TMB across 21 cancer types to identify characteristics related to TMB
and determine the mechanism as it relates to prognosis, gene expression, gene mutation and signaling
pathways. In our study, TMB was found to have a significant relationship with prognosis for 21 tumors,
and the relationship was different in different tumors. TMB may also be related to different outcomes for
patients with different tumor subtypes. TMB was confirmed to be correlated with clinical information,
such as age and sex. Mutations in GATA3 andMAP3K1 in beast invasive carcinoma (BRCA), TCF7L2 in colon
adenocarcinoma (COAD), NFE2L2 in esophageal carcinoma (ESCA), CIC and IDH1 in brain lower grade
glioma (LGG), CDH1 in stomach adenocarcinoma (STAD), and TP53 in uterine corpus endometrial carci-
noma (UCEC) were demonstrated to be correlated with lower TMB. Moreover, we identified differentially
expressed genes (DEGs) and differentially methylated regions (DMRs) according to different TMB levels
in 21 cancers. We also investigated the correlation between enrichment of signaling pathways, immune
cell infiltration and TMB. In conclusion, we identified multiomic characteristics related to the TMB in 21
tumors, providing support for a comprehensive understanding of the role of TMB in different tumors.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Currently, immunotherapy is used to treat many cancer types,
such as lung squamous cell carcinoma (LUSC), bladder urothelial
carcinoma (BLCA) and melanoma [1–3]. Compared with those
receiving traditional treatment, patients receiving immune check-
point inhibitor (ICI) treatment may achieve long-term survival.
However, ICIs are not effective in all cancer patients [4–6], and
most cancer patients treated with ICIs do not benefit. It is vital to
determine precise biomarkers to predict the efficacy of
immunotherapy.

Cancer is a genetic disease, and neoplastic transformation
results from the accumulation of somatic mutations in the DNA
of affected cells [7]. TMB is defined as the total number of somatic
mutations per megabase (Mb) in the exon region, excluding syn-
onymous mutations [8]. Whole-exome sequencing (WES) is con-
sidered the gold standard for detecting TMB [9]. In some tumors,
the TMB has been shown to be an independent predictor of ICI suc-
cess and can identify patients who may benefit from immunother-
apy [7,10,11]. Generally, patients with high TMB obtain better
results from immunotherapy [12,13]. TMB is considered to be a
predictive biomarker of tumor behavior and the immune response
[14,15]. TMB is also regarded as a prognostic biomarker [16,17].
Studies have shown that TMB is related to clinical characteristics
[18,19] and immune cell infiltration [20,21] in some tumor
patients. TMB is also affected by gene mutations and the expres-
sion of mismatch repair genes (MMRs) [22,23]. A recent report
concluded that high TMB favors the prognosis of patients receiving
immunotherapy and that it is not evident in all cancers [24]. Obvi-
ously, it is important to conduct further research on TMB.

Currently, most studies on TMB have focused on the analysis of
the genome in individual cancers, such as melanoma and bladder
cancer [7]. Few studies have directed attention to the influence
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and role of TMB across cancers. Therefore, there is an urgent need
to conduct a comprehensive and exhaustive analysis of the func-
tion of TMB in different tumors.

To identify multiomic characteristics correlated with TMB and
explore the related mechanisms in multiple cancers, we calculated
the TMB of samples and classified the samples into high-TMB
group and low-TMB group. The Kaplan-Meier method and Cox risk
regression were utilized to study the relationship between TMB
and overall survival (OS) and progression-free survival (PFS).
Wilcoxon rank-sum test and linear regression analysis were
performed to analyze the relationship between TMB and other
clinical characteristics. We identified gene mutations related to
TMB via the Wilcoxon rank-sum test and proportion test, and the
correlation between the expression of MMRs and TMB was evalu-
ated by the Spearman method. DEGs were selected by the edgeR
package of R, and DMRs in promoter regions were identified by
Wilcoxon rank-sum test. Considering the findings, we confirmed
genes whose differential expression was related to differential
DNA methylation using the Spearman method. Then, we screened
the signaling pathways significantly enriched in the high- and low-
TMB groups using GSEA software [25,26]. Considering the TIMER
database [27–29] and the ImmuCellAI tool [30], we measured the
relationship between the TMB and the abundance of immune cell
infiltration. We sought to explain the relationship between TMB
and prognosis in terms of gene mutation and immune cell infiltra-
tion. Taken together, our study may help provide a comprehensive
understanding of the role and influence of TMB in 21 tumors and
help predict the prognosis of patients with different cancers.
2. Methods

2.1. Patient cohorts

There are data of 33 cancers available in UCSC-Xena database
(https://xenabrowser.net/datapages/) using a unified process,
including adrenocortical carcinoma (ACC), BLCA, BRAD, Cervical
Cancer (CESC), Cholangiocarcinoma (CHOL), COAD, Large B-cell
Lymphoma (DLBC), ESCA, Glioblastoma (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe (KICH),
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), Acute Myeloid Leukemia (LAML), LGG, liver hep-
atocellular carcinoma (LIHC), Lung Adenocarcinoma (LUAD), LUSC,
Mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), pheochromocytoma and para-
ganglioma (PCPG), Prostate Cancer (PRAD), Rectal Cancer (READ),
sarcoma (SARC), skin cutaneous melanoma (SKCM), STAD, Testicu-
lar Cancer (TGCT), thyroid carcinoma (THCA), thymoma (THYM),
UCEC, Uterine Carcinosarcoma (UCS) and Ocular melanomas
(UVM). Survival data, clinical information and mRNA expression
data of 33 cancers in TCGA datasets were downloaded from the
UCSC-Xena database, PFS information was obtained from the study
of Liu, J et al. [31]. The tumor subtype data was obtained from the
study of Sanchez-Vega et al. [32]. DNA methylation data was
retrieved from Firehose case datasets (http://gdac.broadinstitute.
org). Somatic mutation data were retrieved using the TCGAbiolinks
R package [33]. Levels of immune cell infiltration for TCGA 33
tumors were retrieved from TIMER2.0 (http://timer.cistrome.org/)
[27–29] and ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCel-
lAI/) [30]. Since the data in this study were obtained from public
databases, no moral conflict was encountered.
2.2. Calculation of TMB

TMB refers to the number of somatic mutations per 1 million
bases in the exon region, excluding intron variants and synony-
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mous mutations [8]. Currently, WES is considered the gold stan-
dard for detecting TMB [9]. Using next-generation sequencing
(NGS) techniques, WES can be performed to detect somatic muta-
tions in the entire exome (approximately 30 to 50 Mb of a coding
sequence) [34]. We used 40 Mb as the estimate of exome size.
Therefore, the TMB was equal to the number of somatic mutations
after removing synonymous mutations and intron variants divided
by 40.
2.3. Analysis of the relationship between TMB and prognosis and other
clinical characteristics

To investigate the correlation between TMB and prognosis of
33 cancer types, we categorized the survival data into low- and
high-TMB groups according to TMB level, and ultimately selected
the optimal cut-point in survival analysis. Kaplan-Meier method
and Cox regression analysis was used to evaluate the correlation
between TMB and OS, which was defined as the time from diag-
nosis to the date of death. TMB was found to be significant
related to the OS of patients diagnosed with 21 of the 33 cancers
assessed, and subsequent analysis was carried out related to
these 21 tumors: ACC, BLCA, BRCA, COAD, ESCA, HNSC, KICH,
KIRC, KIRP, LGG, LIHC, LUSC, OV, PAAD, PCPG, SARC, SKCM, STAD,
THCA, THYM and UCEC. According to histological and molecular
characteristics, the 21 cancers were categorized into 32 tumor
subtypes [32]. We calculated the differences in TMB in different
cancer subtypes by Wilcoxon rank-sum test and studied the rela-
tionship between TMB and OS for different subtypes of 21
tumors. The same method was used to detect the relationship
between TMB and PFS, in our study, PFS referred to the events
included only deaths with tumor, excluding deaths from other
reasons [31].

In order to verify our results, we then conducted a similar anal-
ysis on the relationship between TMB and OS and PFS that the sur-
vival data were grouped into low- (top 1/3 by TMB) and high-TMB
groups (bottom 1/3). A P value < 0.05 in the log-rank test was con-
sidered to be significant.

Then, we investigated other clinical information associated with
TMB. Wilcoxon rank-sum test was conducted to study the associa-
tion between sex and TMB, and a linear regression analysis was
performed to study the association between age, race, tumor grade,
tumor stage, smoking status and TMB. A P value < 0.05 was consid-
ered to be significant.
2.4. Gene mutation and expression of MMRs

To avoid potential bias caused by ultramutated samples, we
eliminated samples with a mutation frequency > 1,000 [35]. Driver
gene mutations can drive tumorigenesis [36], and 375 driver genes
have been reported [37]. Therefore, we paid attention to highly
mutated driver genes in each tumor (�5% mutation frequency)
due to their potential biological significance and detectability in
the analysis [35].

The somatic mutation data of 21 cancers were classified into
mutant and wild groups by driver genes, and we identified the
driver genes whose mutations related to TMB by Wilcoxon
rank-sum test. Then, we grouped the data into high- (bottom
1/3) and low-TMB groups (top 1/3 by TMB), and a proportion test
was performed to compare the difference in driver gene mutation
frequency between the two groups. In addition, to execute
research on the cause of ultramutations, we compared the pro-
portion of ultramutated samples in the mutant group and wild
group for each driver gene by proportion test. A total of 29 MMRs
had been reported in articles [38–44], and correlation coefficients
of the expression of the MMRs and TMB were calculated by the
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Spearman method. A P value < 0.05 was considered to be
significant.

2.5. Assessment of gene expression and DNA methylation

To identify DEGs and DMRs, the mRNA expression data and
DNA methylation data were divided into high- and low-TMB
groups (top/bottom tertiles by TMB) respectively. The DEGs in
the two groups with |log2(FC)| >1 and false discovery rate
(FDR) < 0.01 were identified by the edgeR package in R. The DMRs
in promoter regions (hereafter, DMRs refers to DMRs in promoter
regions) were identified by Wilcoxon rank-sum test with criteria
set to FDR < 0.05 and |difference| > 0.1. Gene expression is regu-
lated by epigenetic alterations, and the most common alteration
is DNA methylation [45]. To identify the differential expression
of genes related to abnormal DNA methylation, genes with both
differential expression and methylation were selected to analyze
the correlation between the level of gene expression and DNA
methylation by the Spearman method. DNA methylation sites in
which one probe corresponds to multiple genes were removed,
and a rho value < 0 and a P value < 0.05 indicated that the DNA
methylation may have some effect on the expression of genes
[46]. Results indicating sites with minimum rho values were
retained. In addition, the DMRs were annotated according to chro-
mosome by ‘‘IlluminaHumanMethylation450kanno.ilmn12.hg19”
package of R.

2.6. Signaling pathways and immune cell infiltration analysis

Gene set enrichment analysis (GSEA) was carried out with
GSEA_4.0.2 software [25,26] using TMB level (top/bottom tertiles
by TMB) as the phenotype, and ‘‘h.all.v7.2.symbols.gmt gene sets”
was selected as the reference gene set, which was retrieved from
the MSigDB database (http://software.broadinstitute.org/gsea/
msigdb/). Only pathways with NOM P value < 0.05 were considered
to be significantly enriched. A similar analysis using optimal cut-
point by TMB was conducted to confirm the results.

The results of the CIBERSORT algorithm [47] was considered
with the TIMER database [27–29] were chosen to explore the dif-
ference of the abundance of infiltrated immune cells between
two groups by Wilcoxon rank-sum test, both top/bottom tertiles
(1/3) and optimal cut-point were used for high/low TMB groups
in the analysis. Then the similar analysis was performed on the
immune cell infiltration data of TCGA tumors obtained from the
ImmuCellAI tool [30].

2.7. Statistical analysis

All statistical analyses were completed with R 4.0 software
(https://www.r-project.org/). Unless noted otherwise, a P
value < 0.05 was considered to be significant.
3. Results

3.1. Driver gene mutations and mismatch repair gene expression
related to TMB

Our follow-up analysis focused on the 21 cancer types for which
OS was related to TMB. In our study, most driver genes had a
higher TMB in the mutant group (Fig. 1A), except for MAP3K1
(Difference = -0.29, P value = 0.01) and GATA3 (Difference = -0.23,
P value < 0.01) in BRCA, TCF7L2 (Difference = -0.45, P value = 0.05)
in COAD, NFE2L2 (Difference = -0.65, P value = 0.02) in ESCA, CIC
(Difference = -0.05, P value = 0.02) and IDH1 (Difference = -0.25,
P value < 0.01) in LGG, CDH1 (Difference = -0.96, P value < 0.01)
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in STAD, and TP53 (Difference = -0.36, P value < 0.01) in UCEC, in
which mutations were ultimately determined to be correlated with
lower TMB (Fig. 1B-G). There was no significant difference in TMB
between the patients with mutant driver genes and the wild type
in KIRC and other 3 cancers, including PCPG, THCA and THYM,
which showed lower TMB (Fig. 1A, S2A). The results suggest that
most driver gene mutations are related to higher TMB in 19
cancers.

Moreover, we found that, among the 21 cancer types, cancers
with a higher TMB such as COAD, SKCM, STAD and UCEC exhib-
ited high frequency of ultramutations, while cancers with a
lower TMB such as KICH, KIRP, PCPG and THCA samples exhib-
ited no ultramutations (Table S1B). A greater proportion of ultra-
mutated samples were found in the wild groups of APC, KRAS
and TP53 in COAD and TP53 in STAD and UCEC than in the
corresponding mutant groups (Fig. 1H-J). Then, we performed
linear regression analysis to correct for single mutations and
simultaneous mutations of the three driver genes in COAD, and
it was found that mutation of the remaining gene has a
significant negative linear relationship with the formation of
ultramutations when the other two gene mutations were
corrected (Table S1B).

The loss of function due to MMRs has been shown to lead to
irreparable DNA replication errors [48], and the expression of
MMRs has been found to be related to TMB levels [49]. The Spear-
man method was applied to calculate the correlation between the
expression of MMRs and TMB. The results showed that in most
tumors, such as LGG and SKCM, the high expression of most MMRs
is associated with a high TMB. While high expression of MLH1 and
HFM1was associated with a low TMB in several tumors, which was
confirmed in a previous study [50]. With regard to THYM and
THCA, the high expression of most MMRs was associated with
lower TMB (Fig. 1K), like the expression of HMGB1 had a strong cor-
relation with TMB in THYM with a rho = -0.64 and P value = 6.31E-
15 (Table S1C). Taken together, these results indicate that the cor-
relation between TMB and driver gene mutations and expression of
MMRs is different in different cancers, and most driver gene muta-
tions and high expression of MMRs have a positive relationship
with TMB in most cancer types.

3.2. Differentially expressed genes and differentially methylated
regions related to TMB

We identified DEGs (Table S2A) and DMRs (Table S2B) in the
high- and low-TMB groups (top/bottom tertiles by TMB) in 21 can-
cers. THYM showed the most DEGs (6244 genes) and DMRs (3676
regions) (Fig. 2A, B), and the proportion of differential expression of
gene related to abnormal methylation was also the highest in the
DEGs (proportion = 1.25%, Table S3). A KEGG analysis was con-
ducted on genes whose differential expression was related to
DNA methylation in THYM (78 genes, Table S2D) using clusterPro-
filer package of R [51], and a P value < 0.05 was considered to be
significant, there were 4 of 38 genes were enriched in Axon guid-
ance (P value = 0.01), Cytokine � cytokine receptor interaction (P
value = 0.05), respectively (Fig. 2C). In the analysis about DMRs,
we found that KICH exhibited no DMRs, and there were only 4
DMRs located on chromosome 1, chromosome 5, chromosome 6
and chromosome 10 in OV (Table S2C). Most of the DMRs in other
cancers were located on chromosome 1, chromosome 6 and chro-
mosome 19 (Fig. 2D). For example, there were about 13.85% of
DMRs locating on chromosome 1 in LUSC, 15.15% of DMRs locating
on chromosome 19 in ESCA, 26.67% of DMRs locating on chromo-
some 6 in THCA (Table S2C). Overall, differential gene expression
was widely observed between high and low TMB groups in differ-
ent tumors, but differential methylation of promoter regions
occurred less frequently.
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Fig. 1. The molecular alterations related to TMB in 21 cancer types. (A) Wilcoxon rank-sum test was used to identify driver gene mutations related to TMB in each tumor type,
the difference refers to difference between the median level of TMB in the mutant and wild groups. Only genes with significantly results in at least three cancers are shown in
the heat map (P value < 0.05). (B-G) Driver genes that are related to a lower TMB. (H-J) Driver genes that influence ultramutation. (K) Spearman correlation between the
expression of mismatch repair genes and TMB.
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Fig. 2. The DEGs and DMRs correlated to TMB. (A) Volcano map showing the DEGs with FDR < 0.01 and |log2(FC)| > 1 in THYM. The upregulated and downregulated genes are
marked in red and blue, respectively. (B) Volcano map showing the DMRs in the promoter regions with FDR < 0.05 and |difference| > 0.1 in THYM. The difference refers to the
difference between the median values of DNA methylation in the high-(bottom 1/3) and low-TMB groups (top 1/3 by TMB). (C) Bubble plot showing pathway enrichment
based on the KEGG results of genes with differential expression related to DNA methylation (P value < 0.05). (D) Percentage stacked histogram showing the distribution of
DMRs in promoter regions in chromosomes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Signaling pathway and immune cell infiltration associated with
TMB

To better understanding the impact of TMB on cell pathways
and the microenvironment, we using both the top/bottom tertiles
method and the optimal cut-point method which are decided by
survival analysis to compare the differences of these tumor
characters.

For signaling pathways, 243 results were significantly enriched
in analysis with top/bottom tertiles method (Table S4A), 216
results were enriched in analysis with optimal cut-point method
(Table S4B), 160 (65.84%) of which were also enriched in the anal-
ysis used top/bottom tertiles method, and the results of these two
methods were mostly consistent (Table S4C). In the SARC, LGG,
ACC and KICH, significant pathways were enriched in the high-
TMB group, such as G2M checkpoint and E2F targets (Fig. 3A,
S1A). While in the KIRP, ESCA, THCA and LIHC, all of significant
pathways were enriched in the low-TMB group (Fig. 3A, S1A).
For other tumors, the pattern of signaling pathway enrichment
between the two groups was more complex (Fig. 3A, S1A). In 5
cancers including SARC, LGG, UCEC, STAD and BRCA, high TMB
was positively associated with DNA repair, unfolded protein
response and G2M checkpoint pathways, which were tumor
suppressor pathways, and positively related to carcinogenic
pathways including Glycolysis, mTORC1 signaling pathways and
E2F targets (Fig. 3A, S1A). Notably, E2F targets, G2M checkpoint
and MYC targets V1 were enriched in the low-TMB group of
THYM (Fig. 3A, S1A). The results showed that the enrichment of
signaling pathways according to TMB levels is different in
different tumors.
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We chose the results of the CIBERSORT algorithm and ImmuCel-
lAI tool to study the relationship between TMB and immune cell
infiltration. Using these two tools, 76.74% and 72.16% of the results
of the optimal cut-point method, respectively, are also significant
in the results of the top/bottom tertiles method. The heatmaps
showed that in most tumors, macrophages, effector memory T cells
(Tem), T helper cell 1 (Th1), regulatory T cells (nTreg, iTreg) and
other infiltrating immune cells were increased in patients with a
high TMB, while the abundance of infiltrating CD4 + T cells,
CD4 + naive T cells, naive B cells, CD8 + naive T cells and other
immune cells was decreased (Fig. 3B-C, S1B-C). For PCPG, the infil-
tration of mucosal associated invariant T cells (MAIT) was related
to low TMB with a difference = -0.03 and P value = 0.02 (Fig. 3C,
S1C). We can conclude that the relationship between the TMB
and immune cell infiltration is varied according to different cancer
types.

3.4. Correlation between TMB and patient prognosis and other clinical
factors

TMB of each sample was calculated to study the distribution of
TMB in 33 cancers, and we found that the highest levels of TMB in
SKCM followed by LUSC and other epithelial cancers, while THCA,
leukemias and pediatric tumors, such as PCPG, LAML and THYM
exhibited a lower TMB (Fig. S2A).

Then, Kaplan-Meier analysis and optimal cut-point were used
to identify the correlation between TMB and OS of 33 cancers. It
turned out that high TMB was associated with the poor prognosis
of patients with ACC, BRCA, COAD, ESCA, HNSC, KICH, KIRC, LGG,
LIHC, PAAD, PCPG, SARC, THCA or THYM, while the opposite was



Fig. 3. The relationship between TMB and signaling pathways and infiltration of immune cells among cancer types. (A) The signaling pathways enriched in the high- (bottom
1/3) and low-TMB groups (top 1/3 by TMB). Only pathways with significant results in at least three cancers were shown in the heatmap. (B) Wilcoxon rank-sum test was
conducted to identify the immune cell infiltration correlated to TMB based on the CIBERSORT algorithm, the difference refers to difference between the median abundance of
immune cell infiltration in high- (bottom 1/3) and low-TMB groups (top 1/3 by TMB). (C) Wilcoxon rank-sum test was conducted to identify the immune cell infiltration
correlated to TMB based on the ImmuCellAI, the difference refers to difference between the median abundance of immune cell infiltration in high- (bottom 1/3) and low-TMB
groups (top 1/3 by TMB).
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true for patients with STAD (Fig. 4A), BLCA, KIRP, LUSC, OV, SKCM
and UCEC (Fig. S2B). And when using top/bottom tertiles by TMB to
analyze the relationship between OS and TMB in 33 cancers, high
TMB was still related to the poor outcome of patients with ACC,
ESCA, HNSC, KIRC and LGG, and the longer survival for patients
with BLCA, OV, STAD and UCEC (Fig. S2C). This suggests that the
relationship between TMB and OS may vary according to cancer
types.

Among 21 cancers, 8 types of tumors including BRCA, COAD,
ESCA, HNSC, LGG, SARC, STAD and UCEC were further stratified into
32 subtypes [32]. For example, BRCA was stratified into 5 molecu-
lar subtypes (Fig. S2D): luminal A (LumA), luminal B (LumB), basal-
like (Basal), HER2-enriched (Her2) and normal-like (Normal).
Through an analysis of TMB levels of the 32 molecular subtypes
of these 8 tumors, we found that TMB levels differed in different
subtypes of each tumor, like in BRCA, Her2 subtype was associated
with a higher TMB, LumA subtype was associated with a lower
TMB (Fig. S2D). Kaplan-Meier analysis was conducted to identify
the association between TMB and OS of 32 subtypes of 8 tumor,
and we found that OS of 15 kinds of subtypes in 8 cancers had sig-
nificant relationship with TMB (optimal cut-point), OS of 4 kinds of
subtypes in 5 cancers (COAD, ESCA, LGG, SARC and STAD) still had
the consistent relationship with TMB when using top/bottom ter-
tiles to perform a similar analysis (Fig. S2E, F). For example, in
COAD, patients with chromosomal instability (CIN) subtype tended
to have a poor survival outcome in high-TMB group (optimal cut-
point method: HR = 2.56, P value < 0.01. top/bottom tertiles
method: HR = 2.02, P value = 0.03) (Fig. S2E, F). Even for the same
cancer, the relationship between TMB and prognosis may be differ-
ent between different subtypes, such as in BRCA, patients with
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basal subtype tended to have a better survival outcome in high-
TMB group (HR = 0.39, P value = 0.04), while patients with HER2
subtype tended to have a better survival outcome in low-TMB
group (HR = 4.79, P value = 0.02) (Fig. S2E). This suggests that
the relationship between TMB and OS may vary according to
molecular subtypes of tumor.

The similar analysis was utilized to investigate the association
between TMB and PFS of 21 tumors. It turned out that PFS of
patients with 16 cancers was correlated with TMB (optimal cut-
point), except for BRCA, COAD, KIRP, LUSC and THYM (Fig. 4B,
S2G). Moreover, the results were in accordance with those in STAD
(Fig. 4A, B) and other 15 tumors (Fig. S2B, G). There were still 9 can-
cers including ACC, BLCA, ESCA, KIRC, LGG, OV, STAD, THCA and
UCEC in which PFS was related to TMB when using top/bottom ter-
tiles (Fig. S2H).

Compared with top/bottom tertiles, the optimal cut-point
refers to the result with the minimum P value, which increases
the number of statistically significant cancers in the survival
analysis but doesn’t change the relationship between prognosis
and TMB. In general, TMB has divergent relationship with prog-
nosis in different cancer types and can be used as a prognostic
marker in pan-cancer, which was reported in the research of
Wu, H et al. [52].

Through an analysis of association between TMB and other clin-
ical information, statistically significant differences were observed
in BLCA, BRCA and other 16 cancer types. We identified that male
patients or patients with high grade BLCA, older patients with
BRCA, older patients with SKCM and COAD patients with low stage
BLCA, the patients in this study had a higher TMB (Fig. 4C, D). We
also found that race in BLCA had a strong correlation with TMB



Fig. 4. Kaplan–Meier analysis of OS and PFS according to the TMB in STAD and clinical information correlated to TMB among cancer types. The survival curves show the
relationship between TMB and OS (A) and PFS (B) in patients with STAD. (C) Heat map showing the linear correlation between age, race, tumor stage, tumor grade, smoking
status and TMB. (D) Box plots showing the difference in TMB between males and females with different cancers.
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(Estimation = 0.96, P value < 0.01), and white people tended to
have a higher TMB (Fig. 4C). Male patients with LIHC, KIRP, PAAD
or THCA tended to have high levels of TMB, while for those with
5643
STAD, the opposite was found (Fig. 4D). Thus, the correlation
between clinical factors and TMB of different cancer types is
heterogeneous.
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4. Discussion

In some tumors, TMB has a predictive effect on the efficacy of
immunotherapy and the prognosis of cancer patients [7,17], it is
related to the clinical characteristics [18], gene expression [53],
DNA methylation [54], enrichment of signaling pathway [53],
immune cell infiltration [20], gene mutations and the expression
of MMRs [22,23]. To date, few studies have been conducted to
enable a comprehensive pan-cancer analysis of TMB. Through a
multiomics analysis of TCGA datasets on 21 types of cancer in
which the OS was shown to be related to TMB (Fig. S2B), we
revealed different roles of TMB in each tumor and analyzed the
possible reasons for its relationship with prognosis.

By studying driver gene mutations associated with TMB, what
impressed us was mutations of GATA3 andMAP3K1 in BRCA, TCF7L2
in COAD, NFE2L2 in ESCA, CIC and IDH1 in LGG, CDH1 in STAD, and
TP53 in UCEC tended to result in lower TMB (Fig. 1A-G). As for
PCPG, THCA and THYM, the reason why no driver gene mutation
was significantly associated with TMB may be related to their
lower TMB level. When investigating the occurrence of ultramuta-
tions, we found that mutations in APC, KRAS and TP53 inhibit the
occurrence of ultramutations in COAD, and TP53 mutation had
the same effect on ultramutation in STAD and UCEC (Fig. 1H-J).
Further analysis is needed to determine the specific reasons for
these outcomes and the related mechanisms. In addition, high
expression of most MMRs were related to a lower TMB in THCA
and THYM, which may explain the low TMB levels in them
(Fig. 1K).

The analysis of DEGs and DMRs driven by TMB showed that
THYM samples had the most DEGs and DMRs (Table S3), and the
proportion of DEGs related to abnormal DNA methylation was also
the largest in DEGs (proportion = 1.25%, Table S3).

Our survival results showed that TMB has different relationship
with prognosis of patients with different tumors (Fig. S2B, C, E-H),
and in several cancers such as BLCA, STAD and UCEC, the relation-
ship between TMB and prognosis was shown in the previous
researches [21,55–58]. In our study, the relationship between
TMB and clinical information may indicate that white, male
patients or patients with high-grade in BLCA, older patients with
SKCM, female patients with THCA, PAAD, LIHC or STAD, male
patients with KIRP and patients with COAD in a later stage
(Fig. 4C, D) may be more likely to have a better prognosis according
to their relationship between TMB and prognosis. This finding sug-
gested that TMB can help us predict which kind of patients may
have a better prognosis.

In addition to differences in TMB levels, amount of immune
infiltration, signaling pathways, molecular subtypes, differences
in age and gender in the high/low groups might also affect survival.
Combined with our analysis and existing reports, we found that the
correlation between TMB and survival outcomes of patients may
be explained by the immune microenvironment and gene
mutations.

The reason that a high TMB level was negatively correlated with
overall survival of patients with BRCA, COAD, KICH, KIRC, LGG or
LIHC may be related to a high TMB being conducive to the
infiltration of Tregs in KIRC, CD8 + T cells and macrophages in
LGG (Fig. 3B-C, S2B-C). In the previous study, increased infiltration
of Tregs is linked to poor outcomes in patients with kidney cancer
[59], the proportion of immune cells (CD8 + T cells, neutrophils and
macrophages) is negatively correlated with the OS of LGG patients
[60]. For patients with BRCA, an increased proportion of Tregs [61]
and TP53 mutations have been positively correlated with TMB and
poor outcomes [18,62]. In this study, we found that TMB was
higher in the TP53 mutant group (Table S1A) and that the infiltra-
tion level of Tregs was positively correlated with TMB in BRCA
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(Fig. 3B-C, S2B-C). Patients with COAD and a high TMB have been
previously shown to exhibit abundant immune cell infiltration
and poor prognosis [63]. We surmised that poor prognosis related
to high TMB is related to the MUC4 mutation because the MUC4
mutation frequency was higher in the high TMB group
(Table S1A) and has been previously shown to be related to poor
prognosis [64]. In combination with the aforementioned findings,
we attributed the poor prognosis of KICH patients with a high
TMB to the higher frequency of TP53 mutations (Table S1A). In
patients with LIHC, we found that the CTNNB1 mutation group
had a higher TMB (Table S1A), which was significantly correlated
with a better prognosis in LIHC [65]. The TMB of the TP53mutation
group was also higher (Table S1A), which has previously been
reported to be related to a higher TMB and worse outcome in
patients with hepatocellular carcinoma [66].

The reason why high TMB is beneficial to the outcomes of
patients with BLCA, OV, SKCM, STAD or UCEC may be that high
TMB can increase the abundance of CD8 + T cells in BLCA patients
[55], induce the activation of antitumor immune cells in OV
patients [67], increase the proportion of M1 macrophages in SKCM
patients and decrease the level of Tregs in STAD patients (Fig. 3B),
and increase level of T cell CD8 + and M1 macrophages in patients
with UCEC (Fig. 3B-C, S2B-C). As previously reported, patients with
BLCA and high levels of CD8 + T cells may have a better prognosis
[55]. Low levels of macrophages have been shown to be a risk fac-
tor for SKCM [20]. Both Tregs and M2 macrophages protect tumor
cells from detection and elimination by the immune system, lead-
ing to undesirable results for patients with STAD [68,69]. The
reduction in B cells and CD8 + T cells has been significantly associ-
ated with a poor prognosis of UCEC [57].

In addition, we speculated that high TMB in ACC, ESCA, HNSC,
PAAD, PCPG, SARC, THCA, or THYM is related to poor prognosis
because it is negatively correlated with relatively larger fractions
of antitumor immune cells, such as T cells and B cells, or positively
correlated with the infiltration of immune cells that protect
tumors, such as Tregs (Fig. 3B-C, S2B-C). For KIRP and LUSC,
patients with and a high TMB may have a better outcome
(Fig. S2B), and further study is needed to explore the reasons for
these outcomes.

We also found that not all tumors with a high TMB are related
to increased CD8 + T cell infiltration (Fig. 3 B-C, S1B-C) or good
prognosis (Fig. S2B), which was reported in a recently published
article [24].

There are limitations of our research. The data studied are all
from the TCGA database; therefore, our analysis lacks data about
other races, such as Asians. The clinical information, such as tumor
stages and grades, was insufficient for the analysis of some cancer
samples. Our optimal cut-point can stratify patients according to
prognosis, but cannot stratify patients for immunotherapy efficacy.
At present, there is no unified standard for the cut-off value of
TMB-H. According to a report, TMB thresholds for effective predic-
tion of immunotherapy response in various malignancies are not
well established, the relationship between immunotherapy
response and the level of TMB still needs specific research. The
TMB cut-off for immunotherapy also varies according to cancer
types [7]. Moreover, our study may need to be updated according
to new discoveries in the future.
5. Conclusions

Taken together, our study presents a systematic analysis of
tumor mutational burden and its related factors across cancers
and highlights the potential role of TMB in different cancers. And
TMB can be used as a prognostic marker in pan-cancer. Our
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research further supports a comprehensive understanding of the
role of TMB across cancers and has important clinical implications.
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