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A B S T R A C T

Early childhood (7–8 years old) and early adolescence (11–12 years old) constitute two landmark developmental
stages that comprise considerable changes in neural cognition. However, very limited information from func-
tional neuroimaging studies exists on the functional topological configuration of the human brain during specific
developmental periods. In the present study, we utilized continuous resting-state functional near-infrared
spectroscopy (rs-fNIRS) imaging data to examine topological changes in network organization during devel-
opment from early childhood and early adolescence to adulthood. Our results showed that the properties of
small-worldness and modularity were not significantly different across development, demonstrating the devel-
opmental maturity of important functional brain organization in early childhood. Intriguingly, young children
had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration
of the distributed networks strengthens across the developmental stages underlying cognitive development.
Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while
there was no difference between these two younger groups. This finding demonstrated that functional segre-
gation remained relatively steady from early childhood to early adolescence, and the brain in these develop-
mental periods possesses no optimal network configuration. Furthermore, we found heterogeneous develop-
mental patterns in the regional nodal properties in various brain regions, such as linear increased nodal
properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our
results demonstrated that significant topological changes in functional network organization occurred during
these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain
functional networks across development.

1. Introduction

Recent findings from behavioral and brain imaging studies have
demonstrated that the enhancement of cognitive processes during
normal brain development involves a fine-tuning of structural and
functional organization of the brain from birth to adulthood (Collin and
van den Heuvel, 2013; Giedd et al., 1999; Hagmann et al., 2012; Sowell
et al., 2003; Vertes and Bullmore, 2015). According to Piaget's theory of
cognitive development (Piaget, 1999), early childhood (7–8 years old)
is a critical period during which young children undergo the transition
from the preoperational stage to the concrete operational stage. Spe-
cifically, they start thinking logically about concrete events and solving
problems in a more logical manner, but their thinking remains very
concrete. Additionally, although numerous important cognitive func-
tions, such as attention, memory and inhibitory control, develop

quickly, they are nonetheless less developed (Brocki and Bohlin, 2004;
Davidson et al., 2006; Schneider and Ornstein, 2015). Early adoles-
cence (11–12 years old) constitutes the starting point of the formal
operational stage. In this stage, adolescents can use symbols related to
abstract concepts to accomplish hypothetical and deductive reasoning,
which benefits from improved working memory and executive inhibi-
tions at this critical developmental stage (Bedard et al., 2002; Ernst and
Mueller, 2008; Gathercole et al., 2004; Williams et al., 1999). These
dramatic improvements of cognitive performance from early childhood
to early adolescence may imply significant increases in the brain’s ef-
ficiency with development. However, few studies have investigated the
developmental topological characteristics of brain functional networks
during these two critical periods.

The human brain constitutes an integrative, complex network
system with numerous non-trivial local and global topological

https://doi.org/10.1016/j.dcn.2018.03.003

⁎ Corresponding author at: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
E-mail address: niuhjing@bnu.edu.cn (H. Niu).

Developmental Cognitive Neuroscience 30 (2018) 223–235

Available online 08 March 2018
1878-9293/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2018.03.003
https://doi.org/10.1016/j.dcn.2018.03.003
mailto:niuhjing@bnu.edu.cn
https://doi.org/10.1016/j.dcn.2018.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcn.2018.03.003&domain=pdf


characteristics, which can be examined by graph theory (Bullmore and
Sporns, 2009). A network’s topological patterns are evaluated using the
key properties of graph theory, such as clustering coefficient, char-
acteristic path length, node degree, efficiency, and modularity (Sporns
and Zwi, 2004) (see Section 2.6 for details). The clustering coefficient of
a graph provides information about the level of local clustering within a
graph, expressing how well the neighbors of a node are connected
amongst themselves. This offers a measure of how much spatially-closer
brain regions are connected with each other, or the local connectedness
of the network. The level of global connectivity of the network can be
assessed with the characteristic path length of a graph, which describes
how close, on average, a node of the network is connected to every
other node in the network. This provides information on how efficiently
information can be integrated between different subgraphs. The degree
of a node describes the number of connections of a node and offers
information about the existence of highly connected hub nodes in the
brain network. Nodes with a high nodal efficiency indicate that the
network has a high tolerance for the elimination of a given node, which
is associated with a high clustering of the neighborhood of this node
(Achard and Bullmore, 2007). The level of modularity of a network
describes the extent that groups of nodes in the graph are connected to
other members of their own group, establishing sub-networks within
the greater network. Taken together, these metrics of graph theory
provide critical information about the structure of a network and
characterize a specific organization style (e.g., small-world, modular) of
that network.

Fair et al. (2009) applied resting-state functional connectivity and
graph theory to investigate the topological organization of the devel-
oping brain in three age groups (aged 7–9, aged 10–15, aged 19–31).
Their study revealed that children and adults have similar clustering
coefficients and characteristic path lengths, but different spatial dis-
tributions of modularity organization throughout development (Fair
et al., 2009). Furthermore, by comparing the organization of brain
networks between 7–9 year old children and adults, Supekar et al.
(2009) determined that children’s and young adults’ brains have a si-
milar small-world regime, and demonstrated simultaneous reduction of
short-range functional connectivity and strengthening of long-range
functional connectivity from childhood to adulthood. A recent study
over the age range of 6–18 years reported increases in the normalized
clustering coefficient, local efficiency and small-worldness, but global
efficiency was not significantly changed with development (Wu et al.,
2013). The findings were further supported by a lifespan study (Cao
et al., 2014) that demonstrated that local efficiency increased slightly
from early childhood to early adulthood (7–30 years). To date, almost
all extant literature focusing on topological developmental changes in
functional networks has been performed over a relatively broad age
range (Cao et al., 2014; Fair et al., 2009; Supekar et al., 2009; Wu et al.,
2013). These combined results suggest that graph theoretical analysis
constitutes a powerful tool to characterize the topological development
of functional brain networks.

Since almost all relevant previous studies have considered a rela-
tively wide age range, a refined examination of two relatively narrow
and critical developmental periods is worthy of investigation. We pre-
dicted that the functional difference between two noncontiguous age
groups will offer non-trivial insight for normal child development and a
valuable reference for the clinical diagnosis of psychopathology across
development. More importantly, in the current study, we adopted
resting-state functional near-infrared spectroscopy (rs-fNIRS) to address
the developmental changes of brain networks. Compared with func-
tional magnetic resonance imaging (fMRI), fNIRS is silent and more
tolerant to subtle movement artifacts, and can measure both oxy- and
deoxy-hemoglobin chromophores, providing a more comprehensive
measure of cortical hemodynamic response. Furthermore, it is generally
acceptable for children to participate in fNIRS studies because data
acquisition is performed in a natural environment. (Bunge and Wright,
2007; Davidson et al., 2006). In addition, compared to fMRI imaging,

fNIRS has much better temporal resolution, up to hundreds of hertz,
thus providing a more complete temporal picture for the characteriza-
tion of brain activity (Lloyd-Fox et al., 2010).

In the present study, we utilized rs-fNIRS to examine developmental
changes in both global and regional nodal topological properties from
early childhood and early adolescence to adulthood. We hypothesized
that from early childhood to early adolescence, there would be a sig-
nificant linear improvement in certain topological characteristics of
brain networks, such as local and global efficiency, revealing functional
segregation and integration. Additionally, we predicted that diverse
developmental trajectories in different functional cortices would be
found throughout development.

2. Materials and methods

2.1. Participants

This study enrolled 90 healthy participants, including 30 young
children (age range of 7.0–8.9 years old with mean and standard de-
viation of 8.1 ± 0.6 years; 14 M/16 F), 30 early adolescents (age range
of 11.0–12.9 years old with mean and standard deviation of
11.9 ± 0.6 years; 19 M/11 F), and 30 adults (age range of 19–27 years
old with mean and standard deviation of 23.2 ± 1.9 years; 16 M/14 F).
All participants were right-handed as assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971). The participants or their par-
ents signed a written informed consent form prior to the initiation of
the experiments. Approval for this study was obtained from the In-
stitutional Review Board of the State Key Laboratory of Cognitive
Neuroscience and Learning, Beijing Normal University.

2.2. Data acquisition

Each participant’s hemodynamic response was recorded using a
continuous wave near-infrared optical imaging system (CW6, TechEn
Inc., MA, U.S.A.) equipped with 12 light sources and 24 detectors at
690 nm and 830 nm wavelengths. The light sources and detectors were
placed on a stretchable cap, forming 46 measurement channels (sour-
ce–detector separation: 3.2 cm) and covering almost the whole head
(Fig. 1A, B). The positioning of the probe array was determined ac-
cording to the international 10–20 coordinate system, and referred to
the external auditory canals and vertex of each participant as land-
marks. Specifically, six detectors below channels 17–24 in both hemi-
spheres were set along a coronal line from the vertex to the external
auditory pores, and thus their midline was localized in Cz and the
leftmost and rightmost detectors were fitted around T3 and T4, re-
spectively. Data were recorded at a sampling rate of 50 Hz. For each
participant, the rs-fNIRS data were collected for approximately 11 min,
and the participants were instructed to relax, keep their eyes closed,
and remain awake.

2.3. MRI coregistration

To validate the positioning method of the probes, a structural MR
image was acquired from one arbitrarily selected adult subject (SJ).
During MRI data acquisition, the participant lay supine while wearing
the probe array. The probe array was pasted with vitamin E capsules
placed precisely at each of the optode locations. All scans were per-
formed using a 3T Siemens Tim Trio MRI scanner at the Imaging Center
for Brain Research, Beijing Normal University. The vitamin E locations
from these scans were used as landmarks for coregistration (Fig. 1C). A
T1-weighted structural image was acquired using a magnetization-
prepared rapid gradient echo (MPRAGE) sequence: 176 slices,
TR = 2600 ms, TE = 3.02 ms, FOV = 256 × 224 mm2, voxel
size = 1 mm × 1 mm × 1 mm, flip angle = 8°, and slice orienta-
tion = sagittal. The MR image was normalized into MNI space using the
NIRS_SPM software (http://bispl.weebly.com/nirs-spm.html#/), and
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the Montreal Neurological Institute (MNI) coordinates for each mea-
surement channel were determined according to the automated ana-
tomical labeling (AAL) template (Tzourio-Mazoyer et al., 2002). A si-
milar positioning method can be found in previous fNIRS studies
(Kovelman et al., 2008; Kovelman et al., 2009; Sasai et al., 2012). For
the cortical position corresponding to each measurement channel, see
Table S1 in Supplementary Materials.

2.4. Data preprocessing

We evaluated the relative changes in oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) concentration on an arbitrarily assigned zero
baseline from the start of the measurement period, which was based on
the modified Lambert–Beer law (Cope and Delpy, 1988). For the time
course of the HbO and HbR signals, we first conducted a temporal in-
dependent component analysis (ICA) to remove typical motion-induced
artifacts and systematic physiological noise (Niu et al., 2013). This
analysis procedure was performed by using a publicly available soft-
ware, FastICA v2.5 (www.cis.hut.fi/projects/ica/fastica/). Specifically,
the ICA analysis was separately performed on the raw data of HbO and
HbR with the following procedures: 1) extracting steady hemoglobin
concentration signals (i.e., removing the initial time points from total
data length); 2) reducing the dimensionality of the data with principal
component analysis; 3) performing ICA analysis on the reduced di-
mensional data; 4) identifying noise components; 5) removing noise
from the measured data and calculating “real” neural activity signals.
After ICA analysis, the components related to motion-induced artifacts
and physiological noise were identified from three aspects: temporal
profiles, spatial maps, and power spectra. A component was treated as
noise if it met one of the following criterion (Zhang et al., 2010): 1) the
corresponding temporal profile included sudden jumps, slowly varied U
or inverted U-shaped spike, or numerous inter-current quick spikes; 2)
the dominant frequency of power spectra of the component was outside
the range of 0.01–0.1 Hz; or 3) the spatial map of the component pre-
sented a global and spatially dispersive pattern. After identifying these
types of noise components, each concentration signal of HbO and HbR
was reconstructed with a particular component eliminated from the
original rs-fNIRS time course by replacing zero in the corresponding
column of the mixing matrix (Kohno et al., 2007). Then, we adopted a
band-pass filtering with cutoff frequencies of 0.009 and 0.08 Hz to re-
duce the effect of high-frequency noise and baseline drift, and to obtain
the low frequency hemodynamic signals that emanated from sponta-
neous neural activity (Biswal et al., 1995; Sasai et al., 2012; White
et al., 2009). Finally, we extracted 10-min data, including 30,000
sample points, from the continuous time course of each participant to
perform the network topology analyses. The data preprocessing was
conducted using in-house FC-NIRS package (http://www.nitrc.org/

projects/fcnirs; Xu et al. (2015)), which was developed using MA-
TLAB 2010b (www.mathworks.org) in a 64-bit Windows 7 environ-
ment. In the current study, we mainly used HbR signals to characterize
topological development of functional brain networks, considering that
HbR has been demonstrated in our previous study (Niu et al., 2013) to
have an overall much higher reliability for most brain network metrics
and consistently considered as the physiological basis of the fMRI BOLD
signals (Buxton et al., 1998; Ogawa et al., 1993). The brain develop-
ment results derived from the HbR signals also allow us to make a direct
comparison with those derived from fMRI. As a complement, HbO
signals were also utilized in our study to investigate the topological
development of functional brain networks. The HbO results were in-
cluded in the Supplementary Materials.

2.5. Network construction

The application of graph theory to construct human brain functional
networks extracted from functional imaging data requires two steps to
be performed. First, the nodes should be defined. Second, the strength
of the connections between any two nodes needs be quantified by si-
milarity measures (e.g., Pearson correlation) between their respective
time series above a threshold. If the strength of the connections exceeds
the predefined threshold, the connections are treated as the edges of a
graph. These two steps are important since the definition of the nodes
and the edges determines the network properties that are then used for
neurobiological interpretation (Rubinov and Sporns, 2010). Commonly
applied thresholding methods include correlation-based and sparsity-
based methods. Correlation-based method generally sets a value for the
correlation coefficient between node pairs, above which they are con-
sidered connected and below which they are not. This method will
result in different numbers of edges due to differences in the low-level
correlations among different groups. In contrast, sparsity-based
thresholds generally define network sparsity as the ratio of the number
of existing edges divided by the maximum possible number of edges in
a network. For group comparisons, this method can ensure that the
networks have the same number of edges or wiring cost for each group
(Achard and Bullmore, 2007; Stam et al., 2007). Therefore, in the
current study, we adopted the sparsity-based method to construct brain
network and then to conduct group comparison of topological devel-
opment of brain networks.

In the current study, we used MATLAB (www.mathworks.org)
functions from the GRETNA toolbox (http://www.nitrc.org/projects/
gretna; Wang et al., 2015) to construct the brain functional network for
each subject. For each individual rs-fNIRS data set, we obtained a
46 × 46 symmetric correlation matrix by calculating Pearson correla-
tion coefficients between the time series of every pair of nodes in which
the nodes were the measurement channels. Due to the ambiguous

Fig. 1. fNIRS data collection and MRI Neuroanatomical Co-Registration. (A) The arrangement of the 46 measurement channels across the whole head. The green and purple dots
represent the sources and detectors, respectively. The digits represent the positions of the measurement channels. (B) MRI co-registration was conducted by asking a participant to wear
probe arrays with vitamin E capsules in MRI. (C) The anatomical position corresponding to each measurement channel. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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biological explanation of negative correlations (Fox et al., 2009;
Murphy et al., 2009), we replaced all negative correlation coefficients
to zero and restricted our analysis to positive correlations. These cor-
relation coefficients were then converted to Z-values via Fisher’s r-to-z
transformation to improve normality, resulting in a 46 × 46 Z-value
functional connectivity matrix Zij for each subject, where i, j= 1, 2, …
46. Each functional connectivity matrix can be converted to a binarized
Bij using a sparsity threshold, where Bij is 1 if the value of the Z-value
functional connectivity matrix Zij between regions i and j is larger than
a given sparsity threshold, and 0 otherwise. To perform a group-aver-
aged functional connectivity comparison, the individual Z-value func-
tional connectivity matrices were first averaged within each age group,
and then the group-level Z-value matrix was converted into an R-value
matrix via Fisher’s z-to-r transformation for each age group, respec-
tively. Of note, the main network analyses were based on binary brain
networks. However, the effects of other sparsity thresholds and
weighted network analysis on our results were also evaluated (see the
following Section 2.8 “Validation”).

2.6. Network analysis

Graph theory was utilized to describe the topological organization
of the human brain functional networks. Similar to earlier studies
(Bassett et al., 2008), the correlation matrix was thresholded over a
range of sparsity (5% < s < 25%, stepsize = 1%) in order to in-
vestigate the relationship between sparsity and the network properties.
Meanwhile, we also adopted a single sparsity (s = 20%) to normalize
all of the networks to have the same number of edges, and thus to ex-
plore the between-group differences in the same-size network topolo-
gical organization. These network metrics are explained as follows:

2.6.1. Global network metrics
Six global network metrics, including the normalized clustering

coefficient (Cp), characteristic path length (Lp), global efficiency (Eglob),
local efficiency (Eloc), small-worldness (σ), and modularity (Q) were
used to elucidate global topological organizational changes in the de-
veloping brain (for illustrations, see Fig. 2) (Fair et al., 2009; Fan et al.,
2011). Their definitions and descriptions can be found as follows, and
in Rubinov and Sporns (2010).

For graph G with N nodes and K edges, the clustering coefficient Cp
of the graph G is calculated as follows (Watts and Strogatz, 1998):

=C
N

E
D Di

1
( 1)/2p

i G

i

i

where Di denotes the number of edges connected to node i; and Ei is the
number of edges in the subgraph, including the neighbors of node i. The
clustering coefficient reflects the local interconnectivity and cliquish-
ness of a network.

The characteristic path length Lp of graph G is defined as the

average of the shortest path lengths between all pairs of nodes in net-
work G (Watts and Strogatz, 1998):

=L
N N

d1
( 1)p

i j G
ij

where dij is the shortest path length between node i and node j. The
shortest path length was the minimum number of edges included in the
path that connected these two nodes. The characteristic path length
measures the ability of parallel information propagation (Latora and
Marchiori, 2003).

To examine the small-world attributes of a network, the normalized
clustering coefficient = C C/p

real
p
randand the normalized characteristic

path length = L L/p
real

p
rand were computed (Watts and Strogatz, 1998).

Cp
real and Lp

real are the clustering coefficient and the characteristic path
length of a real network, respectively, and Cp

rand and Lp
rand represent the

means of the corresponding parameters derived from 1000 matched
random networks that have the same numbers of nodes, edges, and
distribution of degrees as the real brain network. Typically, a small-
world network should meet the following criteria: γ > > 1 and λ ≈ 1
(Uehara et al., 2014).

In addition to the conventional small-world parameters (Cp and Lp),
the more biologically relevant properties of brain networks are effi-
ciency parameters, including global efficiency and local efficiency,
which measure the capability of the network with regard to information
transmission at the global and local levels, respectively. Global effi-
ciency Eglob is defined as the inverse of the harmonic mean of the
shortest path length between any two nodes (Latora and Marchiori,
2001):

=E
N N d

1
( 1)

1
glob

i j G ij

where dij is the shortest path length between node i and node j.
Local efficiency Eloc of a network G is defined as the average of the

local efficiencies of all nodes, where the local nodal efficiency for a
given node i is the global efficiency of the subgraph composed of the
nearest neighbors to node i (Achard and Bullmore, 2007; Latora and
Marchiori, 2001):

=E
N

E i1 ( )loc
i G

glob

where Eglob(i) is the global efficiency of Gi, which is the subgraph of the
neighbors of node i. The use of global efficiency is more advantageous
than the use of the characteristic path length, particularly in the case of
disconnected networks, because the disconnected nodes are considered
to have an infinite path length and a corresponding zero efficiency.

Modularity reflects the degree to which a network is organized into
a modular or community structure (Newman, 2006). For a given par-
tition p of a network, the modularity is defined as follows:

Fig. 2. The topological properties of networks. We illustrate the topological properties of networks by a network composed of 10 nodes and 13 edges. (A) The characteristic path length
between nodes a and b is the shortest path length, as indicated by the three black arrow lines. (B) The clustering coefficient of node c is the number of existing connections (i.e., 1–2)
among the node’s neighbors divided by all of their possible connections (i.e., 1–2, 1–3, 2–3), which is 1/3 (the dashed lines indicate the absence of a connection between the neighbors of
node c). (C) Shows a network with a highly connected hub node d, which plays a central position in the overall network. (D) Shows the presence of a clustered module, as indicated by the
three nodes (encircled in pink) being mutually strongly interconnected, but sparsely connected to the rest of the network.
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where M is the number of modules; L is the number of connections in
the network; lm is the number of connections between the nodes in
module m; and dm is the sum of the degrees of the nodes in module m.
The modularity attempts to partition the graph into disconnected sub-
graphs to minimize the degree of inter-module connectivity and max-
imize intra-module connectivity.

2.6.2. Regional nodal metrics
Regional topological characteristics were evaluated in terms of

nodal degree and nodal efficiency. The degree of a given node i is de-
fined as the number of edges linked to the node as:

=K i a( ) ,nod
j i G

ij

where aij is the ith row and jth column element in the formerly obtained
adjacency matrix.

The efficiency of node i is measured as follows:

=E i
N

i
d i j

( ) 1
1 ( , )

,nod
j i G

where d(i,j) is the shortest path length between node i and node j. Nodes
with a high nodal efficiency indicate that the network has a high tol-
erance to the elimination of a given node, which is associated with a
high clustering of the neighborhood of this node (Achard and Bullmore,
2007). In addition, we employed nodal degree and nodal efficiency to
identify functional hubs across three age groups, respectively. The
nodes with higher values in nodal degree and nodal efficiency (at least
1 standard deviation greater than the average of all nodes in the net-
work) were defined as brain hubs, which are usually assumed to play
central roles in the functional integrity of whole brain networks.
BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for
visualization of regional nodal properties.

2.7. Statistical analysis

To characterize the developmental changes in global topological
properties, we separately performed one-way analysis of variance
(ANOVA) on the three age groups for each global metric. Tukey’s
honest significant difference (HSD) tests were applied as post hoc tests.
Furthermore, to guarantee the statistical reliability of the obtained
findings, a bootstrap analysis of the confidence intervals was conducted
using 1000 bootstrap samples. For the global network properties, con-
fidence intervals (95%) for each topological property among these three
age groups were calculated from the bootstrap values, and the differ-
ences among the groups were determined by the lack of overlap in these
confidence intervals (Garrett et al., 2013).

To determine the developmental changes in regional nodal prop-
erties from early childhood, early adolescence to adulthood, a general
linear model (GLM) was utilized for each nodal metric. Specifically, to
explore linear or quadratic age effects, we used two multiple linear
regressions that modeled each nodal metric with age or age2 as pre-
dictors. The GLM models were separately formulated as follows:

Y= β0 + β1 × age + e

Y= β0 + β1 × age+β2 × age2 + e

We adopted a finite sample corrected Akaike’s information criterion
(AIC), namely, AICc (Hurvich and Tsai, 1989), to determine the best
model among the two regressions. AIC reflects a trade-off between the
likelihood and complexity (i.e., number of parameters) of a model. The
regression model with the lowest AICc value was chosen as the best
model to fit the data. Multiple comparisons among channels were
considered by adopting Bonferroni correction for HbO data and the

false discovery rate (FDR) correction at q < 0.05 (Benjamini and
Hochberg, 1995) for HbR data.

2.8. Validation

Considering that network sparsity thresholds and different network
construction approaches may influence the reproducibility of the net-
work topological attributes derived from the rs-fNIRS data, we per-
formed additional complementary analyses. On the one hand, we re-
computed the developmental changes in the global topological
properties and regional nodal properties using two other sparsity
thresholds (i.e., 15% and 25%) and then performed the statistical
analyses. On the other hand, weighted networks were computed to
validate the reproducibility of our results. Moreover, we also used HbO
signals to examine the effect of different hemoglobin concentration
signals on our main results.

3. Results

3.1. Functional connectivity

We showed the functional connectivity pattern at the group level for
young children, early adolescents, and adults, respectively (Fig. 3). We
determined that the functional connectivity correlation coefficients in
young children (mean ± SD = 0.23 ± 0.01) and early adolescents
(mean ± SD = 0.18 ± 0.01) had a shorter tail of positive correlations
compared to those in the adult group (mean ± SD = 0.13 ± 0.02).
Young children and early adolescents also exhibited similar functional
connectivity organization as that in adults, i.e., high correlations be-
tween the contralateral homologous regions and the neighboring ipsi-
lateral regions.

3.2. Economic small-world organization

Fig. 4 shows the profiles of six global parameters calculated from
both the real brain network (warm colors) and random networks (cold
colors), and shown as functions of the sparsity thresholds. We found
that in the sparsity range of 5% ∼ 25%, the Cp values of brain func-
tional networks were larger than those of the matched random net-
works (Fig. 4A), and the Lp values were comparable to those of the
matched random networks (Fig. 4B). When evaluating the small-
worldness, we observed that the small-worldness values were larger
than 1 in the sparsity range of 5% ∼ 25% in all three age groups
(Fig. 4C). Thus, these network organizations for each age group reflect
typical features of small-world topology, demonstrating a balance be-
tween local segregation and global integration in the developing brain.
From the perspective of the efficiency, the local efficiency of the net-
works was larger than that of the matched random networks (Fig. 4E),
whereas the global efficiency of the networks was comparable to that of
the matched random networks (Fig. 4D). These results further sup-
ported the small-worldness organization of the brain networks, which
are approximately efficient in global information processing, but more
efficient in local information processing compared with the matched
random networks. Furthermore, the functional brain networks in these
three age groups consistently showed a higher modularity compared
with that derived from the matched random networks (Fig. 4F). These
combined results demonstrated that functional brain connectivity net-
works in young children and early adolescents have been specially or-
ganized according to non-trivial wiring principles.

3.3. Developmental changes in global network properties

One-way ANOVAs were utilized to conduct the developmental
comparison in network topological measures among the age groups.
With development, significant age effects were found on the normalized
Cp (F(2,87) = 5.15, p= 0.008), small-worldness (F(2,87) = 3.45,
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Fig. 3. The distribution of r values within the raw r value correlation matrices of three age groups (A). The averaged population-level correlation matrices of three age groups (B) (digits in
matrices represent measurement channels).

Fig. 4. The global network metrics in a range of sparsity thresholds (5%–25%). (A) The clustering coefficient and (B) the characteristic path length are shown as a function of the sparsity
thresholds compared with the matched random networks. (C) The small-worldness is shown as a function of the sparsity thresholds. (D) Global efficiency, (E) local efficiency, and (F)
modularity are presented as a function of the sparsity thresholds compared with the matched random networks. Error bars (A, B, D, E, F) correspond to the standard errors of the mean for
1000 comparable random null networks. Error bars in (C) indicate the standard errors in all subjects.
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p= 0.036), global efficiency (F(2,87) = 8.60, p= 0.000) and local effi-
ciency (F(2,87) = 6.44, p= 0.003). Further statistical analysis indicated
that all of these four network measures revealed significant age-related
increases during the development from children to adults (post hoc tests,
p < 0.05). Network normalized Cp and local efficiency exhibited sig-
nificant developmental increases from early adolescents to adults (post
hoc tests, p < 0.05), and global efficiency showed developmental in-
creases from young children to early adolescents (post hoc tests,
p < 0.05). However, no significant age-related changes in normalized
Lp and modularity were detected (p > 0.05).

3.4. Developmental changes in regional nodal properties and hub
distribution

GLM analysis was used to examine developmental changes in the
regional nodal parameters. With the nodal degree, significant age-re-
lated increases were primarily distributed in the frontal brain region
(channel 6) (p < 0.05, corrected by FDR correction, Fig. 6A, red
spheres), while decreases were in the frontal (channel 21) and parietal
(channel 35) areas (p < 0.05, corrected by FDR correction, Fig. 6A,
blue spheres). With the nodal efficiency, significant age-related in-
creases were primarily distributed in frontal (channels 6 and 9) and
occipital regions (channels 42 and 43) (p < 0.05, corrected by FDR
correction, Fig. 6B, red spheres), and no age-related decrease was
found.

The hub distributions of young children, early adolescents, and
adults were presented in Figs. 6C (nodal degree) and 6D (nodal

efficiency), respectively. With regional nodal degree as the measure-
ment, four frontal (channels 2, 4, 5, and 11) and one parietal regions
(channel 17) are the common hubs for all of the three age groups.
Notably, the number of frontal hubs increased from early childhood to
adulthood. With regional nodal efficiency as the measurement, three
frontal areas in channels 2, 4, and 11 and one parietal region in channel
17 are the common hubs for all of the three age groups. Similar to nodal
degree, the number of frontal hubs increased from early childhood to
adulthood.

3.5. Validation results

Using the HbR-derived binary brain network, we first evaluated the
effects of different network sparsity thresholds (15% and 25%) on the
main findings. We found that the main conclusions remained as dif-
ferent network sparsity values were utilized. For example, with network
sparsity values at 15% and 25%, the network metrics of normalized
clustering coefficient, global efficiency and local efficiency showed in-
creases with development (Fig. 7A and C), and the number of frontal
hubs increased from early childhood to adulthood (Fig. 7B and D).
These results across different sparsity thresholds (15% vs. 25%) were
highly similar to those calculated using the sparsity 20% (Figs. 5 and 6).

Furthermore, we also evaluated the effect of the weighted network
analysis strategy on main findings using sparsity threshold 20%. The
main conclusions were partially preserved when compared to those
obtained from binary network results, e.g., the global normalized Cp
significantly increased from young children to adults and from

Fig. 5. Group differences in the global network metrics among the three age groups. *p < 0.05, **p < 0.01. The error bars indicate bootstrapped 95% confidence intervals. Overlapping
confidence intervals suggest a lack of difference.
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adolescents to adults (Fig. 8A), as well as the regional nodal hubs were
mainly located in the frontal brain regions across these three age groups
(Fig. 8B). However, the other network parameters (e.g., global effi-
ciency and local efficiency) showed no significant age effects, which is
different from the results derived from binary network.

Finally, using the HbO signals, we examined the effect of different
hemoglobin concentration signals on the main findings. Binary network
and 20% sparsity thresholds were used to construct the brain network.
The results were included in the Supplementary Materials. Specifically,
for global network metrics, the HbO-derived normalized clustering
coefficient, small-worldness, global efficiency, and modularity sig-
nificantly decreased, while normalized Lp significantly increased during
the development from children to adults (post hoc tests, p < 0.05) (Fig.
S3). Network global efficiency exhibited significant developmental
decreases from adolescents to adults (post hoc tests, p < 0.05). Network
local efficiency did not show any age-related changes. For nodal net-
work measures, e.g., the nodal degree, significant age-related increases
were primarily distributed in frontal (channels 1, 3, 4, 5, and 6) and
occipital (channels 43 and 44) brain regions (p < 0.05, corrected by
Bonferroni correction, Fig. S4A, red spheres), while decreases were in
the frontal (channels 19–22) and parietal (channels 27, 29, 31, and 32)
areas (p < 0.05, corrected by Bonferroni correction, Fig. S4A, blue
spheres). A U-shape developmental trajectory was found in the parietal
area (channel 17, a green sphere) during the development from young
children to adults (Fig. S4A). With nodal efficiency, significant age-re-
lated decreases were primarily distributed in frontal (channels 19–22)
and parietal (channels 27, 29–32, and 36) regions (p < 0.05, corrected
by Bonferroni correction, Fig. S4B, red spheres), and no age-related
increase was found. The developmental trajectories of the nodal degree

obtained based on HbR and HbO share some important aspects: the
nodal degree increases with age over some frontal nodes, and it de-
creases over more parietal nodes. Furthermore, the hub distributions
for HbO signals retained good similarity to those obtained using HbR,
and the number of frontal hubs increased from early childhood to
adulthood, irrespective of whether nodal degree or nodal efficiency was
adopted for these two concentration signals.

4. Discussion

In this study, we employed rs-fNIRS data and the graph-theory ap-
proach to investigate the age-related topological organization of human
brain functional connectivity from early childhood and early adoles-
cence to adulthood. The main findings included the following: 1)
functional brain networks in the three age groups showed a uniformly
comparable economical small-world organization; 2) young children
exhibited a decreased global efficiency compared with early adoles-
cents and adults. Young children and early adolescents had lower va-
lues than adults in local efficiency; and (3) heterogeneous develop-
mental patterns in nodal topological characteristics were found, for
example, right middle frontal gyrus exhibited a significant linear age-
related increase with maturation, indicating that increasing cognitive
capacity may relate to right middle frontal gyrus. Overall, we observed
significant developmental changes in the topological organization of
functional networks from early childhood and early adolescence to
adulthood. Our results provided an insight into understanding im-
portant topological changes occurring in brain functional networks
across the two landmark developmental stages from early childhood to
early adolescence. These findings are discussed in detail below.

Fig. 6. Development changes in the regional nodal properties and the distributions of hub regions in each age group. (A) The developmental trajectories for significant nodes in nodal
degree. (B) The developmental trajectories for significant nodes in nodal efficiency. Regions with significantly linear positive and linear negative correlations are indicated by red and
blue spheres, respectively. The significances were set at p < 0.05 (corrected by FDR correction). The hubs in each age group are defined as the brain regions with higher values
(Mean + SD) in any of (C) node degree and (D) node efficiency. The hubs are shown in red with node sizes that indicate the values in regional nodal properties. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The economical small-world architecture was consistently identified
in the functional brain networks across these three age groups in our
study. Brain networks with small-world attributes can offer a topolo-
gical underpinning for both locally specialized and globally distributed
processing (Achard and Bullmore, 2007; Bassett and Bullmore, 2006).
Recent studies on structural and functional brain networks indicated
that the small-world organization is established in the very early life of
the human brain (Gao et al., 2011; Huang et al., 2015; van den Heuvel
et al., 2015; Yap et al., 2011). Thus, our results provided further sup-
port for findings that the human brain has an efficient functional net-
work organization throughout maturation (Fair et al., 2009; Supekar
et al., 2009; Wu et al., 2013).

We also determined that global efficiency significantly increased
from young children to early adolescents and adults. This finding is
approximately consistent with previous structural MRI studies that re-
ported increases in global efficiency through childhood (i.e., 4.8–11.3
years old) (Khundrakpam et al., 2013), and from early stage of life (e.g.,
2 years of age) to adulthood (Dennis et al., 2013; Hagmann et al., 2010;
Huang et al., 2015). This increased global efficiency from early child-
hood to adults may reflect a neurocognitive maturation process in the
functional brain networks. The increasing global efficiency in the brain
was also confirmed to be significantly positively associated with hu-
mans intellectual performance (Li et al., 2009; Stam and van Straaten,
2012; van den Heuvel et al., 2009), which indicates that cognitive

Fig. 7. The effects of different network sparsity thresholds (15% and 25%) on the main findings. Binary networks were used to evaluate the effects.
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ability is possibly related to how efficiently the global connections of
the brain are organized, and how efficiently information can be in-
tegrated globally between the different regions of the brain network.
However, it is also noted that our findings are not completely compa-
tible with previous fMRI-based imaging studies (Cao et al., 2014;
Supekar et al., 2009; Wu et al., 2013) that found no significant differ-
ence in network global efficiency across development. Interestingly, the
local efficiency obtained from these two modalities (fMRI in previous
studies & fNIRS in the current study) preserved some common findings,
i.e., the local efficiency exhibited significant increases from young
children or adolescents to adults (Cao et al., 2014; Wu et al., 2013).
However, Cao et al. and Wu et al. (Cao et al., 2014; Wu et al., 2013)
demonstrated a monotonic increase in local efficiency from childhood
and adolescence to adulthood, and our study pointed out no significant
differences in local efficiency between childhood and adolescence. The
higher local efficiency has been suggested to be associated with effi-
cient information processing among topologically nearby neighbors and
high error tolerance (Bullmore and Sporns, 2009; He and Evans, 2010).
It should also be noted that not all developmental procedures from birth
to adulthood are associated with monotonic processes (Chugani et al.,
1987). Our results suggested that the functional segregation of human
brain networks could undergo a relatively steady development plateau
from early childhood to early adolescence rather than a linear increase.
Moreover, the human brain in early childhood and early adolescence
perhaps does not achieve an optimal network configuration, which may
provide a neural basis for nonlinear shifts in behavior across develop-
ment due to earlier maturation of the limbic structure relative to the
less mature top-down prefrontal control region (Casey et al., 2008).

Modularity is quantified by the extent to which the network can be
separated into modules, and thus it constitutes a topological organiza-
tion principle that is related to clustering, which favors specialized or
segregated information processing in the brain networks. In our study,
modularity was found to remain approximately constant across child-
hood, adolescence and adulthood, which was consistent with Fair
et al.’s study (Fair et al., 2009), but different from Cao et al.’s study that
demonstrated a linear decrease in modularity (Cao et al., 2014). This

divergence in the modularity results may be related to the number of
the participants and their age range distribution, as well as the network
construction methods and different imaging modalities.

For nodal properties of the brain network, linear increases were
primarily identified in the frontal cortex, particularly the middle frontal
gyrus (Fig. 6). These frontal cortices have been suggested to mature
much later and be associated with increasing cognitive capacity during
childhood (Casey et al., 2000). By contrast, nodes with linear decreases
in nodal properties were primarily in the parietal cortex and precentral
gyrus (Fig. 6). These nodes, related to the primary somatosensory re-
gion, gradually play a less important role in the whole brain due to their
early development. These results demonstrated that many cognitive
abilities experience rapid development from early childhood to early
adolescence, but their network connection configuration remains in an
immature state compared with adults (Bunge et al., 2002; Casey et al.,
2008).

Hub regions in functional brain networks are believed to play a
central role in global information integration between parallel and
distributed networks (Hwang et al., 2013). In the adult brain, functional
cortical hubs include the medial prefrontal cortex, posterior cingulate
cortex (PCC), precuneus, inferior parietal lobule, and medial temporal
cortex (Buckner et al., 2009). In our study, the functional hubs in the
three age groups were also predominately located in the frontal and
parietal lobes (Fig. 6), which may result from increases in the fron-
tal–parietal hub–hub structural connectivity over time (Baker et al.,
2015). Additionally, the number of frontal hubs increased from early
childhood to adulthood, indicating that frontal hubs may take a few
decades to form, and corresponds well with maturation from concrete
operational thinking in childhood to formal operations in adolescence.

In the present study, the main results were presented by analyzing
HbR signals. When considering HbO signals, we found that some global
network metrics (e.g., normalized clustering coefficient and global ef-
ficiency) showed different developmental patterns between HbR and
HbO signals. Although our previous studies (Niu and He, 2014; Niu
et al., 2013; Niu et al., 2012) have demonstrated that both HbO and
HbR signals can be used to characterize topological organization of

Fig. 8. The effects of weighted network analysis strategy on the main findings. Sparsity threshold of 20% was used o evaluate the effects.
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intrinsic functional brain networks, the quantitative network para-
meters differ significantly due to different concentration signals. Here,
we further found that the developmental patterns in topological orga-
nization displayed obvious difference between these two concentration
signals. The discrepancies may be attributable to that different he-
moglobin concentration signals reflect different nature in hemodynamic
responses to transient neural activity and/or the difference in signal-to-
noise ratio in the rs-fNIRS measurements (Gagnon et al., 2012; Niu
et al., 2013; White et al., 2009). Because HbO signals reflect regional
cerebral blood flow changes whereas HbR signals are generated
through oxygen utilization in cerebral tissue, HbO signals are generally
vulnerable to various noise components compared to HbR signals
(Kirilina et al., 2012; Strangman et al., 2002). Furthermore, our pre-
vious study has proved that HbR signals provide better network metric
reliability than HbO signals (Niu et al., 2013). Therefore, the noise in
the concentration signals could lead to distinct effects on the present
results. Additionally, the fMRI BOLD signal has been proposed to ori-
ginate from the paramagnetic properties of HbR signals (Buxton et al.,
1998; Ogawa et al., 1993), which follows the BOLD signal more closely
than HbO signals (Huppert et al., 2006; Kleinschmidt et al., 1996;
Toronov et al., 2003). Thus, we assumed that the current results derived
from HbR signals may be comparable to previous fMRI evidence.

There are several issues in the current study that should be ad-
dressed. First, head motion artifacts and systematic physiological su-
perficial noise are two important noise sources in fNIRS signals. In our
study, we adopted the ICA method to reduce the influence from these
two noise sources. However, ICA belongs to blind source separation,
which makes it lack an explicit physiological explanation for identified
components. In addition, blind source separation also gives rise to
difficulties of completely identifying and removing noise components
from recorded brain activity signals. This issue is challenging in resting-
state fNIRS studies and should be studied carefully in the future.
Second, the significant developmental trend in the nodal properties
found in this study could be conservative, because it is not ideal to use
GLM to examine the developmental effects for non-continuous age
ranges. Another concern is that we utilized the same probe geometry for
data collection on all participants. It is known that head circumference
constitutes an important index to characterize brain development for
children. For example, the head circumference in children should be
approximately 50 cm (e.g., approximately 5 years old), whereas that in
adolescents should be relatively much larger than in children, but si-
milar to that in adults (approximately 54–58 cm). As such, it remains
interesting whether brain signals from different population groups re-
corded brain activity information at the same or similar regions of the
human cerebral cortex across groups. Finally, this study is a cross-sec-
tional developmental study in which individual variations existed and
may affect the current main results. Future studies with longitudinal
resting fNIRS data collection are required to further validate the find-
ings observed in this study.

5. Conclusion

We observed a stable small-world organization in functional brain
networks derived from rs-fNIRS and significant developmental effects
on both global and regional nodal properties from early childhood to
adulthood. In particular, we determined that young children had a
significantly lower global efficiency than early adolescents and adults,
which revealed that the integration of the distributed networks
strengthens across developmental stages underlying cognitive devel-
opment. In addition, the local efficiency of young children and ado-
lescents was significantly lower than that of adults, while there was no
difference between these two younger groups. This finding revealed
that functional segregation remained relatively stable from early
childhood to early adolescence, and the human brain in these devel-
opmental periods did not have an optimal network configuration, like
adults. Furthermore, we found heterogeneous developmental patterns

in regional nodal properties in various brain regions, such as the linear
increased nodal properties in the frontal cortex, indicating increasing
cognitive capacity over development. Collectively, our results demon-
strated that there were significant topological changes in functional
network organization during these two critical developmental stages,
and provided a novel insight into understanding the subtle changes in
brain functional networks across development.
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