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A B S T R A C T   

While wetland ecosystem services are widely recognized, the lack of fine-scale national in-
ventories prevents successful implementation of conservation policies. Wetlands are difficult to 
map due to their complex fine-grained spatial pattern and fuzzy boundaries. However, the 
increasing amount of open high-spatial-resolution remote sensing data and accurately georefer-
enced field data archives, as well as progress in artificial intelligence (AI), provide opportunities 
for fine-scale national wetland mapping. The objective of this study was to map wetlands over 
mainland France (ca. 550,000 km2) by applying AI to environmental variables derived from 
remote sensing and archive field data. A random forest model was calibrated using spatial cross- 
validation according to the precision-recall area under the curve (PR-AUC) index using ca. 
135,000 soil or flora plots from archive databases, as well as 5 m topographical variables derived 
from an airborne DTM and a geological map. The model was validated using an experimentally 
designed sampling strategy with ca. 3000 plots collected during a ground survey in 2021 along 
non-wetland/wetland transects. Map accuracy was then compared to those of nine existing 
wetland maps with global, European, or national coverage. The model-derived suitability map 
(PR-AUC 0.76) highlights the gradual boundaries and fine-grained pattern of wetlands. The bi-
nary map is significantly more accurate (F1-score 0.75, overall accuracy 0.67) than existing 
wetland maps. The approach and end-results are of important value for spatial planning and 
environmental management since the high-resolution suitability and binary maps enable more 
targeted conservation measures to support biodiversity conservation, water resources mainte-
nance, and carbon storage.   

* Corresponding author. 
E-mail address: sebastien.rapinel@univ-rennes2.fr (S. Rapinel).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e13482 
Received 22 July 2022; Received in revised form 31 January 2023; Accepted 1 February 2023   

mailto:sebastien.rapinel@univ-rennes2.fr
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e13482
https://doi.org/10.1016/j.heliyon.2023.e13482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e13482&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e13482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e13482

2

1. Introduction 

Wetlands contribute to about 40% of the total value of ecosystem services [1] defined as benefits provided by natural systems that 
contribute to social welfare [2], such as food supply, biodiversity conservation, and flood regulation [1]. Although scientists, policy 
makers, and citizens widely recognize the benefits of wetland services, threats to these ecosystems have increased in recent decades 
[3–5]. Human activities such as urbanization and agriculture intensification are responsible for about 35% of wetland loss in natural 
wetlands since the 1970’s at a global scale [3,6], and up to 45% in Europe [6], while artificial wetlands have increased by 233% [3]. 
Climate change also threatens wetlands as fresh water availability decreases and sea level rises [7,8], resulting respectively in an 
expected loss of 1% of Ramsar inland wetlands [9] and 20% of coastal wetlands in the future decades [10]. These increasing trends are 
partly due to the unavailability of reliable and comprehensive wetland maps, which limits implementation of conservation policies 
[11]. While internationally important wetlands have been widely mapped and monitored [3,12], most small and common wetlands are 
ignored in national maps [13]. Mapping these wetlands is critical due to their (i) complex fine-grained spatial pattern, (ii) scattered 
distribution, and (iii) fuzzy boundaries between terrestrial and aquatic ecosystems, which raise definitional issues [14,15]. Some 
national wetlands have been inventoried by using soil maps [16] or combining historical and geological maps [17], but the uncertainty 
in these data, which can be high, generates inaccuracy in wetland-prediction maps [18,19]. 

Remote sensing data, which provide continuous, comprehensive, and standardized observation of terrestrial ecosystems over large 
areas [20], have been widely used to map wetlands [21,22]. While providing broad coverage, they have often been used for local 
wetland inventories [23,24], since national inventories are conducted by compiling local wetland maps, as in the United States [25]. 
However, this latter approach is time-consuming and expensive [14], and results in a non-comprehensive map of inconsistent quality 
due to the multiple definitions, scales, and methods used to produce local wetland maps [13]. In a context of increasing dissemination 
of field or remote sensing data, growing computational resources, and progress in artificial intelligence (AI), the development of 
operational and standardized approaches has recently been promoted [23,24,26,27]. 

Based on this research trend, several recent national and international wetland inventories have used remote sensing data following 
two main approaches. The first approach identifies wetlands based on their vegetation type (e.g. bogs, fens, salt marshes, swamps, 
mangroves) and/or their flooding dynamics using optical [28] or radar [29] satellite time series from which vegetation, soil and water 
indices can be derived. This approach has been applied at spatial resolutions of ca. 8 km over the entire globe [30], 250 m over 
Myanmar [24], 30 m over China [31], 23 m over India [32], and up to 10 m over Canada [33] and Minnesota [34]. However, this 
approach has major disadvantages in that it cannot detect (i) water-saturated wetlands covered with vegetation similar to that on 
non-wetlands (e.g. grasslands, forests, heathlands, crops) [14,22], even though most wetlands in the world are of this type [35,36]; and 
(ii) damaged wetlands (e.g. now covered by crops or impervious surfaces) in which hydrological functions are nevertheless still 
effective [27,36,37]. 

The second approach avoids these disadvantages by identifying the maximum (i.e. potential) wetland extent based on topographic 
variables [26,38]. These variables can be derived from either satellite [39] or airborne [40] remote sensing data. This approach is 
particularly appropriate for supporting national mapping since it identifies most wetlands, including those covered by common types 
of vegetation or those that have been damaged and where restoration could be initiated [41]. This second approach was first applied at 
spatial resolutions of 1 km over Europe [42] and 50 m over France [43], and more recently 500 m over the entire globe [35], 30 m over 
Rwanda [44] and Albania [45], and up to 25 m over Europe [46]. These studies used mainly open-source digital terrain models (DTMs) 
derived from satellite data, however, which have two disadvantages for wetland inventories: (i) their decametric vertical accuracy is 
too low to capture micro-topography [47], which decreases the accuracy of wetland delineation, and (ii) their spatial resolution does 
not exceed 25 m, which limits detection of narrow or small wetlands [26]. Several studies have emphasized the need to use airborne 
DTMs with vertical accuracy of ca. 0.2 m and spatial resolution of 1–5 m to identify small wetlands, including those under forest cover 
[14,41,48–50]. These studies were conducted at the local scale and should be extended to the national scale, especially since 
open-access national airborne DTMs are increasingly available [41]. 

The consistency and accuracy of wetland mapping is a key issue for users [13]. To this end, reference field data are essential to 
calibrate and validate the models [26]. Large amounts of reference field data are required to model large areas, such as for national 
wetland inventories [33,51]. However, using a robust model to map wetlands at a national scale is challenging given the limited 
availability of reference data that cover an entire country [31,33]. For operational reasons, most national wetland inventories based on 
remote sensing data use pseudo reference field data, for example from local "field" maps derived from analyzing satellite or airborne 
images at very high spatial resolution, and/or directly from visually interpreting the latter [24,27,31–33,42,44,46]. While these 
pseudo reference field data may be acceptable to the remote sensing scientific community [52], they have higher uncertainty (due to 
mislabeling and lower polygon-contour accuracy) than real georeferenced field plots, which simultaneously decreases model accuracy 
[53] and provides over-optimistic estimates of it [54]. Furthermore, these pseudo reference field data frequently do not include 
damaged wetlands [27,44,46]. Thus, reference data obtained from field plots is preferred to visual interpretation of remote sensing 
images at very high spatial resolution [27], although collecting field data for an entire country is time-consuming and costly [14]. 

For a national wetland mapping, cost and operational criteria are as important as map accuracy [26]. Archive field databases 
appear to be an obvious resource for national wetland inventories because they are immediately available, free of charge, easily 
accessible, ready to use, and contain tens of thousands of accurately georeferenced field plots worldwide [51]. Soil and vegetation plots 
are particularly useful for spatial wetland modeling. Specifically, the use of soil plots enabled assessing the accuracy of the map of 
potential wetlands [38], including crops or urban areas, which have not been considered in national inventories [27,42,44,46]. Many 
vegetation databases, such as those of the Global Biodiversity Information Facility [55] and National Forest Inventory (NFI), have been 
successfully used for spatial modeling of natural vegetation [56]. Soil databases have been increasingly available in recent years, 
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especially via the GlobalSoilMap project [57]. These soil plots, numbering ca. 800,000 worldwide, have notably been used to develop 
national soil maps [18]. However, these archive databases of vegetation and soil surveys have not been used to map wetlands. 

The model robustness is another challenge of using AI to map wetlands at national scale [33]. Besides being due to the properties of 
the training samples and the explanatory variables, model robustness may also be due to hyper-parametrization [56]. Specifically, two 
points received little attention in wetland modeling: (i) selection of an appropriate accuracy metric and (ii) addressing spatial auto-
correlation [56]. Traditionally, a probabilistic model such as random forest (RF) is fitted using threshold-dependent metrics such as 
overall accuracy (OA) or the Kappa index. However, the default threshold of 0.5 is usually not optimal, which decreases model ac-
curacy [58], conversely to threshold-independent metrics such as precision-recall area under the curve (PR-AUC) index, which are 
better suited to the model probabilistic output. Regarding spatial autocorrelation, many open-source tools provide simple features that 
limit it during cross-validation procedure [59]. 

Another issue in wetland mapping is to delineate clearly the boundaries between wetlands and non-wetlands [14]. Although the 
transition between aquatic and terrestrial environments varies in width [15,26], most wetland mapping studies report binary (i.e. 
“wetland” vs. “not wetland”) model output directly [26]. Besides ignoring user expertise in the process [24], this approach raises two 
issues: (i) the land-water continuum is not highlighted and (ii) the threshold used to classify model output is rarely optimal [44,56]. 
However, these boundaries can be spatialized using model output of a continuous variable (i.e., confidence level) [60]. Considering the 
suitability map as the main product is interesting since it renders continuum between non-wetlands and wetlands spatially explicit [60]. 
The suitability map is more useful than a binary map when conflicts arise between users [61]. Moreover, the suitability map en-
courages map users to become involved since they can adapt thresholds based on their field expertise [24]. A binary wetland map can 
then be obtained by thresholding, which can be adapted to the ecological region and user needs [60]. 

The objective of this study was to map wetlands over mainland France (ca. 550,000 km2) by applying AI to environmental variables 
derived from remote sensing and archive field data. Three research questions were addressed: (i) Are environmental variables derived 
from remote sensing and archive field data relevant for modeling wetland distribution? (ii) Can AI be used to map wetlands with 
acceptable accuracy? and (iii) What are the benefits of the resulting maps compared to existing wetland maps? 

Fig. 1. Top: The study site (mainland France) divided into 22 hydro-ecoregions [64]. Bottom: Photographs of hydrogeomorphic wetland types [63] 
that are regularly flooded (A – estuarine-fringe, B – slope, C – depressional) or non-flooded (D – flat, E − riverine, with a forest, F − riverine, 
with crops). 
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2. Materials and methods 

2.1. Study site 

The study site encompasses mainland France (Fig. 1), which has high climatic, geological, and topographical variability in 22 
hydro-ecoregions (HER) [64]. All hydrogeomorphic (HGM) wetland types [63] occur throughout France (Fig. 1A–F). In the 1990s, the 
first national map of wetlands focused on Ramsar sites and natural areas of ecological interest, which resulted in the identification of 
6415 km2 of wetlands [12]. An increasing number of local wetland mapping have been conducted since the 2000s, but their quality 
varies, and they cover only half of the area of France [65]. The first comprehensive national wetland map was conducted in 2014 by 
modeling topographical variables at 50 m spatial resolution, which estimated that wetlands covered 23% of mainland France [43]. In 
parallel, field-based monitoring highlighted that 41% of remarkable wetland sites experienced a decrease in conservation status [66]. 

2.2. Wetland mapping framework 

Following the recommendations of Ling et al. [13], the national wetland mapping approach developed in this study was steered by 
a committee of scientists in geography, soil science, and ecology, as well as policy makers. The term "wetland" used in this study is 
based on the Ramsar definition: areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that 
is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6 m [62]. 
Conceptually, this study was based on the "Potential, Existing, Efficient Wetlands" approach [38] and focused on potential wetlands, 
which correspond to the maximum extent of wetlands before human alterations. In other words, potential wetland mapping outlines 
areas where water-related ecosystems are most likely to occur [27]. This study considered all HGM wetland types [63]: riverine, 
depressional, slope, flat, estuarine-fringe, and lacustrine-fringe. Wetlands were mapped by modeling groundwater using environ-
mental variables. Map accuracy was assessed using field plots that describe soil or flora. The spatial resolution of the map was 5 × 5 m, 
and the minimum mapping unit was 250 m2. 

2.3. Field data collection 

2.3.1. Archive databases 
The archive plots, which were collected by scientists, environmental organizations, and citizens over the past 30 years, were 

obtained from three national databases: (i) DoneSol, which contains data from soil plots, mainly in agricultural areas [67,68]; (ii) that 
of the NFI, which contains data from plots that describe soil and flora in wooded areas [69], and (iii) that of the National Inventory of 
Natural Heritage (INPN), which contains data from flora surveys, mainly in natural areas [70]. The spatial accuracy of these archive 
plots usually ranges from 2 to 20 m depending on the presence of tree cover, the relief, and the global positioning system (GPS) 
equipment used. 

For the DoneSol and NFI databases, plots with the following soil types were classified as "wetland" according to the French 
pedological referential: Histosols, Reductisols, Redoxisols, Thalassosols, Fluviosols, or Humic Podzosols [71–73]. For the INPN 
database, the Ellenberg indicator for moisture [74], which consists of 12 ordinal values that range from 1 (extreme dryness) to 12 
(aquatic), was used to classify plots as "wetland". It was calculated as the arithmetic mean of the Ellenberg indicators of the species in 
each plot. To this end, baseFlor [75], which adjusts the Ellenberg indicator for French flora, was used. Plots with mean Ellenberg 
indices greater than 6 or less than 3 were classified as “wetland” and “non-wetland”, respectively [76]. In contrast, plots with mean 
Ellenberg indices of 3–6 were excluded from the analysis because it was not clear that they were wetlands, due to human disturbance 
that may have influenced them. In mountainous areas (>1500 m asl), plots with Ellenberg indices less than 5 (instead of 3) were 
classified as "non-wetland" because these areas have less human disturbance than lowland areas and specific bioclimatic conditions. 

Expert-based visual inspection of well-known sites using GIS indicated that several archive plots had been misclassified. Thus, we 
performed a cleaning step for the collected databases. For the soil plots, we crosschecked the soil type and the depth of hydromorphic 
features, the latter of which was detailed in the DoneSol and NFI databases at 10 cm and 40 cm intervals, respectively. For plots in the 
DoneSol database, the inconsistencies were due to misclassified soil types. To correct this issue, plots classified as "wetland" and "non- 
wetland" without and with hydromorphic features at depths of 0–40 and 40–80 cm, respectively, were identified as outliers (except for 
Fluviosols and Humic Podzosols) and excluded from the analysis. Plots with missing values for the depth of hydromorphic features 
were also excluded. In addition, since the spatial density of "non-wetland" plots was heterogeneous, we randomly subsampled the 
“non-wetland” plots to obtain a maximum of five plots per 5 × 5 km grid cell. For plots in the NFI database, no obvious inconsistencies 

Table 1 
The number of plots originally stored and retained for analysis, and the percentage of plots assigned to the "wetland" class, by archive database 
(DoneSol, National Forest Invetory (NFI), and National Inventory of Natural Heritage (INPN)).  

Database No. of plots originally stored No. of plots retained (percentage of original plots) Percentage of retained plots classified as "wetland" 

DoneSol 177,578 36,477 (21%) 52% 
NFI 93,043 89,364 (96%) 28% 
INPN 366,268 9967 (3%) 85% 
All 636,889 135,508 (21%) 39%  

S. Rapinel et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e13482

5

were identified; however, its plots with Redoxisols and hydromorphic features at depths greater than 50 cm were excluded from the 
analysis, since some uncertainty existed about whether or not they should be classified as "wetland". The INPN database was cleaned in 
two steps. First, since its floristic plots had not always been collected using a phytosociological approach and it contained no infor-
mation about the areas surveyed, plots with less than three species (likely threatened or invasive species) or more than 20 species 
(likely floristic inventories conducted over several hundred m2) were excluded from the analysis. Second, all plots that were located in 
urban areas according to the national land cover map (10 m spatial resolution) [77] were excluded. While some plots had truly been 
surveyed in urban areas, other plots - likely surveyed without GPS - had been georeferenced to the nearest town center. 

A second expert-based visual inspection of the "cleaned" plots using GIS did not reveal any particular inconsistencies. After these 
cleanup steps, 135,508 plots were retained from archive databases for further analysis (Table 1), with a mean density of 0.25 plots/km2 

(Fig. 2A–D). 

2.3.2. Experimentally designed sampling 
In the beginning of 2021, a field campaign was conducted specifically for this study using stratified sampling on either side of 

suspected wetland boundaries. These boundaries were identified using geological and topographical maps, aerial photography, and, 
when available, local wetland inventories. A total of 440 sites were surveyed throughout France, covering all HGM types [63]. At each 
site, the HGM type was determined, and three transects were established, with at least one plot located in a wetland and another in a 
non-wetland area. In each plot, a soil auger was used to measure the depth of hydromorphic features and the thickness of redoxic, 
reductive, or histic horizons. Vegetation type was characterized according to the European Nature Information System [78]. Each plot 
was georeferenced using GPS, with a mean accuracy of 3 m. 

Plots that had hydromorphic features at depths less than 50 cm or typical wetland vegetation were classified as "wetland". Plots 
with Fluvisol and humic Podzosol soils were classified as “wetland”. Plots that had hydromorphic features at depths greater than 50 cm 
were excluded from the analysis due to uncertainty about how to classify them. A total of 3012 plots (of which 64% were classified as 
“wetland”) were retained for the analysis. See Gayet et al. [79] for a detailed overview of the sampling protocol and the raw field data. 

2.4. Environmental variables 

Topographic and geological variables were used to model the spatial distribution of wetlands (Table 2). The topographic variables 
were derived from the national airborne DTM at 5 m spatial resolution, which is available in open-access from the website of the 
French National Geographic Institute (IGN) (https://geoservices.ign.fr/). The vertical accuracy of DTMs usually ranges from 30 to 70 

Fig. 2. Spatial distribution of field plots from the French archive databases used to calibrate or validate the random forest model: A – all databases, 
B – the national database of soil-survey data (DoneSol), C – the National Forest Inventory (NFI), and D – the National Inventory of Natural Heri-
tage (INPN). 
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cm, depending on the type of land use and the acquisition technology (e.g. LiDAR, photogrammetry) [80]. DTMs have been used as an 
explanatory variable to identify estuarine-fringe wetlands [81,82]. Three topographic variables were derived from this DTM: (i) the 
topographic wetness index (TWI), (ii) the vertical distance to the channel network (VDCN), and (iii) the multiscale topographic po-
sition index (TPI). TWI, which characterizes potential soil wetness as a function of the contributing area and local slope [83], ranges 
from 0 to 30, with a higher value indicating a higher probability of wet soil. TWI is appropriate for characterizing riverine wetlands in 
particular [60]. To remove human-built features (e.g. roads, ditches) that could influence estimated flow, the DTM was first smoothed 
using a median filter (7 × 7 window). TWI was calculated using a multi-directional flow accumulation algorithm [84], which is 
appropriate for characterizing biotopes [85]. VDCN expresses the vertical height (in m) between the elevation of a pixel and the nearest 
channel. The GIS layer of the channel network in the national hydrological database [86] was used to calculate it. VDCN is relevant for 
characterizing riverine and lacustrine-fringe wetlands [87]. TPI describes the position of a pixel relative to its neighborhood at a given 
spatial scale [88]. It represents three layers – TPI_micro, TPI_meso, and TPI_macro – that describe the position of each pixel at a micro- 
(5–300 m), meso- (300-1000 m), and macro- (>1000 m) scale, respectively. The distance interval for each scale was set using the 
Relative Topographic Position Scale Signature tool [88] at multiple sites covered by wet depressions ranging from a few m2 to several 
thousand m2. TPI were standardized to range from − 2 to +2, with negative values indicating positions lower than the neighborhood 
and positive values indicating positions higher than the neighborhood. TPI is especially valuable for detecting depressional wetlands 
unconnected to the riverine network [50]. 

Table 2 
Properties of the environmental variables used to map wetlands.  

Type Source data Resolution/ 
scale 

Name Acronym Target wetlands 

Geological National Geological Map (BRGM, 
2022) 

1:50,000 Geological variable GEOL Flat and slope 

Topographical National airborne DTM (IGN, 2021) 5 m Digital Terrain Model DTM Estuarine-fringe 
Topographic wetness index TWI Riverine 
Vertical distance to channel 
network 

VDCN Riverine and lacustrine-fringe 

Multi-scale topographic position 
index 

TPI_micro 
TPI_meso 
TPI_macro 

Depressional and lacustrine- 
fringe  

Fig. 3. Flowchart of the method used to map wetlands by modeling topographic and geological variables subsequently calibrated and validated 
using soil and flora field samples. 
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The geological variable was derived from the 1:50,000 geological map of France in vector format (BD Charm-50) and available in 
open-access from the website of the Bureau de Recherches Géologiques et Minières [89]. The geological variable was considered useful 
for detecting flat or slope wetlands that cannot be detected from topographic variables. In these areas, some parent materials (e.g., 
some sandstones, shales, loess, granites …) are likely to slow subsurface flow with soil saturation resulting in hydromorphic soils. Since 
the geological map of France contains 16,864 types of units, including this categorical variable directly into a model would have 
created the same number of binary variables, which would have been unworkable. To address this issue, we applied binary encoding 
[90], which reduced the number of binary variables to only 15. These 15 dummy variables were then rasterized at a spatial resolution 
of 5 m. 

2.5. Artificial intelligence modeling 

The AI modeling used to map wetlands consisted of five steps (Fig. 3). In a first step, explanatory variables were derived from an 
airborne DTM and a geological map. In a second step, training and test samples were respectively extracted from archive field da-
tabases and experimentally designed ground surveys. In a third step, a random forest modeling of wetlands was applied using 
explanatory variables and training samples. In a fourth step, a local thresholding was carried out on the suitability wetland map to 
achieve a binary map. In a fifth step, the accuracy of the suitability and binary wetland maps was assessed from independent 
experimentally designed test samples. Each of these 5 steps is further developed in the following sub-sections. 

2.5.1. Setting explanatory variables 
The dataset of exploratory variables included 21 environmental variables divided into 6 topographic variables and 1 geological 

variable encoded in 15 dummy variables (Table 2). The geological variables were aligned to the topographic variable grid in the French 
projection system (EPSG 2154) using nearest-neighbor interpolation. The size of this dataset was ca. 1 TB. 

2.5.2. Training and test sampling 
The field plots in the three archive databases were divided into two datasets using spatial hold-out with 10 × 10 km blocks [91]: 

90% of the plots (i.e. 125,573 plots, of which 39% were wetland) were used as training samples, and the remaining 10% (11,935 plots, 
of which 33% were wetland) were used as first test datasets. This 10 km distance was calculated using the spatial autocorrelation 
distance of each explanatory variable. The field plots from the experimentally designed stratified sampling (i.e., 3012 plots, of which 
64% were wetland) were used as an independent test dataset. 

2.5.3. Random forest modeling 
Wetland distribution was modeled for the entire study site using a single RF model [92] that has been widely used to map this 

ecosystem [26]. RF models have mapped wetlands more accurately than other types of models, such as support vector machine, 
maximum likelihood, or decision tree [14,26], since they can consider many variables from different sources and have little sensitivity 
to outliers and over-learning [93]. The model was calibrated using 10-fold cross-validation with a 10 × 10 km spatial constraint [91]. It 
was then hyper-parameterized using the Bayesian PR-AUC index, which is an appropriate performance index for binary modeling with 
unbalanced sampling [94]. Specifically, the parameter for the number of variables considered in each branch of the decision tree was 
estimated. The calibrated model was then applied to mainland France, which yielded a wetland suitability map with continuous values 
from 0 (low suitability) to 100 (high suitability). The importance score of each explanatory variable in the RF model was calculated as 
the mean decrease in accuracy divided by its standard deviation across the 10 folds, and then scaled from 0 to 100 [95]. For con-
sistency, the importance scores of the 15 dummy geological variables were summed. 

Table 3 
Characteristics of the nine existing wetland maps compared to the study’s binary map.  

Coverage Acronym Description Resolution 
(m) 

Ground- 
water 
modeling 

Open-water 
observations 

Vegetation 
observations 

Reference 

World CW_TCI Composite global wetland map (topography- 
climate wetness index) 

500 ✓ ✓  [35] 

World CW_WTD Composite global wetland map (water table 
depth) 

500 ✓ ✓  [35] 

World GLS Copernicus Global Land Service (class 
“herbaceous wetland”) 

100  ✓ ✓ [115] 

Europe SWEDI Spatial wetland distribution 1000 ✓  ✓ [42] 
Europe CLC Copernicus CORINE Land Cover (classes “Rice 

fields”, “Inland marshes”, “Peat bogs”, “Salt 
marshes”, “Salines”, “Intertidal flats”, “Coastal 
lagoons”, and “Estuaries”) 

100  ✓ ✓ [113] 

Europe RIP Copernicus Riparian zones 25 ✓ ✓  [46] 
Europe WW Copernicus Water & Wetness 10  ✓  [125] 
Europe ELC10 Land cover map of Europe (class “Wetland”) 10  ✓ ✓ [114] 
France PW Potential wetlands 50 ✓   [43]  
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2.5.4. Local thresholding 
Thresholding, which transforms the probabilistic output of the model (wetland suitability) into a binary map (presence/absence of 

a wetland), is a challenging step [56]. The probabilistic output of the model was thresholded by HER to consider local environmental 
characteristics. Since the original HER map was produced at 1:1,000,000 scale [64], the thresholded map would have had coarse edge 
effects. To address this issue, HER boundaries were adjusted to those of the topographic watersheds in the national hydrological 
database [86]. Thresholding values were determined using the archive test dataset. Specifically, model output was thresholded by 
expert interpretation of changes in the OA and F1-scores as a function of the threshold value (Supplementary material S1), with OA 
describing the importance of the "wetland" and "non-wetland" classes, and the F1-score describing that of the "wetland" class. The range 
of maximum accuracy values for both OA and F1-scores was determined before selecting the threshold that yielded the highest ac-
curacy within these ranges. Visual inspection of the resulted binary map was then performed using GIS for each HER to validate the 
threshold set. 

2.5.5. Accuracy assessment 
The second test dataset (i.e., derived from the experimentally designed sampling) was used to assess (by HER) the overall and local 

accuracy of the suitability map (using the PR-AUC) and the binary map (using the F1-score and OA). 

2.6. Comparison to existing wetland maps 

The accuracy of the binary map was compared to those of nine existing wetland maps with a global, European, or national coverage 
(Table 3). Local wetland field inventories were not considered since they covered only ca. half of mainland France in 2022. Soil plots 
that had hydromorphic features at depths of 30–50 cm were excluded from test datasets for the comparative analysis, since their 
classification as "wetland" may have depended on the definition used to build each of the nine wetland maps. As a result, 2603 
experimentally designed test plots (of which 58% were wetland) were used in the comparative analysis. A more detailed comparison to 
the nine wetland maps was also performed by HGM type. 

All analyses were performed using R software version 3.6.0 (R Core Team, 2019) and its blockCV [91], caret [96], terra [97], 
RSAGA [98], whitebox [99], and rgdal [100] packages. The maps were visually inspected and GIS figures were generated using QGIS 
software version 2.18.22 [101]. 

Fig. 4. Map of wetland suitability in mainland France derived from random forest modeling of topographic and geological variables. Each insert 
map focuses on a specific type of hydrogeomorphic wetland: A – depressional, B – flat, C – estuarine-fringe, D – lacustrine-fringe, E – riverine, and F 
– slope. 
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3. Results 

3.1. Wetland map 

In the RF model’s wetland suitability map, major valleys such as the Saône plain (HER 15) and the Rhine plain (HER 18) were 
evident, as were the Camargue (HER 6), the Gascogne moors (HER 13), and the Scarpe-Escault and Sologne sandy-clay marshes (HER 
20) (Fig. 4). In more detailed maps, the fine-grained pattern of the predicted suitability of each HGM type was clearly visible (Fig. 4 
A–F). In addition, the suitability predicted by the RF model was consistent with the field transects located on the wetland-continuum. 

When comparing this study’s binary map to the nine existing wetland maps for a Ramsar peatland (Fig. 5 A–K), the former was the 
most consistent with the field plots (Fig. 5 B). The advantage of using high spatial resolution (5 m) to define the fine-grained pattern of 
wetlands was clear when compared to the PW (50 m) or Composite global wetland (500 m) maps (Fig. 5 C, E, F). The Copernicus Water 
& Wetness map of Europe and Land cover map of Europe also have a fine-grained pattern (10 m), but they had high under- and/or over- 
detection bias (Fig. 5 H, K). In the other maps, large (Spatial wetland distribution (SWEDI), Copernicus CORINE Land Cover) or very 
large (Copernicus Riparian zones, Copernicus Global Land Service) under-detection bias was also observed (Fig. 5 D, G, I, J). 

3.2. Model accuracy 

For mainland France, the RF model’s suitability output had high statistical accuracy (test PR-AUC 0.76). Similar PR-AUC values for 
training (0.84, SD 0.01) highlighted little over-learning of the RF model. The RF model’s binary output also had satisfactory accuracy 
(F1-score 0.75, OA 0.67). 

The importance of explanatory variables to the model’s accuracy varied: VDCN, and to a lesser extent TWI and DTM, were the most 
important variables, while the geological and TPI variables had lower but nonetheless high importance (Fig. 6). 

At the local scale (HERs), the optimal thresholding value varied greatly, ranging from 0.15 for HER 2 to 0.62 for HER 18 (Sup-
plementary material S1). Model accuracy also varied per HER (Table 4). Specifically, the accuracy of the wetland suitability map 
ranged from lower values (PR-AUC 0.69 and 0.68) for HER 11 and 16 to higher values (PR-AUC 0.98 and 0.90) for HER 15 and 20. The 
accuracy of the binary map ranged from lower values for HER 21 (F1-score 0.43 and OA 0.53) and HER 6 (F1-score 0.63 and OA 0.51) 

Fig. 5. Comparison of the binary wetland map modeled in this study to the nine existing wetland maps of Ramsar peatland site 1266 in France 
(“Tourbières et lacs de la Montagne jurassienne”, 46.82◦N, 6.13◦E): A – Google Earth Images, B – This study, C – PW (Potential wetlands), D – SWEDI 
(Spatial wetland distribution), E − CW_TCI (Composite global wetland map - topography-climate wetness index), F – CW_WTD (Composite global 
wetland map - water table depth), G – RIP (Copernicus Riparian zones), H – WW (Copernicus Water & Wetness), I – CLC (Copernicus CORINE Land 
Cover), J – GLS (Copernicus Global Land Service), K – ELC10 (Land cover map of Europe). The characteristics of the maps are described in Table 3. 
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to higher values for HER 15 (F1-score 0.99 and OA 0.97) and HER 20 (F1-score 0.93 and OA 0.88). It should be noted that the 
suitability and binary maps had similar accuracy ranges for all HERs, except HER 21, for which the suitability map was highly accurate 
(PR-AUC 0.74), but the binary map was not (F1-score 0.43). 

The RF model’s binary map was significantly more accurate than the nine existing wetland maps (F1-score at least 0.14 points 
higher) (Table 5). Moreover, existing maps based on groundwater modeling (highest F1-score of 0.59 for the Potential wetlands map of 
France (PW)) were more accurate than those based only on open-water or vegetation observations (highest F1-score of 0.12 for the 

Fig. 6. Importance of the explanatory variables used by the random forest model to map wetlands. See Table 2 for definitions of the variable 
abbreviations. 

Table 4 
Accuracy by hydro-ecological region (HER) of wetland suitability maps (based on the precision-recall area under the curve (PR-AUC)) and 
binary maps (based on the F1-score and overall accuracy (OA)) calculated from the experimentally designed test dataset. na: not applicable.  

HER Samples PR-AUC F1-score OA 

1 0 na na na 
2 203 0.70 0.72 0.59 
3 335 0.81 0.74 0.73 
4 0 na na na 
5 173 0.72 0.77 0.72 
6 92 0.71 0.63 0.51 
7 0 na na na 
8 39 0.92 0.84 0.79 
9 341 0.74 0.71 0.60 
10 375 0.74 0.74 0.63 
11 110 0.69 0.68 0.61 
12 765 0.85 0.79 0.70 
13 130 0.81 0.81 0.72 
14 78 0.69 0.78 0.67 
15 103 0.98 0.99 0.97 
16 72 0.68 0.68 0.61 
17 0 na na na 
18 0 na na na 
19 0 na na na 
20 16 0.90 0.93 0.88 
21 138 0.74 0.43 0.53 
22 42 0.83 0.76 0.74  
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Copernicus Water & Wetness map of Europe). Furthermore, the model used to produce the binary map provided the best trade-off 
between user accuracy (0.68) and producer accuracy (0.78) compared to existing maps, such as SWEDI or ELC10, which provide 
higher user accuracy (respectively 0.70 and 1.00) but much lower producer accuracy (respectively 0.19 and 0.00). 

The RF model’s binary map was more accurate than any of the nine existing maps, regardless of HGM type (Table 6). Specifically, 
the largest increases in accuracy of this study’s map were for flat (+0.28 in F1-score and +0.24 in OA) and slope wetlands (+0.17 in F1- 
score and +0.06 in OA), followed by riverine and depressional wetlands (+0.12 in F1-score and +0.08 in OA for both HGM). In 
contrast, the RF model used in this study only slightly improved the mapping accuracy of lacustrine fringes (+0.04 in F1-score and 
+0.02 in OA) and estuarine fringes (+0.03 in F1-score and +0.01 in OA). Even with the increased accuracy, the depressional and slope 
wetlands were still identified least well (F1-scores 0.69–0.70, OA 0.63–0.66). 

4. Discussion 

4.1. Are environmental variables derived from remote sensing and archive field data relevant for modeling wetland distribution? 

In this study, mining archive databases provided free and ready access to several hundred thousand real field samples distributed 
evenly over mainland France, which is many more than the 16,000 or 24,000 samples used for the national wetland mapping in China 
[31] and Canada [33], respectively. In the absence of archive databases, collecting so many real field samples would have been 
impossible given budget and time constraints [14]. 

Although well structured, field archive databases inevitably contain "hidden" errors [102], especially related to geolocation and 
interpretation of the plots [52,103]. For example, the geolocation accuracy of some plots is likely to be approximate, especially for 
older plots collected with older GPS devices (±20 m). However, uncertainty probably influences model results little, since archive plots 
were rarely located near wetland boundaries. To decrease uncertainty in the interpretation of plots as much as possible, we verified the 
consistency between soil type and the depth of hydromorphic features. Despite this cleaning step, the samples probably still contained 
outliers. Nonetheless, several studies indicate that outliers have relatively little influence on the accuracy of RF models [93,104]. 

The topographic variables in this study had a spatial resolution of 5 m, which is unprecedented at the national scale, at which 
coarser-resolution (30–50 m) variables are usually used [27,31,43,44]. This was possible only by using the open-access DTM of IGN. 
Despite the known value of DTMs for mapping wetlands [16,17,42], we initially did not plan to include geological or soil variables in 
the model due to their qualitative format. However, preliminary tests based on topographic variables alone revealed that wetlands 
were under-detected on clay or marl flats. Since soil maps were not available at a fine spatial scale, we used the geological map. The 

Table 5 
Accuracy of the binary wetland map modeled in this study and of the nine existing wetland maps, in descending order of the F1-score. OA =
overall accuracy, UA = user’s accuracy, PA = producer’s accuracy. See Table 3 for definitions of the map abbreviations.  

Map F1-score OA UA PA 

This study 0.73 0.66 0.68 0.78 
PW 0.59 0.57 0.66 0.54 
CW_TCI 0.43 0.48 0.59 0.33 
CW_WTD 0.40 0.47 0.58 0.30 
SWEDI 0.30 0.48 0.70 0.19 
RIP 0.12 0.44 0.63 0.07 
WW 0.12 0.44 0.69 0.06 
CLC 0.04 0.43 0.69 0.02 
GLS 0.01 0.42 0.58 0.01 
ELC10 0.01 0.42 1.00 0.00  

Table 6 
Accuracy (F1 = F1-score, OA = overall accuracy) of the binary wetland map modeled in this study and of the nine existing wetland maps by 
hydrogeomorphic (HGM) type, in descending order of the F1-score. See Table 3 for definitions of the map abbreviations. n refers to the number of test 
samples used to calculate the accuracy indices per HGM type.   

Riverine (n = 953) Depressional (n =
228) 

Slope (n = 695) Soil flats (n = 501) Estuarine fringes (n =
97) 

Lacustrine fringes (n =
129) 

Map F1 OA F1 OA F1 OA F1 OA F1 OA F1 OA 
This study 0.76 0.68 0.70 0.66 0.69 0.63 0.80 0.72 0.75 0.67 0.75 0.70 
PW 0.64 0.60 0.58 0.58 0.52 0.57 0.52 0.48 0.72 0.66 0.71 0.68 
CW_TCI 0.49 0.51 0.53 0.47 0.25 0.47 0.38 0.43 0.69 0.55 0.48 0.50 
CW_WTD 0.48 0.51 0.49 0.45 0.19 0.46 0.31 0.39 0.68 0.56 0.48 0.49 
SWEDI 0.29 0.49 0.44 0.56 0.12 0.46 0.39 0.46 0.41 0.43 0.33 0.50 
RIP 0.25 0.47 0.05 0.47 0.03 0.45 0.01 0.32 0.15 0.47 0.10 0.45 
WW 0.07 0.44 0.20 0.51 0.10 0.47 0.04 0.33 0.48 0.58 0.21 0.47 
CLC 0.02 0.44 0.09 0.48 0.04 0.45 0.00 0.31 0.26 0.48 0.18 0.50 
GLS 0.01 0.43 0.05 0.48 0.00 0.45 0.00 0.32 0.00 0.43 0.08 0.44 
ELC 10 0.00 0.43 0.03 0.48 0.00 0.45 0.00 0.32 0.00 0.43 0.05 0.46  
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automatic binary encoding of this qualitative variable into a quantitative format avoided a subjective and time-consuming expert--
based transformation. This geological variable, which had relatively high importance for model accuracy, effectively corrected the 
biases observed for flat wetlands. 

VDCN was clearly the most important variable for mapping the wetlands of mainland France, perhaps due to the dominance of 
riparian wetlands, for which VDCN is important [41,43,46]. The quality of VDCN depends on the completeness of the vector layer of 
the hydrographic network. Although this layer is of relatively good quality in France and has been validated through many field 
campaigns, it remains non-exhaustive, especially near springs. Visual inspections revealed that TWI supplemented VDCN well. TWI 
was the second-most important variable in the model, which supports studies of Higginbottom et al. [48] and Chignell et al. [60], who 
recommended generating TWI at a very high spatial resolution to map wetlands. A DTM, which contained the raw data used to 
generate the other topographic variables, was considered an explanatory variable to identify estuarine-fringe wetlands [81]. Although 
these types of wetlands cover a large area on the French coastline, the high importance of the DTM for the model was unexpected. In 
contrast, although the TPI variables successfully identified some unconnected depressions (Table 6, Fig. 4A), we expected them to have 
more importance. They may have had lower importance due to over-detection, since the model predicted that all depressions were 
wetlands [28], which is not always true. 

The results of using four topographic variables and one geological variable to better map all HGM types in mainland France are 
encouraging, even though slope and depressional wetlands were mapped the least accurately. Using satellite-derived variables to 
characterize soil moisture via SAR [29] and/or thermal sensors [105,106] could increase the accuracy of mapping these HGM types. 

4.2. Can AI be used to map wetlands with acceptable accuracy? 

In this study, a single RF model was used to produce a national wetland map with good accuracy and low over-fitting, despite the 
high biogeographic diversity throughout mainland France. This study addressed this methodological issue using an independent 
metric of threshold accuracy (i.e., PR-AUC), which was well suited to the model’s raw probabilistic output. In addition, we used spatial 
blocks of 10 × 10 km during cross-validation to avoid the influence of spatial autocorrelation. 

In agreement with Chignell et al. [60], we considered the wetland suitability map as the most informative output. However, we also 
derived a binary map to compare it to existing wetland maps and meet requests of french wetland managers and policy makers. The 
thresholding step, which converts a suitability map into a binary map, is often considered challenging in wetland inventories [31,44, 
45]. In this study, we used accuracy indices (F1-score and OA) to apply a locally specific and expert-based threshold. Our results 
highlight that the commonly applied default threshold of 0.5 [46] is likely not optimal, with lower thresholds for mountainous areas (e. 
g. HER 1 and 2) and higher thresholds for lowland areas (e.g. HER 12 and 18). This supports the research of Mao et al. [31], who 
adjusted thresholds by ecological region to map wetlands in China. 

The expert-based threshold in this study was determined from real field samples, which provides good reliability, but requires more 
samples than those used to fit the model. Feasible alternatives when there are too few field samples include collecting pseudo field 
samples by visually interpreting images at very high spatial resolution [44] or using Ostu’s thresholding method [45]. As Rebelo et al. 
[24] indicated, the expert and local thresholding approach requires map users to adjust the threshold based on their own expertise. For 
example, user participation would be desirable for HER 21, in which the small number of samples probably resulted in a non-optimal 
threshold given the large range of accuracy of the suitability and binary maps. 

The OA of this study’s wetland map (67%) is lower than that of other studies, such as 82% in Albania [45], 86% in Canada [33], and 
95% in China [31]. This could be due to the validation method used, since accuracy in the other studies was calculated from samples 
collected mainly by visually interpreting remote sensing images at very high spatial resolution, and not from real fields, which were 
sometimes collected far from wetland boundaries, which increases uncertainty when assessing the accuracy of wetland maps [16]. In 
contrast, the validation protocol applied in this study followed best practice recommendations by using real independent field plots 
[107] collected along wetland/non-wetland transects [108], which yielded a lower but more reliable estimate of model accuracy [54]. 

Model accuracy differed among regions, perhaps due to the distribution of “wet soil” archive samples in the landscape: accuracy 
was lowest for regions with major limestone uplands (HER 11) and for Corsica (HER 16), where wetlands are rare and the probability 
of having a “wet soil” archive sample is low. In contrast, accuracy was highest for regions covered by a large proportion of wetlands, 
such as the Saône plain (HER 15) or regions with sandy-clay deposits (HER 20), where a “wet soil” archive sample is more likely. 

The costs of this study were low. The archive data, DTM, geological map, and software used were free, and data were processed on a 
university server (Intel® Xeon® 2.1 GHz, 48 cores, 384 GB RAM). The highest costs were for human resources, which included 
employing (i) one geomatics engineer for one year to collect and harmonize the archive data, generate the explanatory variables, and 
develop the script, and (ii) three ecological engineers for nine months each to collect validation plots. From an operational viewpoint, 
it took much less time to run the model (ca. 5 days for mainland France) than to prepare the data (especially to harmonize the archive 
databases) and design the script. 

Given the large number of samples available, future analysis will focus on applying deep-learning modeling, which several studies 
have described as useful for characterizing wetlands [109–111]. In addition, mapping HGM types within a wetland mask [112] would 
be an interesting approach for assessing wetland functions. 

4.3. What are the benefits of the resulting maps compared to existing wetland maps? 

Two main insights emerged from comparing the study’s maps to existing wetland maps. First, our model generated a wetland 
suitability map, which had been previously provided only by the Copernicus Riparian zones map [46]. Second, the study’s binary map 
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is more accurate than the wetland maps produced in other previous studies for the following reasons: (i) we used environmental 
variables that consider both existing and damaged wetlands rather than vegetation, soil and water indices that consider only existing 
wetlands [113–115]; (ii) we used a high spatial resolution DTM (5 m), which allowed small wetlands (depressions, springs) to be better 
identified and refined the delineation of large wetlands [41], compared to broader spatial resolution DTMs [35,42]; and (iii) we 
combined complementary environmental variables, especially the multiscale TPI and a geological variable, which better identified all 
HGM types, notably flat and depressional ones that were often omitted [43,46]. The SWEDI and the Composite global wetland maps 
may have had lower accuracy in part due to the mismatch between their resolution (≥500 m) and the fine scale of the experimentally 
designed samples used to validate them. 

Since wetlands are fine-grained and scattered distributed ecosystems, our fine-scale maps will help to better target conservation 
policies at different scales. At the global scale, these maps will improve the implementation of the Ramsar Strategic Plan 2016–2024 
(targets 5 ‘maintenance of ecological character’ and 12 ‘restoration’) [116], the Aichi Biodiversity (Targets 1 ‘conserve biodiversity’, 5 
‘Habitat loss halved or reduced’ and 11 ‘conserve at least 17% of terrestrial and inland water, and 10% of coastal and marine areas’) 
[117], the UN Sustainable Development Goals (targets 6.6 ‘protect and restore water-related ecosystems’ and 15.1 ‘ensure the con-
servation … of terrestrial and inland freshwater ecosystems’) [118], but also the Paris Agreement on Climate Change [119]. At the 
European scale, these maps will refine the areas within which the status of wetlands is assessed for the Water Framework Directive 
[120] and the Habitat Directive [121] reporting. At the national scale, these maps will contribute to the mapping of green corridors 
[122], will support biodiversity plans [123] and the assessment of ecosystems and ecosystem services [124]. At the local scale, these 
maps can help refine wetland inventories and urban plans, for example to prevent scattered urbanization, or to restore damaged 
wetland areas. These maps can also be used as a communication tool to raise awareness among citizens and decision-makers on 
wetland conservation. 

Wetland mapping is an ongoing process that is updated as technological advances and new data become available [13]. Consid-
ering existing inventories for France and based on the groundwater-modeling approach, version 1 would be the SWEDI map [42] at 1 
km spatial resolution, version 2 would be the PW map at 50 m spatial resolution [43], and version 3 would be this study’s map at 5 m 
spatial resolution. 

5. Conclusion 

This study highlighted that a national wetland mapping with a fine-grained pattern (5 m) and a good accuracy can be produced 
automatically by AI using archive field data and free environmental variables. The results showed that: (i) all wetlands were identified 
regardless of their HGM type (riverine, depressional, slope, soil flats, estuarine fringes, and lacustrine fringes) or status (existing or 
damaged); (ii) the suitability map revealed the wetland-non-wetland continuum; (iii) the binary map was more accurate than existing 
wetland maps; (iv) the high spatial resolution (5 m) of the wetland maps enabled more targeted conservation measures; and (v) the 
operational and low-cost approach developed to map wetlands in mainland France can be transferred to other countries. This study 
also highlighted two methodological limitations: (i) the proposed approach is based on the definition of a threshold value to produce 
the binary wetland map, which was challenging but could be refined based on local field expertise, and (ii) the accuracy of slope and 
depression wetland modeling was moderate and needed improvements. Using satellite variables that combine soil moisture and new 
deep-learning models is a promising avenue to further improve identification of these threatened ecosystems. 
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[65] RPDZH, Réseau Partenarial des Données sur les Zones Humides, 2022 (accessed March 3, 2022), http://www.reseau-zones-humides.org/sizh.aspx. 
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[75] P.H. Julve, Baseflor. Index botanique, écologique et chorologique de la flore de France, Institut Catholique de Lille, Lille, 1998. 
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