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Abstract: Portable spectroscopic instruments are an interesting alternative for in-field and on-line
measurements. However, the practical implementation of visible-near infrared (VIS-NIR) portable
sensors in the forest sector is challenging due to operation in harsh environmental conditions and
natural variability of wood itself. The objective of this work was to use spectroscopic methods as an
alternative to visual grading of wood quality. Three portable spectrometers covering visible and near
infrared range were used for the detection of selected naturally occurring wood defects, such as knots,
decay, resin pockets and reaction wood. Measurements were performed on wooden discs collected
during the harvesting process, without any conditioning or sample preparation. Two prototype
instruments were developed by integrating commercially available micro-electro-mechanical systems
with for-purpose selected lenses and light source. The prototype modules of spectrometers were
driven by an Arduino controller. Data were transferred to the PC by USB serial port. Performance of
all tested instruments was confronted by two discriminant methods. The best performing was the
microNIR instrument, even though the performance of custom prototypes was also satisfactory.
This work was an essential part of practical implementation of VIS-NIR spectroscopy for automatic
grading of logs directly in the forest. Prototype low-cost spectrometers described here formed the
basis for development of a prototype hyperspectral imaging solution tested during harvesting of
trees within the frame of a practical demonstration in mountain forests.

Keywords: NIR spectroscopy; wood defects; portable instruments; in-filed measurement

1. Introduction

Wood log grading is an action used to determine a set of characteristics regarding wood quality
that are later used by forest resources managers, traders and manufacturers. Overall log quality and
prospective end use have a major influence on the log’s economic value. The grader’s challenge is to
properly assess all visible characteristics of each log, including the log’s geometry and presence/location
of defects. Subsequently, the expert can identify the quality class corresponding to such a unique set of
characteristics. Strict following of clearly defined assessment procedures as well as an objective grading
verdict corresponding to established grading rules must be guaranteed along the whole inspection
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process [1]. Consequently, the role of the expert grader is to assure proper assessment and, particularly,
determine the log’s gross dimensions to estimate what portion of the log is available to produce a
given product and evaluate the quality of the product that could be produced from the log.

The procedure for log quality grading is formalized and described in dedicated standards (e.g.,
EN 1309, EN 1316) or established as commonly recognized procedures [2]. Grading results in a quality
class, typically A, B, C or D, with the first considered as superior. In that case, a trained expert visually
detects all wood imperfections or defects as well as manually measures log dimensions and geometrical
features. Commercial value of the resource is determined after combining all the available information
into the unique quality grade. An important limitation of this approach is that it relies on visual
assessment by a person, which, from its nature, is subjective and of limited reliability/repeatability.
Industries, therefore, wish to adopt more objective methodologies for resource quality determination
by integrating sensors and novel descriptors of the quality, better adjusted to specific needs of the
value chain players [3].

Wood defects are abnormalities or irregularities found in wood that may be responsible for reducing
wood strength, durability, appearance and, as a consequence, its economic value. Defects investigated
in this work were related to the natural growth of trees, which has an effect on development of wooden
tissue during tree lifetime under certain environmental conditions and influences. Recently used
methods rely on visual rating, which is subjective, operator-dependent, time-consuming and not
precise. Therefore, it is desired that grading should be conducted by means of automatic assessment to
assure a faster, more reproducible and reliable way of quality sorting.

Near infrared (NIR) spectroscopy has great potential for wood quality evaluation [4,5], mapping of
wood properties [6,7] and mechanical properties estimation [8]. However, its practical application
in field/forest is challenging [9–11]. Portable NIR instruments were successfully used in the field for
tree breeding [12–14], prediction of tracheid length [15], assessment of wood and fiber properties
in standing mountain pine beetle-attacked trees [16], wood species recognition [17], wood moisture
content prediction [18] and estimation of leaf quality [19]. However, until now, only a few applications
have been implemented in real-world wood processing industries, mostly for on-line sorting of wooden
products and quality control of production [20–22].

Vibrational spectroscopy techniques are well suited to be used as portable or handheld due
to their speed, selectivity, simplicity and no need for samples preparation [23]. Recent hardware
development, combined with a miniaturizing trend in highly performing sensors and accessories,
has enabled the development of state-of-the-art portable NIR equipment dedicated for forest/wood
industries. Such instruments should operate in harsh environments with due precision, reliability and
accuracy. Relatively fast measurement time, lightweight and ergonomic design, intuitive user interface
and absence of moving parts makes such equipment an interesting alternative for in-field and on-line
measurements [24–26].

The overall objective of this work was to use spectroscopic methods as an alternative to visual
grading usually performed while assessing wood quality. Sensors were intended both for manual use
and installation on timber processor heads, making possible an automatic grading of logs during their
production in the forest or at the roadside. For that reason, an original solution for a low-cost and
portable spectroscopic instrument capable of automatic detection of selected wood defects was built
and examined.

2. Materials and Methods

2.1. Sample Collection

Twenty-five wood discs of Norway spruce (Picea abies L. Karst) cut from trees of diameters between
100 and 400 mm were collected in Forchtenstein (Burgenland, Austria) in the spring of 2015. Directly after
sampling, all samples were wrapped in aluminum and plastic foil, frozen and stored at −21 ◦C in
order to avoid wood drying and/or biological degradation. Laboratory measurements of the defrosted
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samples were performed at a surface temperature of approximately 15 ◦C, without any additional
sample conditioning or surface preparation. The target set of researched logs contained several wood
defects frequently present in naturally grown trees, such as resin pockets, compression wood, knots and
decay. Some examples of the experimental samples and diverse wood deficiencies identified on the
disks’ surface are shown in Figure 1. In addition to defected samples, a set of optimal quality wooden
disks (containing normal wood tissue and bark) was collected in order to allow direct comparison
between diverse quality classes. As a result, it was possible to measure spectra of at least 36 independent
replicas for each defect.
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Figure 1. Experimental samples in a form of wooden disks containing diverse wood defects as used for
spectroscopic measurements.

2.2. Spectroscopic Measurements

Three portable spectrometers covering different spectral ranges were selected for testing.
A summary of technical characteristics is presented in Table 1 and Figure 2.

Table 1. Basic characteristic of tested spectrometers.

Bruker MPA MicroNIR
Pro 1700

Hamamatsu NIR
C11708MA

Hamamatsu VIS
C12666MA

sensor technology FT (Fourier
Transform)

Linear Variable
Filter

MEMS
micro-electro-mechanical

systems

MEMS
micro-electro-mechanical

systems
range (nm) 833–2500 950–1650 640–1050 340–780

resolution (nm) 0.8 6.2 20 15
weight (g) 15,000 64 9 5
portable no yes yes yes

instrument available on
the market yes yes no no

measurement time (s) for
a single spectrum 30 0.05–0.5 0.05–0.5 0.05–0.5
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Figure 2. Absorbance spectra measured on the wood surface by different instruments evaluated.

The commercially available sensor MicroNIR Pro 1700 produced by VIAVI (Santa Barbara, CA,
USA) was used for both laboratory and in-field measurements. The sensor is compact and includes all
components (linear variable filter, CCD detector, light source and processing unit) integrated within
a single easy-to-handle assembly. The sensor was connected to a portable laptop computer by USB
cable and did not require any additional electric power supply. Spectra were acquired with a scanning
frequency of 80 Hz allowing 12.5 ms of the integration time. The effective spectral range covered by the
senor was 950–1650 nm (10,526–6060 cm−1), with the extreme parts of the spectra excluded due to the
low signal-to-noise ratio. A custom software for data acquisition and post-processing was developed
in LabView by integrating tools available in the Software Development Kit.

In addition, Hamamatsu C12880MA and C11708MA (Hamamatsu City, Japan) micro-spectrometers
were identified as low-cost instruments potentially useful for measuring experimental samples.
Both sensors cover different spectral ranges, including 340–780 nm (29,411–12,820 cm−1) and
640–1050 nm (15,625–9524 cm−1) for HamamatsuVIS (C12880MA) and HamamatsuNIR (C11708MA),
respectively. The commercially available hardware included only a spectrometer module integrating
optical and electronic components assembled together in a compact and resistant box. It was necessary,
therefore, to build fully functional instruments by adding focusing optics, illumination and signal
processing units. Detailed description of the developed prototype instruments is presented in the
following chapter.

Portable instruments were compared with a benchmark FT-NIR MPA (Fourier Transform-Near
infrared Multi-Purpose Analyzer) spectrometer produced by Bruker Optics (Ettlingen, Germany).
Absorbance spectra were acquired by means of a fiber optic probe covering the measurement area
of 10 mm2. The spectral range of the FT-NIR instrument was 1000–2380 nm (10,000–4200 cm−1) and
the zerofilling factor was 2. Fifty scans per spectrum were collected with a resolution of 8 cm−1.
Spectra acquired by FT-NIR instrument were averaged to minimize natural variability due to anatomical
alterations within investigated wood samples. Therefore, these were used as model spectra related to
specific wood defects in order to highlight physical-chemical differences as recorded by near infrared.
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2.3. Prototypes Development

The core of the first prototype sensor was micro-spectrometer Hamamatsu C11708MA, capable of
measuring electromagnetic radiation in the near infrared spectral range with a spectral resolution
of 20 nm. The sensor itself is compact (thumb size: 27.6 × 16.8 × 13 mm3) and light (weight: 9 g).
However, it does not include any focusing optics nor built-in illumination. For that reason, one × 60
Zoom Mini Phone Camera Lens Microscope Magnifier was installed in front of the spectrometer and a
second lens in front of the illuminating bulb, as shown in Figure 3. The solution was cost-effective and
allowed measurements at an optimal distance of D = 3 mm between lenses and the object surface.
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Figure 3. Focusing optics used in prototype spectrometers (a), the lenses, spectrometer with illumination
installed on the breadboard (b) and assembled instruments ready for measurements (c).

Selection of the optimal illumination was the most challenging task and several light sources
(including LED illuminators, halogen and fluorescence bulbs) were chosen for testing during the
preparatory phase. Images of some evaluated bulbs as well as responses from the HamamatsuNIR
spectrometer are presented in Figure 4. In this case, the spectra of the light reflected from the reference
surface (Spectralon) are plotted together. Considering its compact size, sufficient light intensity
and optimal coverage of the complete spectral band, bulb #3 was selected for integration within
the prototype instrument. All parts, including spectrometer, optics, illumination and controller
unit, were assembled together in a simple carton box protecting the optical system from external
illuminations (Figure 3).

A similar procedure was implemented for setting up the second sensor (Hamamatsu C12880MA),
where identical light source (bulb #3) and focusing optics were integrated with the spectrometer.

The electronic system used for controlling both spectrometers was developed on Arduino
UNO microcontroller frames. The simplified wiring schema for connections is presented in Figure 5.
The system worked properly in that configuration, even though it is recommended to add digital buffers
for low power electronic circuits. The basic software code uploaded to the microcontroller internal
memory is provided as Appendices A and B for Hamamatsu C11708MA and C12880MA, respectively.
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Figure 4. Different sources of light tested for suitability in developed prototypes and the spectral
response recorded by the Hamamatsu NIR C11708MA sensor.
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Figure 5. Connection diagram of Hamamatsu C12880MA (a) and C11708MA (b) micro-spectrometers
to the Arduino UNO microcontroller.

Total cost of the hardware required for implementing the prototype in-field systems presented
here varied from a few hundred (Hamamatsu sensors) to several thousands (MicroNIR sensor).
However, additional resources should be considered when integrating these with a dedicated controller
(instead of a laptop PC as used in this study) as well as all-weather cover and protection. Even then,
overall investment to that solution is far less costly when compared to the corresponding laboratory
equipment (Fourier transform infrared (FT-NIR)) and still provides a unique set of quality characteristics
impossible to acquire with alternative technologies.

2.4. Data Evaluation and Mining

Two alternative classification methods, PLS-DA (Partial Least Square Discriminant Analysis)
and SVMC (Support Vector Machine Classifier) were used for spectroscopic data post-processing.
PLS_Toolbox 8.0 (Eigenvector Research, Manson, WA, USA) and LabView 13 (National Instruments,
Austin, TX, USA) were used as software platforms for spectral data analysis and the generation
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of chemometric models. The best configuration for the model was identified with the Model
Optimizer software tool as part of the PLS_Toolbox package. Optimization included testing of all
combinations for discrimination algorithms, principal components number, spectra pre-processing
and selected ranges of spectra. Extended Multiplicative Scatter Correction (EMSC), spectra smoothing,
first and second derivatives (Savitzky-Golay), as well as area normalization, were used as spectra
pre-processing routines.

3. Results and Discussion

3.1. Quality Parameters of Logs Detectable by NIR Spectroscopy

Visual grading is the traditional method for determining log quality and is based on types,
sizes and positions of physical characteristics that are not allowed for each quality class. A short
description of wood defects downgrading Norway spruce log quality class is briefly summarized below.

Knots are the portion of a branch or limb that has been surrounded by subsequent xylem grown
during tree life. The size, type and distribution of knots have the most important impact on lumber
mechanical resistance and are main considerations when applying grading rules. Knot size (usually
diameter) is measured in centimeters. The severity of grain deflection caused by the knot is correlated
with its size. The knot reduces lumber (log) quality when its diameter is >2 cm. The distribution of
knots in logs depends on the tree species and position within the stem. It is also determined by the
growth characteristics of the stand and the age of the tree among the others.

Resin pockets are small discontinuities within the xylem that are filled with resin and wound
tissue. They are usually occluded after some years of wood formation and tree growth. The occurrence
of resin pockets is characteristic for softwoods possessing resin canals (such as Norway spruce) or
trees exposed to stresses (animal/insect attacks, sites exposed to winds, etc.). The influence of resin
pockets on the strength properties is insignificant; however, it downgrades visual appeal of products
made from such wood and may result in continuous release of the resin on the wood surface when it is
used for high-end finishing products (e.g., clear wood, windows, veneers).

Compression wood is a type of defect that tends to form in conifers exposed to strong winds
or trees growing on a slope. Compression wood is often characterized by a dense hard brittle grain
and reacts to seasonal moisture changes. Properties of compression wood are considerably different
from those in normal mature wood. Compression wood tracheids, for example, are about 30% shorter
than normal and have higher microfibril angle. In addition, compression wood contains about 10%
less cellulose and 8–9% more lignin and hemicelluloses than normal wood. These factors reduce
the desirability of compression wood for pulp and paper manufacture. Compression wood not only
yields less cellulose but produces low strength pulp. The general effects of compression wood on
the performance of sawn timber are reduction in the strength, stiffness and dimensional stability,
resulting in a decrease in yield of high-quality end products. Compression wood may cause problems
in processing the log by exhibiting bow and spring in the manufactured product.

Rot is caused by a variety of fungi that break down and digest wood chemical components.
Fungi attack wood according to their specific enzymatic system. Brown-rot fungi have limited
impact to lignin structure; however, they easily degrade polysaccharides. White-rot fungi have the
capability to degrade mainly lignin structure but also carbohydrate wood cell components (cellulose
and hemicellulose) [27]. Rot is the wood defect for which quality grade reduction is obligatory.
Rot fungus enters the tree through a root, broken branch, damaged treetop or scar on the stem. Logs cut
from older trees are suspected to contain more developed rot. The final stage of rot is a complete or
extensive material loss forming internal cavities.

Finally, bark, which is not a wood defect but the tree’s external protective layer, might be detected
by spectroscopy. Bark tissues make up 10–20% of tree weight and consist of various biopolymers,
tannins, lignin, suberin, suberan and polysaccharides [28]. The wood/bark ratio is an important
parameter that affects lumber yield [29].
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3.2. Model Spectra of Wood and Wood Defects

NIR spectrometers are highly suitable for assessment of heterogeneous organic matter,
including living trees and wood [3,10,30]. The NIR spectrum contains information regarding both
chemical composition and physical state of measured samples. The spectral peak position and
its shape corresponds to the presence of specific functional groups possessing dipole momentum.
The low frequency component of spectra (scatter) is related to the optical properties of the matter and
highly depends on sample preparation and presentation. FT-NIR spectroscopy, as the most sensitive
technique among those tested in this research, was selected to highlight effects of wood defects on the
spectral fingerprint. Therefore, Figure 6 presents a second derivative spectra for all wood deficiencies
investigated. The interpretation of spectra includes identification of spectral features differentiating its
outline and assigning these according to the literature references [31,32] as summarized in Table 2.

An unwanted effect of the derivatization process is that the signal-to-noise ratio decreases at
higher orders of derivatives. It is a consequence of the discrimination effect and the fact that, by its
nature, the noise contains the sharpest features in the spectrum. As a consequence, the bandwidth of
noise corresponds to the interval of the spectral data used in the derivative calculation. The decrease
in signal-to-noise ratio can be reduced by using smoothing properties of the Savitzky-Golay algorithm,
even if a high degree of smoothing can distort the derivative spectrum [33].

Table 2. Band assignment characteristic for wood, according to Schwanninger et al. [31] and
Vagnini et al. [32].

Wavenumber
(cm−1)

Wavelength
(nm) Wood Component Functional Group

1 4198 2382 holocellulose CH
2 4280 2336 cellulose CH, CH2
3 4404 2270 cellulose, hemicellulose CH, CH2, OH, CO
4 4620 2164 cellulose, hemicellulose OH, CH
5 4890 2044 cellulose semicrystalline and crystalline OH, CH
6 5219 1916 water OH
7 5464 1830 cellulose semicrystalline and crystalline C=O
8 5587 1790 cellulose semicrystalline and crystalline CH
9 5700 1754 extractives CH2

10 5800 1724 hemicellulose (furanose/pyranose) CH
11 5812 1720 extractives CH2
12 5883 1700 hemicellulose CH
13 5909 1692 extractives CH
14 5980 1672 lignin CH
15 6117 1635 extractives CH2
16 6287 1590 cellulose crystalline OH
17 6450 1550 cellulose crystalline OH
18 6722 1487 cellulose semicrystalline OH
19 6785 1474 cellulose OH
20 7008 1426 amorphous cellulose/water OH
21 7309 1368 aliphatic chains CH
22 7344 1361 extractives CH
23 7418 1348 aliphatic chains CH

The most dissimilar spectrum was that corresponding to the resin pocket. Resin serves to protect
the tree from dehydration and microbial attack and is typically composed of monoterpenes and resin
acids [34]. Resin pockets spectra contain unique spectral bands not present in other wood features
(5700, 5812, 5909, 6117, 7344 cm−1). All of the above are assigned to -CH or -CH2 groups of aromatic
and aliphatic chains in wood extractives [32]. Knots, compression wood and bark contain more lignin;
therefore, their band at 5980 cm−1 is more profound as compared to the reference spectrum of normal
wood. The model spectrum of decayed wood appeared to have similar shape to that of normal wood.
However, it was noticed that the decay on the samples investigated was at the very early stage when
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degradation of woody polymers was still negligible. Therefore, it was problematic to assuredly assign
specific decay type (white or brown rot) on the basis of FT-NIR spectra only.
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Figure 6. Model spectra of wood and wood defects detected by Fourier transform infrared
(FT-NIR) instrument.

3.3. Recognition of Wood Defects by Automatic Classification Methods

Two alternative chemometric methods, PLS-DA and non-linear SVMC, were used for spectral
data classification. Both methods belong to the group of supervised techniques and require
complete information regarding the membership of each sample/measurement to a certain category.
The algorithm is capable (after proper calibration) to classify a new/unknown sample into one of the
pre-defined classes on the basis of its spectral pattern [35].

PLS-DA is a multivariate inverse least-squares analysis method used to classify samples.
It decomposes the spectra as linear combinations of principal components (PC) that express the
major part of information contained in the overall dataset. The predictor variables or latent variables
(LVs) are generated from the input variables to maximize the variance between sample classes in the
model [36]. PLS-DA is widely used in the analysis of multivariate data. It helps to determine if groups
of samples are distinct and identify all the spectral features that can describe the differences between
groups. All these differences are expressed as model loadings or latent variables. An important
advantage of PLS-DA is its availability to handle highly colinear and noisy data. Moreover, it provides
a visual interpretation of a complex dataset through easily interpretable scores plots that highlight the
differences between groups.

SVM is a flexible method that makes no assumption regarding data. It is a nonlinear classification
method that constructs a set of hyperplanes in a high or infinite dimensional space and a good
separation is achieved by the hyperplane that has the largest distance to the nearest training data
point of any class [36]. It works by obtaining the optimal boundary of two groups in a vector space
independent of the probabilistic arrangements of vectors in the training set. When the linear boundary
in low dimension input space is not enough to separate two classes, SVM can create a hyperplane
that allows linear separation in the higher dimension feature space [35]. Support Vector Machine is a
supervised machine learning algorithm useful for solving both classification and regression problems.
In this approach, data are presented in n-dimensional space, corresponding to the number of variables
describing the data. In contrast to PLS-DA, SVM is not influenced by the distribution of diverse sample
classes. The methods allow flexibility in the choice of kernel function that leads to the separation of
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two groups of samples by solving either linear or non-linear problems. An important limitation is that
SVM does not provide interpretable model’s statistics, such as scores or loadings [37].

Results of the PLS-DA classification for MicroNIR and both prototype Hamamatsu sensors are
presented in Figure 7 in a form of the confusion table. All columns located on the diagonal running
from bottom left to top right (excluding unsigned row) correspond to the properly identified samples.
In that case, the spectra of a given defect was identified as a member of the class describing exactly such
defect. Therefore, it is desired that the optimal discrimination model results in majority of validation
samples appearing on the diagonal of the confusion table. All the other spectra (not laying on the
table diagonal) are considered as undesirable or wrong classifications. The case when normal wood is
identified as defect is defined as false negative, in contrast to false positive when deficient wood as
identified as normal. A convenient numerical quantifier of the discrimination model accuracy is the
success rate (SR) computed as a percent ratio of the correctly classified to total number of samples.
It has to be noted that more than 1800 independent spectra were used for the models development,
considering 66% of spectra used for calibration and 34% for independent data set validation.
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Figure 7. Automatic identification of defects on wood samples with Partial Least Squares discriminant
analysis (PLSDA) (SR—success rate).

The PLS-DA model capably fit the microNIR spectral data and only five lateral variables (explaining
95.4% of the variance) were enough to reduce the cross-validation error of prediction below 15%.
The outline of loadings (variables) is presented in Figure 8, where all the spectral features allowing
proper samples differentiation can be identified. The classification decision was taken by the system
considering two alternative approaches. The first algorithm identifies the class considering the highest
value of the affinity probability among the all confronted classes. In that case, all samples are assigned
to only one class and none belongs to the “unsigned.” The second algorithm confronts the PLS model
results with a predefined threshold. The sample is assigned to a given class if it passes the threshold;
otherwise, it is considered as “unsigned.” The second algorithm is more reliable but also very sensitive
to minor disturbances within the source spectra. For that reason, in case of real-word implementation
of the discrimination of wood defects, the “Prediction Most Probable” approach is recommended. It is
clear that the best performance of wood defects discrimination was by modeling spectra acquired
with microNIR spectrometer (success rate SR = 91%). However, low-cost prototype sensors were also
capable of properly identifying wood defects, even though the success rates were lower (58% and 74%
for Hamamatsu VIS and NIR, respectively). The most problematic was the differentiation between
knots and reaction wood. This was due to several physical-chemical similarities between both defects
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and also limited spatial resolution/accuracy of prototype spectrometers. The high number of unsigned
samples identified with “Prediction Strict” algorithm highlights the drawback of this method and
confirms the high similarities between spectra obtained on the wood surface.
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Figure 8. First four loadings (lateral variables LV) for PLSDA models of wood defects as obtained for
HamamatsuVIS (a), HamamatsuNIR (b) and microNIR (c).

The greatest advantage of PLS-DA is a possibility for the model interpretation by means of loadings.
However, the practical implementation may not be optimal as not all the variance within source data
may be represented by a limited number of principal components. Therefore, it is frequently applied to
use machine learning algorithms for data representation and identification. Support Vector Machine is
one of these routinely used tools for spectral data processing and was, therefore, implemented to assess
the identical data set as in PLS-DA. Confusion tables for resulting SVMC models obtained are presented
in Figure 9, assuming both classification rules. The success rate for all sensors is evidently higher than
those obtained with PLS-DA. Only a few samples were misclassified, mostly in the case of Hamamatsu
NIR and resin mixed with normal wood. The performance of the microNIR sensor was nearly faultless
even if implementing “Prediction Strict” rule for classification. The number of unsigned samples was
considerably lowered for both Hamamatsu prototype sensors. It was assumed, therefore, that the
overall performance of the SVMC was superior to PLS-DA. Unfortunately, no direct interpretation of
the model was possible and only the independent validation was proof of the model reliability.
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4. Conclusions and Practical Recommendations Regarding the Implementation of the (Prototype)
Sensors for Wood Defects Detection

Portable spectroscopic instruments are an interesting alternative to laboratory equipment,
allowing fast and reliable measurements for chemical/physical properties of materials. In this
work, one commercially available and two self-constructed prototype instruments were tested with
the purpose of wood defects discrimination. The performance of all spectrometers was compared by
means of PLS-DA and SVMC methods.

The most convenient place to measure spectra with sensors developed in this research is on the
cross section of logs after tree felling or on the pile of stored logs. Utilization of spectrometers to asses
log sides is problematic as the bark layer prevents light from accessing the log’s interior. The only
information available to scrutinize are traces of knots appearing on the side of the log visible over the
bark layer. Even if determination of the log’s quality by assessing its cross section may be considered
as limited, it can provide an enormous possibility to improve the state-of-the-art in quality grading
and managing of value chains. The functionality of the proposed low-cost spectroscopic system can be
extended to predict chemical composition of wood polymers as well as its distribution (map) over
the log section or whole volume. It can lead toward development of new methodologies where raw
resources are optimally destinated to down-stream conversion following the paradigm of “proper
wood resources for proper use”.

The up-to-date results and experiences highlight the MicroNIR sensor as a superior technique
for fast and automatic discrimination of wood deficiencies. It is especially advantageous as it is a
compact system integrating all optical and electronic components. It allows minimization of electrical
noises and, therefore, increases overall signal-to-noise ratio. An important drawback of this solution
is its relatively high cost, especially when considering the use of an array of sensors for better
spatially defined analysis in-field or on-line. The prototype low-cost sensors, therefore, may be a good
alternative, allowing further customization of the technical solution and, consequently, improvement of
the system’s performance. Both, hardware assembly and necessary software, are rather simple for
implementation, offering a wide range of possibilities for the sensor’s fit-to-purpose design.

An important issue is proper spatial calibration of the hardware. The field of view is controlled in
our solution by adjusting the focusing optics and distance between the lenses and measured surface.
However, the depth of field for microscopic lenses is very narrow, resulting in likely blurring of the image
and reduction of light quality reaching the spectrometer. It is especially significant when evaluating
wooden disks having excessive surface roughness resulting from log cutting with a chain saw.

As a rule of thumb, it is necessary to assure sufficiently frequent white and black reference
calibration of the sensor while working with portable equipment. This is due to the fact that resulting
spectra is highly affected by the sensors and surface temperatures recurrently changing when operating
in-field. Previous studies [38,39] reported that temperature variations degrade the quality of agri-food
products assessment models. Similarly, effect of temperature on NIR spectra in solid wood samples of
Norway spruce or OSB boards was studied by References [40,41]. They observed that with temperature
increases, the two main hydroxyl absorbance bands at approximately 1450 and 1930 nm shifted by
about 0.4 nm·◦C−1 towards shorter wavelengths. More pronounced shift was noticed for heartwood
due to higher moisture content in the sapwood. Ice crystals on wooden surfaces cause light scattering
when sample temperature is below 0 ◦C. Consequently, it was recommended that the temperature
should be taken into account in order to correctly predict moisture content, especially if it fluctuates
around 0 ◦C [42]. The practical solution to compensate effect of temperature variation on the detector,
measured object or ambience is a frequent measurement of dark and white references. This routine
was also implemented in the presented research.

Work reported here was an essential part of the research project related to practical implementation
of NIR spectroscopy for automatic grading of logs directly in the forest [43]. Extensive screening tests
presented here resulted in development of a prototype hyperspectral imaging solution containing
an array of sixteen micro-spectrometers simultaneously acquiring spatially resolved spectra from
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the surface of wood samples. All the instruments presented were also tested during real operation
conditions while harvesting trees directly in the forest.

All the data used to support the findings of this study are available from the corresponding author
upon request. The software codes used to program Arduino controllers are included as Appendices A
and B.

Author Contributions: Conceptualization: J.S., A.S., A.Z., B.H., G.P.; methodology: J.S., A.S., A.Z.; software:
J.S.; validation: A.S., A.Z.; formal analysis: J.S., A.S., B.H.; investigation: J.S., A.S., A.Z.; resources: A.Z., B.H.;
data curation: J.S., A.S., A.Z.; writing-original draft preparation: J.S., A.S.; writing-review and editing: J.S., A.S.,
A.Z., B.H., G.P.; visualization: J.S.; supervision: J.S.; project administration: G.P., B.H.; funding acquisition: J.S.,
A.S., B.H., G.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was conducted within project SLOPE receiving funding from the European Union’s Seventh
Framework Programme for research, technological development and demonstration under the NMP.2013.3.0-2
[Grant number 604129]. Part of the work was conducted during the BIO4ever [RBSI14Y7Y4] project funded
within SIR call by the Italian Ministry of Education, University and Research (MIUR). The authors gratefully
acknowledge the European Commission for funding the InnoRenew CoE project [Grant Agreement # 739574]
under the Horizon2020 Widespread-Teaming program, the Republic of Slovenia (investment funding of the
Republic of Slovenia and the European Union European Regional Development Fund) and infrastructural ARRS
program IO-0035. We also acknowledge the support by the COMET-K1 competence centre FFoQSI funded by the
Austrian ministries BMVIT, BMDW and the Austrian provinces Niederoesterreich, Upper Austria and Vienna
within the scope of COMET—Competence Centers for Excellent Technologies. The programme COMET is handled
by the Austrian Research Promotion Agency FFG.

Acknowledgments: The authors acknowledge Emiliano Genorini from VIAVI Solutions Inc. for renting
MicroNIR™ PAT-U sensor for testing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Arduino Code for Hamamatsu C11708MA Micro-Spectrometer

Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 

 

Appendix A. Arduino Code for Hamamatsu C11708MA Micro-Spectrometer 

 

Figure 1. Timing chart for signal input and output for micro-spectrometer Hamamatsu C12880MA 

(source: https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf). 

//This code is inspired by the sketch from Peter Jansen https://github.com/tricorderproject/arducordermini 

//it follows the timing chart defined in the official datasheet documentation downloadable from 

https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf 

 

//DEFINITION OF PINS 

// 5V: pin 9 

// GND: pin 2 

#define SPEC_GAIN         A0   //pin 6 

#define SPEC_ST            A1   //pin 4 

#define SPEC_CLK          A2   //pin 1  

#define SPEC_VIDEO       A3   //pin 10 

#define SPEC_CHANNELS    256 

uint16_t data[SPEC_CHANNELS]; 

 

void setup() { 

pinMode(SPEC_GAIN, OUTPUT); 

pinMode(SPEC_ST, OUTPUT); 

pinMode(SPEC_CLK, OUTPUT); 

digitalWrite(SPEC_ST, HIGH); 

digitalWrite(SPEC_CLK, HIGH); 

digitalWrite(SPEC_GAIN, LOW); //High Gain 

Serial.begin(115200); 

} 

 

void readSpectrometer() 

{ 

int delay_time = 1;     // delay per half clock (in microseconds) ultimately controls the integration time 

int idx = 0; 

int read_time = 1; 

Figure A1. Timing chart for signal input and output for micro-spectrometer Hamamatsu C12880MA
(source: https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf).

//This code is inspired by the sketch from Peter Jansen https://github.com/tricorderproject/
arducordermini
//it follows the timing chart defined in the official datasheet documentation downloadable from
https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf

//DEFINITION OF PINS
// 5V: pin 9
// GND: pin 2
#define SPEC_GAIN A0 //pin 6

https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf
https://github.com/tricorderproject/arducordermini
https://github.com/tricorderproject/arducordermini
https://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e.pdf
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#define SPEC_ST A1 //pin 4
#define SPEC_CLK A2 //pin 1
#define SPEC_VIDEO A3 //pin 10
#define SPEC_CHANNELS 256
uint16_t data[SPEC_CHANNELS];

void setup() {
pinMode(SPEC_GAIN, OUTPUT);
pinMode(SPEC_ST, OUTPUT);
pinMode(SPEC_CLK, OUTPUT);
digitalWrite(SPEC_ST, HIGH);
digitalWrite(SPEC_CLK, HIGH);
digitalWrite(SPEC_GAIN, LOW); //High Gain
Serial.begin(115200);
}

void readSpectrometer()
{
int delay_time = 1; // delay per half clock (in microseconds) ultimately controls the integration time
int idx = 0;
int read_time = 1;
int intTime = 100;
int accumulateMode = false;
int i;

// STEP 1: START LEADING CLOCK PULSES
for (int i = 0; i < SPEC_CHANNELS; i++) {
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
}
// STEP 2: SEND START PULSE TO SIGNAL START OF INTEGRATION/LIGHT COLLECTION
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
digitalWrite(SPEC_ST, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
digitalWrite(SPEC_ST, HIGH);
delayMicroseconds(delay_time);
// STEP 3: INTEGRATION TIME – SAMPLE FOR A PERIOD OF TIME DETERMINED BY THE
INTTIME PARAMETER
int blockTime = delay_time * 8;
long int numIntegrationBlocks = ((long)intTime * (long)1000) / (long)blockTime;
for (int i = 0; i < numIntegrationBlocks; i++) {
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
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digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
}
// STEP 4: SEND START PULSE TO SIGNAL END OF INTEGRATION/LIGHT COLLECTION
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
digitalWrite(SPEC_ST, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
digitalWrite(SPEC_ST, HIGH);
delayMicroseconds(delay_time);
// STEP 5: READ DATA 2 (THIS IS THE ACTUAL READ, SINCE THE SPECTROMETER HAS
NOW SAMPLED DATA)
idx = 0;
for (int i = 0; i < SPEC_CHANNELS; i++) {
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
if (accumulateMode == false) {
data[idx] = analogRead(SPEC_VIDEO);
} else {
data[idx] += analogRead(SPEC_VIDEO);
}
idx += 1;
if (delay_time > read_time) delayMicroseconds(delay_time - read_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
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digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
}
// STEP 6: TRAILING CLOCK PULSES
for (int i = 0; i < SPEC_CHANNELS; i++) {
digitalWrite(SPEC_CLK, LOW);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
}
}
void print_data()
{
for (int i = 0; i < SPEC_CHANNELS; i++)
{
//SENDING DATA ACQUIRED FROM SENSOR TO THE SERIAL PORT
Serial.print(data[i]);
Serial.print(’,’);
}
Serial.print("\n");
}

void loop()
{
readSpectrometer();
print_data();
delay(10);
}
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//This code is implementation of the timing chart defined in the official datasheet documentation
downloadable from https://www.hamamatsu.com/resources/pdf/ssd/c12880ma_kacc1226e.pdf

//DEFINITION OF PINS
// +5V: pin 1 and pin 3
// GND: pin 2

#define SPEC_ST A1 //pin 6
#define SPEC_CLK A2 //pin 4
#define SPEC_VIDEO A3 //pin 10
#define SPEC_EOS A4 //pin 9
#define SPEC_TRG A5 //pin 7
#define SPEC_CHANNELS 381 // is same as number of cycles: integration time + 375
uint16_t data[SPEC_CHANNELS];

void setup()
{
pinMode(SPEC_ST, OUTPUT);
pinMode(SPEC_CLK, OUTPUT);
int integrationTime = 6; //minimum integration time is 6
int thpST = 54; //integration time + 48
int numberCycles = 381; // integrationTime+375
Serial.begin(230400);
}

void loop()
{
//SETTING OF INTEGRATION TIME: CHANGE THIS VALUE IF THE SIGNAL IS SATURATED
int delay_time = 5;
int idx = 0;
int i;
for (int i = 0; i < 381; i++) {
digitalWrite(SPEC_CLK, LOW);
if (i < 54)
{ digitalWrite(SPEC_ST, HIGH); }
else
{ digitalWrite(SPEC_ST, LOW); }
//SENDING DATA ACQUIRED FROM SENSOR TO THE SERIAL PORT
Serial.print(analogRead(SPEC_VIDEO));
Serial.print(’,’);
delayMicroseconds(delay_time);
digitalWrite(SPEC_CLK, HIGH);
delayMicroseconds(delay_time);
}
Serial.print("\n");
}

https://www.hamamatsu.com/resources/pdf/ssd/c12880ma_kacc1226e.pdf
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