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Abstract

Short QT (SQT) syndrome is a genetic cardiac disorder characterized by an abbreviated QT

interval of the patient’s electrocardiogram. The syndrome is associated with increased risk

of arrhythmia and sudden cardiac death and can arise from a number of ion channel muta-

tions. Cardiomyocytes derived from induced pluripotent stem cells generated from SQT

patients (SQT hiPSC-CMs) provide promising platforms for testing pharmacological treat-

ments directly in human cardiac cells exhibiting mutations specific for the syndrome. How-

ever, a difficulty is posed by the relative immaturity of hiPSC-CMs, with the possibility that

drug effects observed in SQT hiPSC-CMs could be very different from the corresponding

drug effect in vivo. In this paper, we apply a multistep computational procedure for translat-

ing measured drug effects from these cells to human QT response. This process first

detects drug effects on individual ion channels based on measurements of SQT hiPSC-

CMs and then uses these results to estimate the drug effects on ventricular action potentials

and QT intervals of adult SQT patients. We find that the procedure is able to identify IC50 val-

ues in line with measured values for the four drugs quinidine, ivabradine, ajmaline and mexi-

letine. In addition, the predicted effect of quinidine on the adult QT interval is in good

agreement with measured effects of quinidine for adult patients. Consequently, the compu-

tational procedure appears to be a useful tool for helping predicting adult drug responses

from pure in vitro measurements of patient derived cell lines.

Author summary

A number of cardiac disorders originate from genetic mutations affecting the function of

ion channels populating the membrane of cardiomyocytes. One example is short QT syn-

drome, associated with increased risk of arrhythmias and sudden cardiac death. Cardio-

myocytes derived from human induced pluripotent stem cells (hiPSC-CMs) provide a

promising platform for testing potential pharmacological treatments for such disorders,

as human cardiomyocytes exhibiting specific mutations can be generated and exposed to

drugs in vitro. However, the electrophysiological properties of hiPSC-CMs differ
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significantly from those of adult native cardiomyocytes. Therefore, drug effects observed

for hiPSC-CMs could possibly be very different from corresponding drug effects for adult

cells in vivo. In this study, we apply a computational framework for translating drug effects

observed for hiPSC-CMs derived from a short QT patient to drug effects for adult short

QT cardiomyocytes. For one of the considered drugs, the effect on adult QT intervals has

been measured and these measurements turn out to be in good agreement with the

response estimated by the computational procedure. Thus, the computational framework

shows promise for being a useful tool for predicting adult drug responses from measure-

ments of hiPSC-CMs, allowing earlier identification of compounds to accurately treat car-

diac diseases.

1 Introduction

Short QT (SQT) syndrome is a cardiac channelopathy characterized by an abnormally short

duration of the QT interval of the patient’s electrocardiogram (ECG) [1–3]. The syndrome is

associated with increased risk of atrial fibrillation, ventricular arrhythmias and sudden cardiac

death [4, 5] and was first described by Gussak et al. in 2000 [1]. The first identified SQT sub-

type, termed SQT1, results from an increase in the transmembrane potassium current, IKr,

caused by a mutation in the IKr encoding gene KCNH2 [6]. Later, several additional subtypes

of SQT syndrome have been identified, originating from mutations in other genes, including

gain of function alterations in genes encoding the potassium channels responsible for the IKs

and IK1 currents and loss of function alterations in genes encoding calcium channels [2, 3].

Because of the lethal risks associated with the syndrome, there is an urgent need for effective

pharmacological therapies. One modern approach is to identify compounds that can make the

electrophysiological properties of cardiomyocytes (CMs) populated with SQT mutated chan-

nels more similar to the electrophysiological properties of CMs populated with wild type

(WT), unmutated, channels (see, e.g., [7–11]). For SQT1, which is characterized by an

increased IKr current, drugs inhibiting the IKr current have been proposed as possible candi-

dates (see, e.g., [11, 12]). However, the effect of a drug on WT IKr channels can be very differ-

ent from the effect on mutated channels. For example, the IKr blockers sotalol and ibutilide

have been shown to be ineffective for SQT1 patients [12]. This may be explained by the fact

that these drugs primarily affect the inactivated state of the IKr channels, and the SQT1 muta-

tion impairs the inactivation of the channels [6, 13, 14]. On the other hand, quinidine, which

affects both the open and inactivated states of IKr channels has proven to be more effective for

SQT1 patients [15]. These examples demonstrate that investigations into drug effects on spe-

cific SQT mutations are needed in order to find appropriate pharmacological treatments.

A promising prospect in the quest for suitable drugs for SQT syndrome is the development

of human induced pluripotent stem cells (hiPSCs) (see, e.g., [16–19]). These cells can be gener-

ated from individual patients and differentiated into a large number of different cell types,

including CMs. Thus, cells can be generated from SQT patients, allowing for investigations of

drug effects for CMs populated by ion channels affected by the patients’ specific mutations.

Indeed, in [9, 11], several drugs have been tested on hiPSC-derived CMs (hiPSC-CMs) from

an SQT1 patient, revealing possible promising drugs.

However, a difficulty with using hiPSC-CMs in drug testing applications is that the

electrophysiological properties of hiPSC-CMs differ significantly from the electrophysiological

properties of adult CMs (see, e.g., [20, 21]). In general, hiPSC-CMs are recognized as electro-

physiologically immature, with properties more similar to those of fetal CMs. These differences
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imply that the drug response observed for hiPSC-CMs might not be the same as the corre-

sponding drug response for adult native CMs.

Mathematical modeling has been proposed as a possible tool to help translate the drug

response of hiPSC-CMs to the drug response of adult CMs (see, e.g., [22–25]). The develop-

ment of mathematical models of the dynamics underlying human cardiac action potentials is

an active field of research, and a large number of models have been developed, including mod-

els for adult undiseased ventricular CMs [26, 27], atrial CMs [28, 29], hiPSC-CMs [30, 31] and

CMs affected by mutations [32, 33]. In these models, changes in the membrane potential are

represented by individual transmembrane ionic currents (see, e.g., (1) below), and the models

can therefore be useful for investigating how drug effects on individual ion channels affect the

composite dynamics of the full action potential. Furthermore, the action potential models can

be combined with spatial models of electric conduction (see, e.g., [34–38]) to provide insight

into drug effects on cardiac conduction properties and mechanisms of arrhythmia.

In previous studies, we have applied a procedure based on mathematical action potential

modeling to estimate drug effects on individual ion channels from measurements of

hiPSC-CMs and predict adult CM drug responses [22, 23]. This procedure is based on the

assumption that the function of individual proteins, e.g. ion channels, is the same for

hiPSC-CMs and adult CMs, and that only the density of the proteins differs between

hiPSC-CMs and adult CMs (see Fig 2 below). From this assumption, it follows that the effect

of a drug on an individual ion channel is the same for hiPSC-CMs and adult CMs. Assuming

that we have correctly identified the drug effect on individual channels in the hiPSC-CM case,

we can therefore directly translate this effect to the adult case by inserting the inferred mecha-

nisms into a model for adult cells.

The aim of the present study is to use this computational procedure to predict drug effects

for adult SQT1 CMs based on measurements of drug effects on the action potential of SQT1

hiPSC-CMs from [9, 11] and to extend these results into prediction of patient QT changes.

Our overall computational pipeline is depicted in Fig 1. We consider the four drugs quinidine,

ajmaline, mexilietine and ivabradine, shown to potentially be useful for SQT1 patients in [9,

11] and show predicted drug responses for the drugs on the ventricular action potential and

QT interval of adult patients. We validate our pipeline using data for quinidine, where mea-

surements of the drug effect on the QT interval have been conducted for adult patients [15].

The predicted drug response turns out to be in good agreement with the measured drug effect,

indicating that the computational procedure could be useful for predicting adult drug

responses from measurements of hiPSC-CMs.

2 Methods

In this section, we describe the methods applied in this study. We start by describing the basic

modeling assumptions underlying the approaches used for computational identification of

drug effects and mapping of drug effects from hiPSC-CMs to adult CMs. Then, we describe

details of the applied action potential model and inversion procedure. Finally, we describe the

approach used to estimate the QT interval in the adult case. Note that the majority of these

methods are to a large extent based on the methods described in [23].

2.1 Action potential models

In this section, we describe the framework for modeling the action potentials of hiPSC-CMs

and adult CMs, with and without the SQT1 mutation, and the relationship between these mod-

els. Three of the main modeling assumptions are illustrated in Fig 2, building on the
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approaches of [22, 23]. In the next subsections we will explain these assumptions and demon-

strate how they affect the action potential modeling.

2.1.1 Action potential modeling framework. In the action potential model, the mem-

brane potential, v (in mV), is governed by an equation of the form

dv
dt
¼ �

X

j

Ij; ð1Þ

Fig 1. Illustration of the computational pipeline. 1) Biomarkers from the cardiac AP are taken from hiPSC-CMs under drug testing. 2) These

biomarkers from dose escalation studies are inverted into an SQT1 model of the AP of hiPSC-CMs. Inversion into a matched model provides

determination of drug effects on specific channels [23]. 3) The drug effects determined in 2 are inserted into a model of adult CMs with the same SQT1

mutation to give a prediction of drug effect in mature CMs [22]. 4) The adult CM model is converted into pseudo-ECG waveforms for prediction of QT

segment changes in SQT1 patients under the estimated effect of the drug.

https://doi.org/10.1371/journal.pcbi.1008089.g001
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Fig 2. Illustration of the assumptions underlying the computational maturation approach. 1) The density of different types of ion channels (and

other membrane or intracellular proteins) may differ between hiPSC-CMs and adult CMs, but the function of the individual channels is the same. In

the model, the density difference is represented by the parameter λ. 2) The SQT1 mutation affects the individual IKr channels in exactly the same

manner for hiPSC-CMs and adult CMs. In the model, the mutation is represented by an adjusted model for the open probability, oKr. 3) The effect of

a drug on a single protein is the same for hiPSC-CMs and adult CMs. In the model, the drug effect is represented by the parameter ε.

https://doi.org/10.1371/journal.pcbi.1008089.g002
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where Ij are different membrane current densities. These current densities can be expressed on

the form

Ij ¼
Nj

ACm
ij; ð2Þ

where Nj is the number of proteins of type j on the membrane, A is the area of the membrane,

Cm is the specific membrane capacitance, and ij is the average current through a single protein

of type j. For currents through voltage-gated ion channels, this ij is typically given on the form

ij ¼ g0;jojðv � EjÞ; ð3Þ

where g0,j is the conductance through a single open channel, oj is the open probability of the

channel, and Ej is the equilibrium potential of the channel. In this case, it is common to intro-

duce combined parameters of the form

gj ¼
Nj

ACm
g0;j; ð4Þ

and write (2) on the form

Ij ¼ gjojðv � EjÞ: ð5Þ

2.1.2 Assumption 1: Functional invariance of wild type (WT) ion channels during matu-

ration. A number of electrophysiological properties have been shown to differ between

hiPSC-CMs and adult CMs (see, e.g., [20, 21]). In addition, the electrophysiological properties

of different samples of WT hiPSC-CMs often vary significantly (see, e.g., [39, 40]). We assume

that these differences in electrophysiological properties (both between samples of hiPSC-CMs

and between adult CMs and hiPSC-CMs) are due to:

1. Differences in the geometry of the cells,

2. Differences in the number of membrane proteins, like ion channels, pumps and

exchangers,

3. Differences in the number of intracellular proteins, like calcium buffers, ryanodine recep-

tors and SERCA pumps.

However, we assume that the function of the individual membrane and intracellular pro-

teins is the same for the different WT cases.

Considering the model (1) and (2), these assumptions imply that the density rj ¼
Nj
A may

differ between cells, but that ij remains the same. Parameterizing the model to a specific set of

measurements can then be accomplished by adjustments of the densities represented by

adjustment factors λj, such that

rj ¼ ð1þ ljÞr
�
j ; ð6Þ

where r�j is the default density of proteins of type j. Incorporating these adjustment factors
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into the model (1), specific adult and hiPSC-CM versions of the model are given by

dv
dt
¼ �

X

j

ð1þ l
A
j ÞIj; ð7Þ

dv
dt
¼ �

X

j

ð1þ l
hiPSC
j ÞIj; ð8Þ

respectively, where l
A
j and l

hiPSC
j specify the adjustment factors for the protein densities in the

two cases. For currents through ion channels, these adjustment factors can be incorporated by

adjusting the conductances, gj (see (4) and (5)). Similar adjustment factors can be set up for

the density of intracellular proteins and the cell geometry, see [23]. A list of the maturation-

dependent parameter values of the base model are given in Table IV of the S1 Appendix.

2.1.3 Assumption 2: Functional invariance of mutated ion channels during matura-

tion. We assume that a mutation affects an individual ion channel in exactly the same man-

ner for hiPSC-CMs and adult CMs. SQT1 is known to affect the IKr current [3, 41], and we

assume that the effect on the current can be represented by adjusting the model for the open

probability, oKr (see (3)). More specifically, we adjust the voltage dependence of the steady

state inactivation gate, xKr2, by shifting the inactivation towards more positive potentials, as

described for the SQT1 mutation N588K in [3]. Because we assume that the mutation affects

an individual IKr channel in the same manner for hiPSC-CMs and adult CMs, we apply the

same adjustment of the model for oKr in the hiPSC and adult SQT1 cases. In addition, we

assume that the SQT1 mutation can be represented solely by this adjustment of oKr, and that

the density of proteins, including the density of IKr channels, is the same in the WT and SQT1

cases.

2.1.4 Assumption 3: Identical drug effects for identical proteins. The third assumption

illustrated in Fig 2 is that since the function of a single ion channel is the same for hiPSC-CMs

and adult CMs, the effect of a drug on an individual ion channel will also be identical for

hiPSC-CMs and adult CMs. This means that if we are able to determine the effect of a drug on

an individual channel in the hiPSC-CM case, we can find the effect of the same drug in the

adult case by incorporating the same single channel drug effect in the adult version of the

model.

Following [23], we use a simple IC50-based modeling approach to represent the effect of a

drug. That is, we assume that the average single channel current through a channel j in the

presence of the drug dose D is given by

ijðDÞ ¼
1

1þ εjD
ijð0Þ: ð9Þ

Here, ij(0) is the average single channel current when no drug is present and εj (in μM−1)

represents the effect of the drug, defined as

εj ¼
1

ICj
50

; ð10Þ

where ICj
50 (in μM) is the drug concentration that blocks the current j by 50%. Incorporating
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drug effects into the hiPSC-CM and adult CM models (7) and (8), we obtain

dv
dt
¼ �

X

j

1þ l
A
j

1þ εjD
Ij; ð11Þ

dv
dt
¼ �

X

j

1þ l
hiPSC
j

1þ εjD
Ij; ð12Þ

where we note that εj is the same in the two versions of the model.

In this study, we will use this modeling framework to estimate the drug effect (in the form

of ε values) of drugs based on action potential measurements of hiPSC-CMs with the SQT1

mutation N588K. Next, we will insert the estimated ε values into a model for adult ventricular

cells with the same mutation to estimate the effect of the drug for an adult patient.

2.1.5 Adult and hiPSC-CM base model variability. In our computations, we use action

potential measurements of hiPSC-CMs to predict drug effects for adult patients. In this proce-

dure, we need to fit the hiPSC-CM base model (8) to match data of specific samples of

hiPSC-CMs. The properties of these hiPSC-CMs tend to vary between experiments, also in the

control case (see, e.g., the biomarkers for the zero dose cases in Fig 7). Therefore, we let the val-

ues of the adjustment factors, l
hiPSC
j , vary for each experiment (that is, for each considered

drug). The adjustment factors are, however, assumed to be the same in the control case and for

all doses of a specific drug. Following [23], in the adult case, we consider only one default case

defined by the parameters l
A
j . In other words, the adult base model is assumed to be the same

in all cases, regardless of the variability in the parameters l
hiPSC
j .

2.1.6 Base model formulation. In order to represent the action potentials of adult ventric-

ular CMs and hiPSC-CMs (both with and without the SQT1 mutation N588K), we use a

slightly modified version of the base model formulation from [23], following the form (1) and

(2). Three main adjustments have been incorporated into the current version of the model.

First, we have modified the steady-state values of the gating variables of the IKr current to bet-

ter fit measured IKr currents in the WT and SQT1 cases from [14] (see Fig 5). Second, we have

extended the temperature-dependence of the model by including Q10 values for a number of

the currents, following [42, 43]. This was done because we consider two different temperatures

in our computations. In the adult case, we assume body temperature (310 K), while for the

hiPSC-CM case, we assume room temperature (296 K) since the considered hiPSC-CM data

(from [9, 11]) are obtained at room temperature. Third, we have incorporated a dynamic

model for the intracellular Na+ concentration. This was done in order to make the frequency

dependent QT interval changes more physiologically realistic (see Fig 11). The full base model

formulation is found in the S1 Appendix. The system of ordinary differential equations

(ODEs) defined by the base model is solved using the ode15s solver in MATLAB. The

MATLAB code for the base model is found in S1 Code.

2.1.7 Stimulation protocol. In the adult case, we use 1 Hz pacing unless otherwise speci-

fied. Furthermore, we run each simulation for at least 500 pacing cycles after each parameter

change in order to obtain new stable solutions before recording the action potentials (and

pseudo-ECGs, see Section 2.4 below).

In the hiPSC-CMs case, we use 0.2 Hz pacing, as specified in [11]. As a compromise

between the need to obtain new stable solutions after each parameter change and the need for

reducing the computing time of the inversion procedure, we run the simulation for 30 pacing

cycles before measuring the action potential for each iteration in the continuation method

used for optimization (see Section 2.3.2). However, the parameter changes between each
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iteration of the continuation method are expected to be quite small and we update the initial

conditions between each of the 20 iterations. Therefore, the final solutions of the inversion are

expected to be quite close to the steady state solutions for the applied parameters. This has also

been confirmed by numerical experiments. For example, the APD90 value for the inversion of

data for 10 μM of quinidine was 323.7 ms using 30 pacing cycles from the states saved in the

second-to-last continuation iteration. When the simulation was allowed to continue for 500

pacing cycles, the APD90 value changed by only 0.5% to 325.5 ms.

2.1.8 Parameterization of default adult and hiPSC-CM base models. In order to param-

eterize the default adult and hiPSC-CM versions of the base model for WT and SQT1, the

model parameters are adjusted by hand. For the hiPSC-CM case, adjustments are made to the

conductance of all membrane currents. The purpose of the adjustments is to obtain a model in

rough agreement with some measured current densities and AP characteristics for WT and

SQT1 hiPSC-CMs from [9] to use as a suitable starting point for the inversions of hiPSC-CM

data. A comparison of the AP characteristics and current densities from [9] to the correspond-

ing values for the default WT and SQT1 versions of the hiPSC-CM model are given in S1 Fig

of the Supporting Information.

In the adult case, the base model parameters are fitted to information about the heart rate

dependent value of the QTp interval (see Section 2.4) measured for adults with and without

the SQT1 mutation from [15]. Because the intracellular Na+ and Ca+ dynamics are important

for the frequency response of action potential models [27], the conductance of the currents

responsible for the balance of intracellular Ca2+ and Na+ concentrations are adjusted (i.e., the

conductance of ICaL, IbCa, IpCa, INaCa, INa, and INaK) in order to fit the model to the heart rate

dependent QTp interval. In addition, to achieve the measured difference between WT and

SQT1 QTp intervals, the conductance of the different repolarizing currents IKr, IKs, and IbCl

are adjusted. We also attempt to make the current densities during an action potential rela-

tively close to the current densities of the well-established adult ventricular AP models of

Grandi et al. and O’Hara et al. [26, 27]. A comparison of some of the main current densities

between the adult WT base model and the Grandi et al. and the O’Hara et al. models are given

in S2 Fig of the Supporting Information.

2.2 Inversion of IKr measurements

In order to represent the WT and SQT1 IKr currents, parameters of the model for the IKr open

probability are fitted to data of WT and SQT1 IKr currents from [14]. In this data, it is revealed

that the steady state inactivation of the current is shifted towards higher potentials in the SQT1

(N588K) case compared to the WT case (see the right panel of Fig 5 below). Therefore, we

assume that the mutation can be represented in the model by an adjusted model for the steady

state value of the inactivation gate, xKr2. To find a model matching the data as well as possible,

we introduce six free parameters c1 − c6 in the steady state activation and inactivation gates of

the IKr current on the form:

xKr1;1ðvÞ ¼
1

1þ exp ððvþ c1Þ=c2Þ
; ð13Þ

xKr2;1ðvÞ ¼
1

1þ exp ððvþ c3Þ=c4Þ
for WT; ð14Þ
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xKr2;1ðvÞ ¼
1

1þ exp ððvþ c3 þ c5Þ=ðc4 � c6ÞÞ
for SQT1: ð15Þ

See S1 Appendix for a description of the full IKr model formulation. To find optimal values

of the six parameters c1 − c6, we run simulations of the voltage clamp protocol applied in [14].

That is, we first fix the membrane potential at -80 mV and run a simulation to steady state.

Then, we increase the membrane potential to a value between -50 mV and 100 mV and com-

pare the current after 2 seconds of simulation to the corresponding current reported in [14].

In addition, we compare the steady state values of the inactivation gate xKr2 directly to the

steady state inactivation measurements reported in [14].

In the simulations trying to adjust the IKr model to measurements from [14], we adjust the

temperature and intracellular and extracellular potassium concentrations in the model to

match those reported for the experiments, that is T = 37˚C, [K+]i = 130 mM, [K+]e = 4 mM.

We find the optimal parameters c = (c1, . . ., c6) by minimizing a cost function of the form

HKrðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðIdðviÞ � Ibðc; viÞÞ
2

r
; ð16Þ

using the Nelder-Mead algorithm [44]. Here, vi are each of the values of the membrane poten-

tial considered in the data set, Id(vi) are each of the measured data points for relative IKr cur-

rents, and Ib(c, vi) are the corresponding currents computed for the model specified by the

parameters c.

2.3 Inversion of action potential measurements

The inversion of data of SQT1 hiPSC-CMs exposed to various drugs is performed using the

inversion procedure described in [23]. In the inversion, the adjustment factors λKr, λCaL, λNa,

λK1, λf, λNaCa, λNaK, and λbCl for the currents IKr, ICaL, INa, IK1, If, INaCa, INaK, and IbCl, and the

combined adjustment factor λB, adjusting all the intracellular calcium buffers as in [23] are

treated as free parameters. In addition, we assume that the drugs affect the IKr, ICaL or INa cur-

rents for quinidine, ajmaline and mexiletine and the IKr, If or INa currents for ivabradine.

Therefore, we introduce the drug parameters εKr, εf and εNa for ivabradine and εKr, εCaL, and

εNa for the remaining drugs. For a given drug, these twelve parameters are fitted to data simul-

taneously using information about both the control case and each drug dose included in the

data set as explained below.

2.3.1 Cost function definition. In the inversion procedure, we wish to minimize a cost

function of the form

Hðl; εÞ ¼
X

d

X

i

wd;iðHiðl; ε;DdÞÞ
2
þHregðl; εÞ; ð17Þ

where Dd represent each of the drug doses included in the data set (including the control case,

D0 = 0), Hi represent the different cost function terms included in the cost function, wd,i are

weights for each of the cost function terms and doses and Hreg is a regularization term (see

(19) below). The cost function consists of terms of the form

Hiðl; ε;DdÞ ¼
jRiðl; ε;DdÞ � R�i ðDdÞj

jR�i ðDdÞj
; ð18Þ

where Ri(λ, ε, Dd) is a biomarker computed from the solution of the model specified by λ and

ε for the drug dose Dd, and R�i ðDdÞ is the corresponding measured biomarker of the data we

are trying to invert.
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Considered biomarkers. We consider each of the biomarkers, Ri, included in the data sets

from [9, 11], i.e., APD50, APD90, APA, dvdt and RMP. These biomarkers are illustrated in the

left panel of Fig 3. Here, the maximal upstroke velocity, dvdt (in mV/ms), is defined as the

maximum value of the derivative of the membrane potential with respect to time, the resting

membrane potential, RMP (in mV), is defined as the minimum value of the membrane poten-

tial, the action potential amplitude, APA (in mV), is defined as the difference between maxi-

mum and minimum values of the membrane potential, and the APD50 and APD90 values are

defined as the time (in ms) from the time point of the maximum upstroke velocity to the time

point where the membrane potential first reaches a value below 50% or 90%, respectively, of

the action potential amplitude. All biomarkers are computed directly from the model solution,

found using an adaptive time step in MATLAB’s ODE solver ode15s.
Cost function weights. We use the weight 3 for HAPA, the weight 6 for HAPD90 and the

weight 1 for the remaining terms. In addition, the weights for the control case, w0,j, and the

weight for HAPD90 for the largest dose are multiplied by the total number of doses included in

the data set. The term HRMP is only included for the drug quinidine because it was not speci-

fied in the data set for the remaining drugs [9, 11]. The specific weights used for the cost func-

tion terms are chosen to prevent large errors for single biomarkers and to give an overall

acceptable fit.

Regularization term. The regularization term, Hreg(λ, ε), is defined as

Hregðl; εÞ ¼ wl

X

j2Sl

l
2

j þ wε

X

j2Sε

ð~DεjÞ
2
: ð19Þ

Here, the first term is defined to make the inversion procedure avoid solutions with unreal-

istically large perturbations of some of the currents, and the second term is defined to make

the inversion select small drug perturbations if small and large perturbations result in almost

indistinguishable solutions ( ~D is the median of the considered drug doses of the data set). In

our computations, we set the weights for the terms to wλ = 1 and wε = 0.001. We let the set Sε
consist of all the currents we assume may be affected by the drug and the set Sλ consist of the

Fig 3. Illustration of considered biomarkers. Left: Illustration of the five biomarkers included in the cost function of

the inversion procedure: The action potential durations (in ms) at 90% and 50% repolarization (APD90 and APD50,

respectively), the maximal upstroke velocity (dvdt, in mV/ms), the action potential amplitude (APA, in mV) and the

resting membrane potential (RMP, in mV). Right: Illustration of the QTp interval (in ms) computed from a pseudo-

ECG waveform. The QTp interval is defined as the time from the onset of the QRS complex to the peak of the T-wave.

https://doi.org/10.1371/journal.pcbi.1008089.g003
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IKr and ICaL currents. Note that we here assume that λj = 0 defines the starting point of the

inversion procedure (i.e., the default hiPSC-CM base model parameterization).

2.3.2 Optimization method. We apply the continuation-based optimization algorithm

from [23] to minimize the cost function (17). A simple example application of the continua-

tion algorithm with two free parameters fitted to a single AP waveform is illustrated in Fig 4.

In short, the algorithm consists of introducing a parameter, θ, which is gradually increased

from 0 to 1 in M iterations (or θ-steps). For each θ-step, we seek the optimal parameters fitting

a temporary objective that is, as θ is increased, gradually adjusted from the default model solu-

tion to the actual data we are trying to invert. More specifically, for a given θ 2 [0, 1], we try to

minimize the cost function (17) and (18) with the biomarkers given by

R�i ðyÞ ¼ ð1 � yÞRið0Þ þ yR�i ; ð20Þ

where Ri(0) are the biomarkers of the default model used as a starting point for the optimiza-

tion, R�i are the biomarkers of the data and R�i ðyÞ define a temporary objective. The purpose of

gradually stepping from the default model solution to the data in this manner is that we know

the optimal solution for θ = 0, and for each θ-step, we assume that the optimal parameters are

quite close to the optimal parameters of the last step. Therefore, we can keep the space in

which to search for optimal parameters quite small in each iteration.

In our computations, we use M = 20 continuation iterations (θ-steps) with NG = 100 or 200

randomly chosen initial guesses for the first fifteen and the last five iterations, respectively. The

initial guesses for λ are chosen within 20% above or below the optimal values from the previ-

ous iteration, and the initial guesses for εm are chosen within [εm−1/5, 5εm−1], where εm−1 is

the optimal ε from the previous iteration. From these initial guesses we run NNM = 30 or 60

iterations of the Nelder-Mead algorithm [44] for the first fifteen and the last five iterations,

respectively.

We have chosen to use the continuation-based optimization algorithm because we have

previous experience from [23] using this algorithm for this type of optimization problems.

Furthermore, in S4 Fig of the Supporting Information, we show a comparison of the continua-

tion method with other optimization methods. The other methods are provided in MATLAB’s

Global Optimization Toolbox [45]. We compare the methods for cases using simulated data

and thus the exact minimum is known. This allows for comparison of the methods and it

turns out that the continuation method compares well with the other methods, especially

when the number of free parameters increases.

2.4 Computation of pseudo-ECG and QT interval

In order to estimate drug effects on adult QT intervals, we apply a simple pseudo-ECG calcula-

tion applied in a number of earlier studies (e.g., [46–50]). The calculation follows a two-step

procedure.

Step 1. The membrane potential and membrane currents along a strand of cylindrical

cells are computed using the cable equation as explained i detail in [35]. In this step, cells are

connected to each other by gap junctions, each cell is assumed to be isopotential, and the extra-

cellular potential is assumed to be constant in space. The membrane potential vk in each cell k
is modeled by

2prLRCGCm
dvk
dt
þ Ikion

� �

¼ pr2 s
k� 1=2

i
vk� 1 � vk

L
þ s

kþ1=2

i
vkþ1 � vk

L

� �
; ð21Þ

where r is the cell radius, L is the cell length, RCG is the ratio between the capacitive and the

geometrical cell areas (see, e.g., [35]), Cm is the specific cell capacitance and s
k� 1=2

i is the
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Fig 4. Illustration of the continuation algorithm used for optimization in the inversion method. A) The problem is defined by a default

model and some data we are trying to invert by finding an optimal model parameterization fitting the data. B) In the continuation algorithm,

we seek temporary optimal parameters in M iterations (θ-steps). The objective for each θ-step is gradually changed from the default model to

the data we are trying to invert. C) In each θ-step, we look for optimal parameters for the temporary objective by drawing NG random guesses

in the vicinity of the optimal parameters from the previous θ-step. For each random guess, we run NNM Nelder-Mead iterations, and from the

result, we select the best fit as the new optimal parameters. D) The final parameterization is given by the optimal parameters found in the last

θ-step.

https://doi.org/10.1371/journal.pcbi.1008089.g004
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averaged intracellular conductivity between cells k − 1 and k. This averaged intracellular con-

ductivity is given by

si ¼
1

Rmyo þ
Rg
L

; ð22Þ

where Rmyo is the myoplasmic resistance and Rg is the gap junction resistance. Furthermore,

Ikion is the sum of the ionic current densities of the cell, modeled by the base model (i.e., ∑j Ij
in (1)).

The ODE system defined by (21) is solved using the ode15s solver in MATLAB, and the

solution is used to compute the membrane currents

Ik;nm ¼ pr
2 s

k� 1=2

i
vnk� 1
� vnk
L

þ s
kþ1=2

i
vnkþ1
� vnk
L

� �

; ð23Þ

originating from each cell i at each time point n.

Step 2. The extracellular potential originating from the cell strand is computed for each

time step n using the so-called point-source approximation (see, e.g., [46, 51]),

un
e ¼

1

4pse

X

k

Ik;nm

jr � rkj
; ð24Þ

where σe is the extracellular conductivity and |r − rk| is the Euclidean distance between the

point at which we are measuring the extracellular potential, r, and the center of cell number k,

rk.
Parameter values. The parameters of the pseudo-ECG simulations are based on the

parameters of earlier computations of pseudo-ECGs (e.g., [35, 46, 49]). We consider a cell

stand of 100 cells of length L = 150μm and radius r = 10μm. We let the cell strand exhibit trans-

mural heterogeneity of ion channel density, with an endocardial region consisting of the first

25 cells, a midmyocardial region for the next 35 cells and an epicardial region in the last 40

cells. The default adult base model defines the ion channel density in the epicardial region. In

the endocardial region, the Ito and IKs channel densities are reduced to 1% and 31%, respec-

tively, compared to the epicardial region. Similarly, in the midmyocardial region, the Ito and

IKs channel densities are reduced to 85% and 11%, respectively, compared to the epicardial

region.

Furthermore, we set Cm = 1μF/cm2, RCG = 2, Rmyo = 0.15 kOcm, and Rg = 0.0015 kOcm2,

resulting in a conduction velocity along the cell strand of approximately 52 cm/s, close to

experimentally measured conduction velocities from literature (*50 cm/s [52]). Stimulation

is applied for the first two cells of the endocardial region, and the extracellular potential is mea-

sured 2 cm from the end of the epicardial region. Because we in this study only are interested

in the time course of the ECG and not the amplitude in mV, we do not assign a specific value

for σe and report the computed pseudo-ECG without numbers on the ue-axis.

Definition of the QT interval. After computing a pseudo-ECG using the described

approach, the QT interval is computed from the ECG waveforms. The QT interval is often

defined as the time from the start of the QRS interval to the end of the T-wave (see Fig 3).

However, in the study [15], which we will use for comparison to the computational results, an

alternative definition of the so-called QTp interval is applied, defined as the time from the start

of the QRS complex to the peak of the T-wave, as illustrated in the right panel of Fig 3. We will

therefore use this definition in this study. Note that for the SQT1 case, the computed T-wave is

inverted to have the opposite sign of the QRS complex (see Fig 6). In that case, we define the
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peak of the T-wave as the time point when the minimum, i.e. the maximum absolute deviation

of the T-wave, is reached.

3 Results

In this section, we describe the results of our applications of the above mentioned methods.

First, we set up the default hiPSC-CM and adult base models for WT and SQT1 based on mea-

surements of WT and SQT1 IKr currents from [14]. Next, we apply the inversion procedure to

identify the effect of four drugs on individual ion channels based on action potential measure-

ments of SQT1 hiPSC-CMs from [9, 11]. Finally, we estimate the corresponding drug effect

for adult patients with short QT syndrome using these identified drug effects.

3.1 Computational representation of the SQT1 mutation

In order to represent the SQT1 mutation N588K in the model, we first adjust the model of the

open probability of the IKr current to data for WT and SQT1 IKr currents from [14] as

described in Section 2.2. The optimal values for the model given on the form (13)–(15)

returned by the inversion procedure are c1 = −2.7, c2 = −15.3, c3 = 70, c4 = 20.9, c5 = −62, c6 =

1.85. In Fig 5, the fitted model solutions of IKr in the WT and SQT1 cases are compared to the

data from [14]. In the right panel, we observe that the inactivation is shifted towards higher

values of the membrane potential in the SQT1 case.

The WT and SQT1 versions of the IKr model fitted to measurements from [14] are inserted

into the base model formulation. The parameters, λhiPSC, for the hiPSC-CM versions of the

model are then fitted to action potential measurements of WT and SQT1 hiPSC-CMs from

[9]. In addition, the parameters of adult versions of the base model are fitted to information

about the QTp interval for adults with and without the SQT1 mutation from [15]. These

adjustments are made by hand-tuning the parameters of the default hiPSC-CM and adult ver-

sions of the base model from [23], as described in Section 2.1.8.

The action potentials of the resulting models are plotted in the upper panel of Fig 6, along

with the computed pseudo-ECG for the adult case. The pseudo-ECG is computed using the

approach described in Section 2.4. Note that the only difference between the WT and SQT1

Fig 5. Representation of the SQT1 mutation N588K in the IKr model. Left panel: Steady state IKr currents obtained at

different fixed values of the membrane potential divided by the currents obtained at v = 0 mV. The results obtained for the

fitted WT and SQT1 IKr models are compared to corresponding data from [14]. Right panel: Comparison of the steady state

inactivation gate in the WT and SQT1 models of IKr and steady state inactivation data from [14]. In the SQT1 case, the

inactivation is shifted towards higher values of the membrane potential. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g005
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versions of the models is a difference in the steady state inactivation gate of the IKr current (see

(15)), and that the remaining model parameters (including the density of IKr channels) are the

same in the WT and SQT1 cases. Note also that the adjustment of the IKr steady state inactiva-

tion gate is exactly the same in the hiPSC-CM and adult versions of the model (following

assumption 2 in Fig 2), but that the geometry of the cell and the density of different types of

membrane and intracellular proteins are different between the models for hiPSC-CMs and

adult CMs (following assumption 1 in Fig 2).

In the lower panel of Fig 6, we report the APD90 values of the WT and SQT1 models in the

hiPSC-CM and adult cases. In addition, we report the QTp interval computed from the

pseudo-ECG (see Fig 3). In the hiPSC-CM case, we compare the APD90 values of the model to

the corresponding values reported in [9]. The APD90 value is reduced from 324 ms in the WT

case to 188 ms in the SQT1 case, in good agreement with the values reported in [9]. In the

adult case, the APD90 value is similarly reduced from 272 ms to 189 ms. Furthermore, the

QTp interval is reduced from 292 ms in the WT case to 200 ms in the SQT1 case, close to

reported QTp values from [15]. Moreover, in Figure 1 of [9], an ECG from the SQT1 patient

whose skin fibroblasts were used to generate the SQT1 hiPSC-CMs of the study is reported.

Considering the signal recorded in lead V3 (as in [15]), the QTp interval can be estimated to

be about 170 ms. Correcting for heart rate using Bazett’s formula and assuming a heart rate of

60 beats per minute (as is used in the simulation) the QTp interval is about 190 ms, similar to

the value reported in [15] and close to the value given by the model (200 ms). We also note

that in the computed pseudo-ECG, the T-wave is positive in the WT case and negative in the

SQT1 case. A note on this property is found in the S2 Appendix.

Fig 6. Properties of the base models for hiPSC-CMs and adult ventricular CMs in the WT and SQT1 cases. Upper panel: Comparison of the action

potentials computed for the WT and SQT1 versions of the hiPSC-CM (left) and adult (center) models, in addition to the pseudo-ECG for the adult

model (right). The only difference between the formulations of the WT and SQT1 models is a shift in the inactivation gate of IKr as illustrated in the

right panel of Fig 5. Lower panel: APD90 values and QTp intervals computed using the WT and SQT1 versions of the models. The computed APD90

values for hiPSC-CMs are compared to data from [9], and the computed QTp intervals for adults are compared to data from [15]. Data used in this

figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g006
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3.2 Computational identification of drug response from membrane

potential measurements of SQT1 hiPSC-CMs

In [9, 11], action potential biomarkers are reported from measurements of hiPSC-CMs with

the SQT1 mutation N588K exposed to drugs attempting to make the properties of the SQT1

cells more similar to those of WT cells. In this paper, we wish to use this data to estimate the

corresponding drug responses for adult SQT1 patients. In order to make these predictions, we

first need to identify the effect of the drugs on individual ion channels in the hiPSC-CM case,

based on the data provided in [9, 11]. These drug effects are predicted using the inversion pro-

cedure described in Section 2.3 using the SQT1 hiPSC-CM model from Fig 6 as a starting

point for the inversion.

Fig 7 shows how well the biomarkers of the fitted SQT1 hiPSC-CM model match the corre-

sponding biomarkers reported in the data. We observe that the biomarkers of the fitted models

are quite similar to the values of the data. In particular, the model seems to capture the APD90

increase resulting from the drugs quite well. In the lower panel of Fig 8, the action potentials of

the SQT1 hiPSC-CM models fitted to the data are plotted for the control case and for each of

the drug doses, along with the action potential of the default base model for WT hiPSC-CM.

We observe that each of the drugs increases the action potential duration, but not enough to

fully recapture the WT hiPSC-CM action potential length.

The upper panel of Fig 8 reports the drug effects identified by the inversion procedure in

the form of ε values. Recall that εj is defined as 1=ICj
50, where ICj

50 is the drug concentration

that blocks the current j by 50%. In other words, a high ε value corresponds to a significant

drug effect. We observe that the inversion procedure predicts that all four drugs have a signifi-

cant effect on the IKr current. In addition, ajmaline is estimated to considerably block the ICaL

current, and mexiletine is estimated to block INa.

In [11], measured drug effects on SQT1 IKr currents are reported for the maximum dose of

each of the considered drugs. In order to get an impression of the accuracy of the IC50 values

estimated by the inversion procedure, we compare the block percentages reported in [11] to

the corresponding block percentages estimated by the computational procedure. The results

are displayed in Fig 9, and we observe that the estimated block percentages seem to be in good

agreement with the measured values.

3.3 Estimation of drug response for adult SQT1 patients

Following assumption 3 in Fig 2, we assume that the effect of a drug on a single ion channel is

the same for hiPSC-CMs and adult CMs. Using this assumption, we can estimate the effect of

the drugs quinidine, ivabradine, ajmaline and mexiletine for adult SQT1 CMs by inserting the

ε values identified in Fig 8 into the adult SQT1 base model. In Fig 10, we report the resulting

estimated adult drug effects. In the upper panel, we show the ventricular action potentials for

the SQT1 case with no drug and with each of the considered drug doses present. In addition,

we show the action potential in the WT case. The lower panel of Fig 10 displays the adult QTp

intervals computed from pseudo-ECG simulations as explained in Section 2.4. We observe

that the drugs increase the QTp interval for the SQT1 case to be more similar to the WT QTp

interval. For 10 μM of quinidine, the QTp interval is estimated to increase from 200 ms to 257

ms. Similarly, the QTp interval is predicted to increase to 238 ms for 10 μM of ivabradine, and

221 ms for 100 μM of mexiletine. For comparison, the WT QTp interval is 292 ms. For 30 μM

of ajmaline, the QTp interval is predicted to increase to only 209 ms. This is probably caused

by the fact that ajmaline is estimated to have considerable effect on both the depolarizing cur-

rent ICaL and the repolarizing current IKr, and that these two drug effects cancel each other out

in the adult model.

PLOS COMPUTATIONAL BIOLOGY Computational prediction of drug response in SQTS1 based on measurements of hiPSC-CMs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008089 February 16, 2021 17 / 32

https://doi.org/10.1371/journal.pcbi.1008089


The effect of the drug quinidine on the QTp interval of adult SQT1 patients is reported for

a number of different heart rates in [15]. In Fig 11, we compare the predicted adult drug

response of quinidine from our computational procedure to the measured responses in [15].

In the study [15], mean serum concentration was reported as 2.1 mg/L. Applying the

Fig 7. Comparison of measured and computed action potential biomarkers. We consider the biomarkers reported in the data from [9, 11] (green)

and computed from the fitted SQT1 hiPSC-CM models returned by the inversion procedure described in Section 2.3 (purple) for the drugs quinidine,

ivabradine, ajmaline and mexiletine. Note that the definition of each of the biomarkers are illustrated in Fig 3 and that RMP data are only included for

the quinidine case. Data are shown as the mean ± SEM (standard error of the mean). Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g007
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molecular weight of quinidine of 324.4 g/mol [53], we consider the drug concentration 6.5 μM

in the computational model. Moreover, we use the ε values identified based on measurements

of SQT1 hiPSC-CMs from [9] (see Fig 8). The QTp intervals are computed for different pacing

frequencies using the pseudo-ECG approach described in Section 2.4. In Fig 11, we observe

Fig 8. Result of the inversion procedure applied to data for the drugs quinidine, ivabradine, ajmaline and mexiletine from [9, 11]. Upper panel:

Predicted drug effect on individual ion channels in the form of ε-values returned by the inversion procedure. Lower panel: Action potentials of the

fitted SQT1 hiPSC-CM models in the control case and for doses of each drug. For comparison, we also show the action potential of the WT hiPSC-CM

model. Action potential characteristics of the fitted models in the lower panel are compared to data from [9, 11] in Fig 7. Data used in this figure can be

found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g008

Fig 9. Comparison of reported and estimated block percentages for IKr. We consider the reported block percentages

for 10 μM quinidine, 10 μM ivabradine, 30 μM ajmaline and 100 μM mexiletine from [11] and the block percentages

estimated based on the IC50 values identified in the inversion procedure. Data are shown as the mean ± SEM. Data

used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g009
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that the QTp intervals predicted by the model for different heart rates fit well with the mea-

sured data in both the WT case, in the SQT1 case and in the SQT1 case with quinidine.

4 Discussion

In this paper, we have applied the computational procedure introduced in [22, 23] to data of

hiPSC-CMs derived from an SQT1 patient, found in [9, 11]. In this procedure, we first identi-

fied the drug response on individual ion channels based on measurements of drug effects for

SQT1 hiPSC-CMs and then estimated the drug effect for an adult SQT1 patient by inserting

these single channel drug effects into a model for adult cells.

4.1 Computational representation of the SQT mutation

Short QT syndrome is characterized by an abnormally short duration of the QT interval, and

several different genetic mutations have proven to give rise to different subtypes of the syn-

drome [1–3]. SQT1–SQT3 are caused by gain of function mutations in the potassium channels

responsible for the IKr, IKs and IK1 currents, respectively, while SQT4–SQT6 are associated

with loss of function mutations in genes encoding calcium channels. Furthermore, SQT7 and

SQT8 have been characterized by a loss of function mutation in a gene encoding sodium chan-

nels and a mutation in a gene encoding the cardiac Cl/HCO3 exchangers AE3, respectively

[54]. Because of the different effects of different mutations, it is likely that pharmacological

treatment of SQT syndrome must be tailored to the individual subtypes. Furthermore, in

order to study the effects of mutations computationally, different mathematical representa-

tions are needed for the mechanistic causes of the shortening.

In this study, we have considered the SQT1 subtype, caused by a mutation (N588K) leading

to increased IKr currents. Based on measurements of WT and mutated IKr currents [14], we

Fig 10. Estimated drug effects for adult patients with the SQT1 mutation. The figure displays the estimated drug effect of quinidine, ivabradine,

ajmaline and mexiletine for adult patients with the SQT1 mutation (and a heart rate of 60 beats/min) based on the result of the inversion of hiPSC-CM

data reported in Fig 8. Upper panel: Estimated drug effect on the adult ventricular action potential. Lower panel: Estimated drug effect on the QTp

interval. See Fig 3 for an illustration of the definition of the QTp interval. Note that the blue lines represent the adult WT case. Data used in this figure

can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g010
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represented the mutation by shifting the inactivation of the channels towards more positive

potentials (see (15) and Fig 5). This computational representation of the mutation follows the

same lines as [49, 55, 56], which used similar adjustments of the model for the IKr, IKs and IK1

open probabilities to represent the SQT1, SQT2 and SQT3 subtypes, respectively.

In the base model used in this study (see S1 Appendix), as well as in other commonly used

action potential models (e.g., [26, 27, 30, 57]), the open probability of voltage-gated ion chan-

nels are governed by gating variables following the Hodgkin-Huxley formalism. However,

more detailed and versatile models for the open probability have been introduced in the form

of more complicated Markov models (see, e.g., [58, 59] for a comparison of the two formal-

isms). Such Markov models have been suggested to give a more realistic representation of both

the effect of mutations and the effect of drugs (see, e.g., [60–62]), and was applied in computa-

tional studies of SQT1 in [48, 63, 64] and SQT3 in [65]. On the other hand, complex Markov

models are associated with a significant increase in the number of free parameters to deter-

mine in the models, and we have therefore chosen to use a more simplified Hodgkin-Huxley

formalism in this study.

The WT and SQT1 versions of the IKr current were inserted into the base models for

hiPSC-CMs and adult CMs to define WT and SQT1 versions of these action potential models.

The resulting computed action potentials displayed a clear action potential shortening for the

SQT1 case for both hiPSC-CMs and adult CMs (see Fig 6). The computed pseudo-ECGs for

Fig 11. Comparison of measured and estimated adult QTp intervals. We compare the QTp intervals (see Fig 3)

estimated by the computational procedure and the measured QTp intervals from [15] for different heart rates. We

consider the WT case, the SQT1 case and the SQT1 case with cells exposed to 6.5 μM quinidine. The drug effect

estimated by the procedure is based on measured drug effects for SQT1 hiPSC-CMs from [9]. Data used in this figure

can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008089.g011
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the adult case also displayed a clear reduction in the duration of the QT interval for SQT1. Fur-

thermore, the APD90 values of the hiPSC-CM model and the QT intervals of the adult model

appeared to fit well with measured data for WT and SQT1 from [9, 15].

4.2 Computational identification of drug effects from membrane potential

measurements of SQT1 hiPSC-CMs

Because of the possibly lethal risks associated with SQT syndrome, there is an urgent need for

efficient therapies, including pharmacological treatment. In [9, 11], a number of drug candi-

dates were tested on hiPSC-CMs generated from an SQT1 patient, and the drugs quinidine,

ivabradine, ajmailine and mexiletine seemed to be the most promising for increasing the

action potential duration of the SQT1 hiPSC-CMs. Other drugs shown to block WT IKr (sota-

lol, ranolazine, flecainide, amiodarone) did not seem to work as well for hiPSC-CMs affected

by the SQT1 mutation. This highlights the need for mutation-specific investigations of drug

effects. Here we have tried to extend such investigations computationally, and have used the

measurements from [9, 11] to estimate the effect of quinidine, ivabradine, ajmaline and mexi-

letine for adult SQT1 patients using the computational procedure introduced in [22, 23].

4.2.1 Identifiability of model parameters. In [22, 23], drug effects were identified in an

inversion procedure based on optical measurements of the membrane potential and cytosolic

calcium concentration of hiPSC-CMs in a microphysiological system [66]. In the present

study, we have used a different type of data in the inversion procedure, i.e., membrane poten-

tial measurements from patch-clamp recordings. This alternative data type could have both

advantages and disadvantages compared to the optical measurements used in [22, 23]. A disad-

vantage is that we only have measurements of the membrane potential and not any informa-

tion about the calcium transient. Information about the calcium transient has been shown to

potentially improve the identification of parameters in mathematical action potential models

[22, 67, 68]. However, an advantage of the patch-clamp recordings is that we can obtain infor-

mation about the actual value of the membrane potential instead of just relative pixel intensi-

ties from optical measurements of voltage sensitive dyes. Therefore, we can get information

about the resting membrane potential, the action potential amplitude and the upstroke veloc-

ity, which could all be useful for the identification of parameters. For example, the upstroke

velocity is difficult to obtain from optical measurements of the action potential, which makes it

very hard to identify drug effects on the fast sodium current, INa, unless additional data, e.g.

extracellular measurements are included (see, e.g., [69]). Note also that identification of drug

effects on INa from measurements of hiPSC-CMs could be hampered by the fact that the dia-

stolic membrane potential of hiPSC-CMs often is depolarized compared to that of adult CMs

(see, e.g., [21, 39]). This can lead to inactivation of the Na+ channels, making the upstroke of

the action potential to a lager extent driven by ICaL as opposed to INa, like for pacemaker cells

[21, 70]. In the current study, however, we consider measurements of hiPSC-CMs with a rest-

ing membrane potential of about −80 mV, indicating that INa is important for determining the

upstroke velocity of these cells.

With information about the upstroke velocity, it should therefore be possible to identify

INa. However, full identification of all model parameters based on membrane potential mea-

surements is very challenging, and in some cases several combinations of parameter values

result in virtually identical action potentials (see, e.g., [68, 71, 72]). In order to investigate

which currents were identifiable in the SQT1 hiPSC-CM base model, we applied the singular

value decomposition approach from [73]. The result of this analysis is given in S3 Fig of the

Supporting Information. In short, the analysis reveals that the INa, ICaL, and IKr currents are

the most identifiable currents of the model. This means that we expect the identifiability of the
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three main currents investigated for drug effects to be relatively high. In S4 Fig of the Support-

ing Information, we also show examples of the inversion method applied to simulated data.

This enables us to assess the accuracy of our approach, and we observe that we are able to find

the correct solution using the continuation method in examples where adjustment factors, λ,

for these three currents and up to two additional currents are treated as free parameters. Simi-

lar experiments have shown similar results (see, e.g., Figure 6 in [23]) and although this does

not prove that we are able to get the correct parameterization of the model in all cases, it indi-

cates that the method is useful. A general proof of uniqueness of a minimum is most likely not

possible unless strong regularization terms are added.

For the If-blocking drug ivabradine, we also estimate drug effects on If, but we note that the

identifiability of this current is not very high according to the singular value decomposition

analysis and that the estimated drug effect for If consequently is associated with a large degree

of uncertainty. The λ-values found for the remaining parameters in the inversion procedure

are also associated with a degree of uncertainty. However, these parameters are not used

directly in the prediction of drug effects in the adult case (see Section 2.1).

It should also be noted that the hand-tuned parameterizations chosen as a starting point for

the inversions of hiPSC-CM data and as the default adult base models are associated with

uncertainty. In the hiPSC-CM case, some of the current densities are adjusted to measure-

ments of hiPSC-CMs from [9] (see S1 Fig), but for the remaining parameter values, it is possi-

ble that other combinations of parameters would give equally good or better fits to the data.

Similarly, for the adult case, we have fitted the model to information about the heart rate

dependent QTp interval from [15]. In addition, we have attempted to make the size of some of

the main currents similar to the size of the currents in the models [26, 27] (see S2 Fig). How-

ever, it is possible that the chosen parameterization is not unique or that better parameteriza-

tions exist.

4.2.2 Identified drug effects. Using the computational inversion procedure described in

Section 2.3, we estimated drug effects on major ion channels based on action potential mea-

surements of SQT1 hiPSC-CMs. For quinidine, ajmaline and mexiletine, we considered drug

effects on the currents IKr, ICaL and INa, and for ivabradine, we considered drug effects on the

currents IKr, If and INa, because these currents have been shown to be affected by ivabradine

[74–76].

Each of the considered drugs had a considerable effect on the IKr current, with predicted

IC50 values of 8.1 μM for quinidine, 12.6 μM for ivabradine, 69 μM for ajmaline and 280 μM

for mexiletine (see Fig 8). The effect of a drug can be very different for WT IKr channels com-

pared to that of mutated IKr channels (see, e.g., [77, 78]). For instance, in [77], the IC50 value of

quinidine was found to be 0.6 μM for WT IKr channels and 2.2 μM for the SQT1 mutation

N588K. Consequently, it is not reasonable to compare the IC50 values identified for the SQT1

case to IC50 values found in WT IKr experiments. However, we observe that the identified IC50

value for quinidine is quite close to the IC50 value reported for the SQT1 case in [77] (8.1 μM

vs 2.2 μM). Furthermore, the predicted block percentage for 10 μM of quinidine is very close

to the measured block percentage reported in [11] (see Fig 9). The block percentages for the

remaining drugs are also quite close to the percentages reported in [11], indicating reasonable

identified IC50 values for SQT1 IKr. For ivabradine, the identified IC50 value for IKr (12.6 μM)

is also in good agreement with the IC50 value of 10.3 μM reported for IKr affected by the SQT1

(N588K) mutation in [74].

In addition, for ajmaline, the inversion procedure identified an IC50 value of 47 μM for

ICaL. This is comparable to what was measured in [79] (70.8 μM). The inversion procedure

also identified a significant block of INa for the drug mexiletine (see Fig 8). This is reasonable,

since mexiletine is known as an INa blocker [80]. However, the identified IC50 value of 200 μM
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is larger than IC50 values found in literature (7.6 μM–43 μM) [81–83]. Similarly, ivabradine is

an If blocker with an IC50 value found to be about 2 μM in [75], but the computational proce-

dure underestimates the drug effect to an IC50 value of about 42 μM. This discrepancy is not

unexpected, since the identifiability of If is predicted to be low (see S3 Fig). The IC50 value for

INa block of ivabradine, was estimated to 86 μM, closer to, but still a bit higher than the mea-

sured IC50 value of 30 μM reported in [76]. Possible effects of ajmaline on INa, of quinidine on

ICaL and INa and of mexiletine on ICaL are also underestimated by the inversion procedure

compared to the IC50 values reported in [83]. This could indicate that the biomarkers consid-

ered in the inversion procedure (see Figs 3 and 7) are not enough to properly characterize

these less pronounced drug effects or that the applied base model formulation or simplified

drug modeling are not sufficient to represent these effects. It also could be that the regulariza-

tion term used for the ε values can cause underestimation due to its pressure on finding the

minimum effect in the chosen fit. It should also be noted that IC50 values identified in different

experiments tend to vary considerably.

4.3 Computational maturation of drug response

Using the single channel drug effects identified from membrane potential measurements of

hiPSC-CM, we estimated the drug effects in the adult case based on the three assumptions

explained in Fig 2. First, we assumed that the density of different types of ion channels (and

other membrane and intracellular proteins) differ between hiPSC-CMs and adult CMs, but

that the function of a single channel is the same for adult CMs and hiPSC-CMs. This means

that a set of parameters representing the density of different types of proteins, e.g., ion channel

conductances (see (4)), are different between the hiPSC-CM and adult CM models, but that

the models for, e.g., the open probability of the channels are the same in both versions of the

model. Second, we assumed that a mutation affects the function of an ion channel in exactly

the same manner for hiPSC-CMs and adult CMs. Therefore, we used the same adjustment of

the open probability of the IKr current (see Fig 5) to represent the SQT1 mutation N588K for

both hiPSC-CMs and adult CMs (see Fig 6). Third, we assumed that a drug affects a single ion

channel in exactly the same manner for hiPSC-CMs and adult CMs, and we could therefore

estimate the drug effect in the adult case based on the drug effect identified for hiPSC-CMs.

This modeling framework was used in [22, 23] to predict side effects of drugs for adult WT

CMs based on measurements of WT hiPSC-CMs. However, the procedure can also take the

effect of mutations into account (as specified in the second assumption of Fig 2), and in the

present study, we have used the procedure to estimate drug effects on the ventricular action

potential and the QT interval of adult SQT1 patients based on measurements of hiPSC-CMs

generated from an SQT1 patient.

4.3.1 Estimation of the QT interval. Because the effect of one of the drugs considered in

this study has been investigated for adult SQT1 patients in the form of measured QT intervals

of patients’ ECGs, we wished to be able to compare the drug responses predicted by our

computational procedure to these measured QT intervals. However, the mathematical base

model from [23] only represents the adult ventricular action potential and cannot be directly

used to compute the adult QT interval. On the other hand, it is generally recognized that

there is a clear link between the duration of the ventricular action potential and the QT inter-

val of a patient’s ECG. For example, in [84], a simple linear relationship between the APD90

value and the QT interval was observed. Conversely, in the computational study [85], it was

shown that there was not a direct linear realtionship between drug effects on the action

potential duration and drug effects on the QT interval. For example, drugs blocking the

INa current gave rise to prolongations of the computed QT intervals, even though no
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prolongation was observed for the action potential duration. In this study, we have chosen to

predict the QT interval by computing a pseudo-ECG using a very simple mathematical repre-

sentation, as applied in several previous studies of drug effects on the QT interval (e.g., [46,

49, 50]). The applied method appeared to give rise to reasonable pseudo-ECG waveforms and

QT intervals (see, e.g., Fig 6), but it is a very simplified representation of the dynamics under-

lying the ECG, and more realistic spatial modeling, possibly extended to whole-heart simula-

tions including a surrounding torso like in [85–88], could potentially improve the reliability

of the computed QT intervals.

4.3.2 Predicted adult drug responses for SQT1 patients. The estimated effects of the

four drugs quinidine, ivabradine, ajmaline and mexiletine on the ventricular action potential

and QT interval of adult SQT1 patients revealed that all four drugs are expected to lead to an

increase in the action potential duration and the QT interval of SQT1 patients (see Fig 10).

However, the extent of the prolongation of the QT interval was estimated to be quite different

for the different drugs. The most significant prolongation was observed for 10 μM of quini-

dine, which was predicted to increase the QTp interval from 200 ms to 257 ms, closer to the

WT value of 292 ms. For the drug ivabradine, the procedure also estimated a significant

increase in the adult QT interval, and for the drug mexilitine, a smaller, but clearly visible QT

interval increase was predicted. For ajmaline, however, the estimated drug effect in the adult

case was quite small, even though a significant APD prolongation was observed in the

hiPSC-CM case (compare Figs 8 and 10). This is probably explained by the fact that the inver-

sion procedure estimates a significant block of both IKr and ICaL for ajmaline which due to the

difference in protein densities between the hiPSC-CM and adult cases cancel each other out in

the adult model, but not in the hiPSC-CM model.

It is generally hard to validate the drug responses predicted by the computational proce-

dure because data of drug responses for adult SQT1 patients would be required. However,

for the drug quinidine, such experiments are reported in [15] in the form of measured QT

intervals for a number of different heart rates. These measurements have been conducted for

SQT1 patients without pharmacological treatment, SQT1 patients using the drug quinidine

and for healthy adults without the SQT1 mutation [15]. We found that the effect of quini-

dine for adult patients estimated by the computational procedure fitted well with these mea-

sured drug responses (see Fig 11), indicating that the applied computational procedure

shows promise for reliably predicting adult drug responses based on measurements of

hiPSC-CMs.

4.4 Conclusions

In this paper, we have used a computational procedure to predict the effect of the drugs quini-

dine, ivabradine, ajmaline and mexilitine for clinical biomarkers of adult SQT1 patients, based

on measured drug responses for hiPSC-CMs generated from an SQT1 patient. The procedure

consists of identifying drug effects on individual ion channels based on membrane potential

measurements of drug effects for hiPSC-CMs and then mapping this effect up to the adult case

based on the assumption of functional invariance of ion channels during maturation. All four

drugs were predicted to lead to increases in the ventricular action potential duration and QT

interval, and the drugs quinidine and ivabradine were estimated to be most effective. Further-

more, the effect of quinidine predicted by the computational procedure appeared to be in

good agreement with measured effects of the drug. Consequently, we conclude that the

computational procedure applied in this study could be a useful tool for estimating adult drug

responses based on measurements of hiPSC-CMs, also as new measurements become avail-

able, including measurements of alternative drugs or mutations.
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S2 Appendix. A note on the sign of the pseudo-ECG.
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S1 Data. Underlying numerical data for figures. Excel spreadsheet containing the underlying

numerical data of Figs 5, 6, 7, 8, 9, 10 and 11.
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S1 Fig. Comparison of the hiPSC-CM base model to data. Comparison of data from [9] for

WT and SQT1 hiPSC-CMs to properties of the hiPSC-CM base model for WT and SQT1 used

as a starting point for the inversions. The upper two rows compare the resting membrane

potential (RMP), action potential amplitude (APA), maximal upstroke velocity (dvdtmax) and

action potential durations at 50% and 90% repolarization (APD50 and APD90). The lower two

rows compare the current densities of IKs, Ito, IK1, ICaL and INaL at specific voltages using the

voltage clamp procedures described in [9]. Note that two different WT hiPSC lines (D1 and

D2) were considered in [9]. Note also that the IKr current reported in [9] was not compared to

the model because the measurements of IKr in [9] were conducted using Cs+ ions instead of K+

ions, which could influence the properties of the current, making the measurements less

appropriate for direct comparison to the model current [9, 89].

(PDF)

S2 Fig. Comparison the adult base model to other AP models. Comparison of the action

potential and some of the main currents in the adult WT base model used in this study against

the action potential and currents from the Grandi et al. and O’Hara et al. models [27, 90]. The

currents and action potentials are computed in a simulation using 1 Hz pacing, and the epicar-

dial version of the models are used for all three models.

(PDF)

S3 Fig. Singular value decomposition analysis. Singular value decomposition analysis of the

SQT1 hiPSC-CM base model, using the method from [73]. The identifiability of each current

is indicated in the orange panel, and a value close to 1 indicates a high degree of identifiability.

The cost function used to define the unidentifiable space is the same as that used in the inver-

sions. The identifiability threshold, δ, was set to 0.1. For details on the analysis, we refer to

[73].

(PDF)

S4 Fig. Comparison of optimization methods. Comparison of the continuation method and

a number of other optimization methods from MATLAB’s Global Optimization Toolbox [45].

We use the same cost function as in the inversions of the paper, except that we include no reg-

ularization terms and only consider a single AP (not several doses). The data is defined by sim-

ulated solutions generated using λ = −0.5 for all considered currents (see the legends). The

titles above each column specify the considered number of free parameters, and the plots show

the evolution of the optimal parameter values during the iterations of the algorithms. We

impose the bounds −1� λ� 0 and a maximum time limit of 5 hours for all methods, except

that the bounds are adjusted to −0.7� λ� 0.3 for the surrogate optimization algorithm, to
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avoid automatically finding the correct solution, λ = −0.5, in the first iteration of the algo-

rithm.
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30. Paci M, Hyttinen J, Aalto-Setälä K, Severi S. Computational models of ventricular-and atrial-like human

induced pluripotent stem cell derived cardiomyocytes. Annals of Biomedical Engineering. 2013; 41

(11):2334–2348. https://doi.org/10.1007/s10439-013-0833-3 PMID: 23722932

31. Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa J, et al. A computational model of induced plu-

ripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data

sources. The Journal of Physiology. 2019;. https://doi.org/10.1113/JP277724 PMID: 31278749

32. Vecchietti S, Grandi E, Severi S, Rivolta I, Napolitano C, Priori SG, et al. In silico assessment of

Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. American

Journal of Physiology-Heart and Circulatory Physiology. 2007; 292(1):H56–H65. https://doi.org/10.

1152/ajpheart.00270.2006 PMID: 16980337

33. Paci M, Passini E, Severi S, Hyttinen J, Rodriguez B. Phenotypic variability in LQT3 human induced plu-

ripotent stem cell-derived cardiomyocytes and their response to anti-arrhythmic pharmacological ther-

apy: an in silico approach. Heart Rhythm. 2017;. https://doi.org/10.1016/j.hrthm.2017.07.026 PMID:

28756098

34. Tung L. A bi-domain model for describing ischemic myocardial dc potentials. Massachusetts Institute

of Technology; 1978.

35. Shaw RM, Rudy Y. Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type

calcium currents during reduced excitability and decreased gap junction coupling. Circulation Research.

1997; 81(5):727–741. https://doi.org/10.1161/01.RES.81.5.727 PMID: 9351447

36. Trayanova NA. Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics.

Circulation Research. 2011; 108(1):113–28. https://doi.org/10.1161/CIRCRESAHA.110.223610 PMID:

21212393

37. Tveito A, Jæger KH, Kuchta M, Mardal KA, Rognes ME. A cell-based framework for numerical modeling

of electrical conduction in cardiac tissue. Frontiers in Physics. 2017; 5:48. https://doi.org/10.3389/fphy.

2017.00048

38. Jæger KH, Edwards AG, McCulloch A, Tveito A. Properties of cardiac conduction in a cell-based

computational model. PLoS Computational Biology. 2019; 15(5):e1007042. https://doi.org/10.1371/

journal.pcbi.1007042 PMID: 31150383

39. Hoekstra M, Mummery CL, Wilde A, Bezzina CR, Verkerk AO. Induced pluripotent stem cell derived

cardiomyocytes as models for cardiac arrhythmias. Frontiers in Physiology. 2012; 3:346. https://doi.org/

10.3389/fphys.2012.00346 PMID: 23015789

40. Gibson JK, Yue Y, Bronson J, Palmer C, Numann R. Human stem cell-derived cardiomyocytes detect

drug-mediated changes in action potentials and ion currents. Journal of Pharmacological and Toxico-

logical Methods. 2014; 70(3):255–267. https://doi.org/10.1016/j.vascn.2014.09.005 PMID: 25219538

41. Hancox JC, Whittaker DG, Du C, Stuart AG, Zhang H. Emerging therapeutic targets in the short QT syn-

drome. Expert Opinion on Therapeutic Targets. 2018; 22(5):439–451. https://doi.org/10.1080/

14728222.2018.1470621 PMID: 29697308

42. Paci M, Passini E, Klimas A, Severi S, Hyttinen J, Rodriguez B, et al. In silico populations optimized on

optogenetic recordings predict drug effects in human induced pluripotent stem cell-derived cardiomyo-

cytes. In: 2018 Computing in Cardiology Conference (CinC). vol. 45. IEEE; 2018. p. 1–4.

43. Shannon TR, Wang F, Puglisi J, Weber C, Bers DM. A mathematical treatment of integrated Ca dynam-

ics within the ventricular myocyte. Biophysical Journal. 2004; 87(5):3351–3371. https://doi.org/10.1529/

biophysj.104.047449 PMID: 15347581

44. Nelder JA, Mead R. A simplex method for function minimization. The Computer Journal. 1965;

7(4):308–313. https://doi.org/10.1093/comjnl/7.4.308

45. MATLAB Global Optimization Toolbox; Version 4.3.

46. Gima K, Rudy Y. Ionic current basis of electrocardiographic waveforms: a model study. Circulation

Research. 2002; 90(8):889–896. https://doi.org/10.1161/01.RES.0000016960.61087.86 PMID:

11988490
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