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Abstract
Variation in patterns of methylations of histone tails reflects and modulates chromatin structure
and function1-3. To provide a framework for the analysis of chromatin function in C. elegans, we
generated a genome-wide map of histone H3 tail methylations. We find that C. elegans genes
show similarities in distributions of histone modifications to those of other organisms, with
H3K4me3 near transcription start sites, H3K36me3 in the body of genes, and H3K9me3 enriched
on silent genes. Unexpectedly, we also observe a striking novel pattern: exons are preferentially
marked with H3K36me3 relative to introns. H3K36me3 exon marking is dependent on
transcription and its level is lower in alternatively spliced exons, supporting a splicing related
marking mechanism. We further show that the difference in H3K36me3 marking between exons
and introns is evolutionarily conserved in human and mouse. We propose that H3K36me3 exon
marking in chromatin provides a dynamic link between transcription and splicing.

Chromatin regulation has been studied in a variety of systems, but most extensively in
unicellular yeasts and mammalian cells. C. elegans has many features that make it well-
suited as an alternative system for studies of chromatin regulation. Of particular note are its
well-annotated genome, the ease of RNAi, and the rich resource of chromatin mutants for
loss of function studies4-7. Importantly, C. elegans has a complement of chromatin factors
very similar to that of humans, in contrast to yeast8 and allows investigations of chromatin
function in a multicellular organism9,10. Because modifications to histone tails are
correlated with and can regulate chromatin structure1-3, we decided to map their positions
genome-wide, to provide a framework for chromatin studies in C. elegans.

To generate an initial map of the distributions of histone methylations across the C. elegans
genome, we used chromatin immunoprecipitation (ChIP) followed by microarray
hybridization to determine the genome-wide association of trimethylation of lysine 4, lysine
9 and lysine 36 of histone H3 (H3K4me3, H3K9me3, and H3K36me3). We prepared
chromatin extracts from highly synchronized triplicate wild-type third larval stage worms
and carried out chromatin immunoprecipitations using commercial antibodies (see
Methods). Immunoprecipitated DNA was amplified and hybridized to 2.1 million feature
full genome tiling microarrays (Nimblegen). Pairwise comparisons of same antibody ChIPs
showed strong correlation between replicate data (supplementary table 1), and the three
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replicates showed similar enrichment patterns across different genomic regions (Fig. 1a, b).
To correct for differences in nucleosome occupancy, we subtracted the H3 mean ChIP signal
from those of H3K4me3, H3K9me3, and H3K36me3 (see Methods). To investigate
relationships between transcription and different histone modifications, we generated four
sets of genes: (1) top10: those in the top 10% of expression level in our samples, determined
by gene expression profiling. (2) bottom10: those in the bottom 10% of expression level. (3)
ubiq: genes annotated or expected to be actively transcribed in all nuclei. (4) serp: serpentine
receptor genes, most of which are thought to encode chemosensory receptors transcribed in
only a few neurons and thus to be transcriptionally inactive in most nuclei11.

To gain initial insight into gene regions enriched for different modifications, we plotted
mean log2 ChIP signals across all genes. We aligned genes at the first and last nucleotides of
the annotated transcripts and extended these regions with 1kb upstream and 1kb downstream
of genomic DNA (Fig. 1c-e). We call the first base of annotated transcript the TSS
(transcript start site). Similar to other organisms12-16 we observed a peak of H3K4me3
enrichment near the TSS that correlates with transcriptional activity (Fig. 1d and Supp Fig
1). Highly transcribed genes (ubiq and top10) show strong 5′ enrichment of H3K4me3, but
inactive genes (serp and bottom10) show no enrichment.

In C. elegans, many genes are trans-spliced at their 5′ ends to a 21bp leader sequence17. In
these cases, the transcription start sites are not known because the 5′ end of the primary
transcript is spliced off and degraded. In addition, some groups of genes are transcribed in
operons, with trans-splicing separating transcripts from different genes. Spliced leader SL1
is found on genes adjacent to promoters and SL2 generally occurs on downstream operon
genes not adjacent to promoters. To investigate the relationship between H3K4me3 and the
transcription start site, we separated genes into SL1 genes and those not annotated to contain
SL1 or SL2. We find a peak of H3K4me3 200bp downstream of the presumed TSS (the first
annotated base) for non-SL1 annotated genes (Fig. 1f). In contrast, the peak of H3K4me3 for
SL1 genes occurs 50bp upstream of the first annotated base. The H3K4me3 peak position
suggests that the transcription start site for SL1 genes is on average 250bp upstream of the
trans-splice site. Peaks of H3K4me3 should prove a useful guide for identifying promoters
of SL1 and non-SL1 genes.

We next looked at the genome-wide distribution of H3K9me3. This modification is
generally associated with repressed chromatin1-3. In mammalian cells, H3K9me3 is
enriched in repressed constitutive heterochromatin, repetitive DNA, DNA transposons, and
other repetitive elements18,19. Studies on small gene sets also detected H3K9me3 in the
bodies of actively transcribed genes20,21, but this does not appear to be a general property
based on genome-wide studies22,23. In C. elegans chromatin, we find that H3K9me3 is
highly enriched across inactive genes, covering promoters, transcribed regions, and 3′
regions (blue line in Fig. 1c and Supplementary Fig. 1). In contrast, active genes show very
low H3K9me3 signals (red line in Fig. 1c and Supplementary Fig. 1). Regions with clustered
inactive genes often displayed continuous H3K9me3 enrichment across and between genes
(Fig. 1b).

In yeast and mammalian chromatin, there is a well-documented association of H3K36me3
with transcribed regions1-3. The Set2 histone methytransferase that catalyzes this
modification is associated with elongating RNA polymerase II, and the modification is made
co-transcriptionally24-26. There is evidence that one function of H3K36me3 in the gene
body is to prevent aberrant transcription initiation27,28. We find that C. elegans genes also
show high levels of H3K36me3 in gene bodies. The level of H3K36me3 is low at the 5′
end, increases to a plateau, and then decreases at the 3′ end (Fig. 1e, Supplementary Fig. 1).
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We observed that H3K36me3 signals often showed discrete peaks and troughs in the gene
bodies, with peaks correlating with exonic regions (Fig. 1a). To explore whether this was a
genome-wide phenomenon, we plotted H3K36me3 signals across aligned intron/exon and
exon/intron boundaries. This showed a striking enrichment of H3K36me3 in exon regions
compared to introns (Fig. 2a-c, Supplementary Fig. 2a; Supplementary Fig. 3). In contrast,
neither H3K4me3 nor H3K9me3 showed exon enrichments (Fig. 2d-i, Supplementary Fig.
2b,c; Supplementary Fig. 3). H3K36me3 exon enrichment is not due to GC bias as exon
signals are higher than those of introns across the whole range of %GC (Fig. 2j). We
observed high and level H3K36me3 signals across exons of different lengths and lower
signal across introns (Fig. 2b, c; Supplementary Fig. 3).

We next asked whether H3K36me3 exon marking was dependent on transcription or instead
is a constitutive feature of exons. We found that the highly expressed ubiq and top10 genes
show a higher level of exon marking relative to all genes whereas bottom10 and serp genes
show low or no marking, respectively (Fig 2a, Supplementary Fig. 2a). We conclude that
exon marking is transcription associated.

Because chromatin marking of exonic sequence with H3K36me3 depends on transcription
and transcribed exons are spliced into mature transcripts, we wondered whether marking
was related to the process of splicing. If so, then chromatin encoding exons that are
constitutively included in transcripts would be expected to have a higher level of H3K36me3
than alternatively spliced exons. To address this possibility, we assembled a set of exon trios
where an alternative exon is flanked by two constitutive exons and compared H3K36me3
levels in the three exons; the alternative and constitutive exons have similar GC contents
(Fig. 3g). We also compared these trios to a control set of length matched trios where all
three exons are constitutively included. We find that alternative exons have significantly
reduced H3K36me3 exon signals relative to their constitutive neighbours and to the matched
control exons (Fig. 3a). In contrast, there is no difference between the sets of trios in levels
of H3K4me3 or H3K9me3 (Fig. 3b, c). The reduction in H3K36me3 signal in alternative
exons indicates that exon marking is related to splicing.

Although profiles of H3K36me3 have been extensively mapped in other organisms, exon
marking has not been observed before. To ask whether this phenomenon is specific to C.
elegans or alternatively might be widespread, we analysed genome-wide data for mapping of
H3K36me3 in mouse and human chromatin22,23. These mapping data were generated by
massively parallel sequencing rather than microarrays providing a platform control. Similar
to the C. elegans data, we find a strong enrichment of H3K36me3 in both mouse and human
exons relative to introns (Fig. 4a-c, g-i). In contrast, we find essentially level signals for
H3K4me3 (Fig. 4d-f, j-l). As a further control we examined H3K27me1, found across active
gene bodies like H3K36me322, and found similar signals in exons and introns. (Fig. 4m-o).
As in C. elegans, H3K36me3 exon enrichment is not due to GC bias (Fig. 2k,l). The
H3K36me3 signal in long exons increases to a plateau, similar to the pattern in C. elegans
exons (Supplementary Fig 3). Across shorter exons more typical of human genes,
H3K36me3 signal increases from 5′ to 3′ ends, resulting in an apparent peak near the 5′
splice site of the next intron (Fig. 4b). The lower H3K36me3 signals in introns increase near
both the 5′ and 3′splice sites (Fig. 4c, i).

The above analysis demonstrated that H3K36me3 exon marking is conserved in human and
mouse. To explore whether marking in mammalian chromatin is likely to be related to
splicing as it is in C. elegans, we used the mouse data23 to ask whether alternative exons
show reduced H3K36me3 signals relative to constitutive exons. Indeed, we found that
mouse alternative exons have significantly lower H3K36me3 signals but no difference in
levels of H3K4me3 (Fig. 3d, e). The GC contents of the alternative exons are also similar to
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those of the constitutive exons (Fig. 3h). We conclude that H3K36me3 marking of expressed
exons is conserved.

What could be the function of H3K36me3 exon marking? Because constitutively expressed
exons have higher marking than alternatively included ones, marking has a relationship with
cis-splicing. There is increasing evidence that a significant amount of splicing occurs co-
transcriptionally rather than post-transcriptionally, making interactions between chromatin
and the splicing machinery plausible29,30. Indeed, although to our knowledge marking of
exons in chromatin has not been observed previously, there are recent reports of chromatin
factors having roles in splicing. For example, the H3K4me3 binding protein CHD1 is
associated with the splicesome and required for high splicing efficiency31. In addition,
splicing factors have been reported to associate with both chromatin and the RNA
polymerase II complex29,30. An attractive possibility is that marked exons in chromatin
provide a mechanism to facilitate efficient splicing. For example, marked exons might aid
recruitment of splicing factors to chromatin.

A second possibility is that the splicing machinery could regulate directly or indirectly K36
methyltransferases on the travelling RNA polymerase complex. If so, the composition of the
travelling RNA polymerase complex might differ in exonic and intronic regions. For
example, engagement in splicing reactions might reduce binding of splicing factors to Pol II.
If these factors compete with or inhibit the H3K36me3 methyltransferase, this could result
in regional differences in H3K36me3 on chromatin.

It is also known that the rate of RNA polymerase procession can vary over the gene and that
changes in processivity can affect inclusion of alternative exons32,33. It would be
interesting to investigate whether H3K36me3 affects processivity, which in turn could affect
splicing. H3K36me3 is known to prevent spurious transcription initiation27,28, so it could
have a general inhibitory influence on Pol II complex activity.

Materials and methods
Extract preparation

Triplicate samples of synchronized mid-L3 larvae were prepared by growing starved L1s in
liquid culture at 20°C. Larvae were cleaned by sucrose flotation and flash frozen in liquid
nitrogen. Frozen worms were ground to a fine powder and fixed in 1% formaldehyde/PBS
for 10 minutes, quenched with 0.125uM glycine, and then washed 3X in PBS with protease
inhibitors. The pellet was resuspended in 1ml of FA buffer (50mM HEPES/KOH pH7.5,
1mM EDTA, 1% Triton X-100, 0.1% sodium deoxyholate, 150mM NaCl with protease
inhibitors) per 4ml of ground worm powder. Extract was sonicated to a size range of
200-1000bp using a Diagenode Bioruptor at high setting for 14 pulses, each lasting 30
seconds followed by a 1 minute pause. The extract was spun for 10 minutes at 16000g at
4°C, and the soluble fraction was flash frozen in liquid nitrogen and stored at −80°C until
use.

Chromatin immunoprecipitation and expression profiling
Each ChIP was prepared in 500ul of FA buffer containing 1% sarkosyl. The following
antibodies and extract amounts were used: anti-H3 (3ug abcam 1791 with 300ug extract);
anti-H3K4me3 (5ul Active Motif AR0169 serum with 300ug extract); anti-H3K36me3 (3ug
abcam ab9050 with 1mg extract); anti-H3K9me3 (3ug Upstate 07-442 with 1mg extract).
Additionally 10% of extract was saved as a reference. After overnight rotation at 4°C, 40ul
of blocked and washed magnetic protein A dynabeads (Invitrogen) were added and the
incubation continued for 2 additional hours. Beads were washed at room temperature 2
times for 5 minutes in FA buffer, once in FA with 500mM NaCl for 10 minutes, once in FA

Kolasinska-Zwierz et al. Page 4

Nat Genet. Author manuscript; available in PMC 2009 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with 1M NaCl for 5 minutes, once in TEL buffer (0.25M LiCl, 1% NP-40, 1% sodium
deoxyholate, 1mM EDTA, 10mM Tris-HCl, pH 8.0) 10 minutes and two times in TE pH 8.0
for 5 minutes. DNA was eluted twice with 57 μl elution buffer (1% SDS in TE with 250mM
NaCl) at 65°C, 15 minutes each time. Eluted DNA was incubated with 20 μg of RNase for
30 minutes at 37°C and then with 20 μg of Proteinase K for 1hour at 55°C. Input DNA was
also diluted in 114ul elution buffer and treated with ChIP samples. Crosslinks were reversed
overnight at 65°C. DNA was purified on Qiagen PCR purification columns and one third
was used for LM-PCR amplification34. Two rounds of 20 cycle amplification were carried
out; 100ng of the first round was used for the second round. 6.5 μg of each amplified DNA
was used for hybridization to NimbleGen 2.1 million feature full genome tiled C. elegans
microarrays (Roche). MA2C software35 was used to normalize chromatin
immunoprecipitation microarray data and average replicates using the robust mean variance
method where C=2. Concordance between ChIP replicates was assessed by calculating an
overall Pearson correlation coefficient for every probe in each pairwise combination of same
antibody ChIP (Supplementary Table 1). To correct for differences in nucleosome density,
H3 normalized log ratios were subtracted from those of the modified histones (H3K4me3,
H3K9me3, and H3K36me3). Total RNA was prepared from a small fraction of worms from
each replicate sample and used for microarray expression profiling on Affymetrix C. elegans
GeneChip arrays. The expression profiling datasets are available from ArrayExpress
(accession number E-TABM-598) and the chromatin immunoprecipitation datasets from the
modENCODE Data Coordination Center (http://www.modencode.org/Stein.shtml).

Data sets, genomic features and gene lists
We extracted genomic features from Wormbase36 release WS170, and from human and
mouse Ensembl databases using custom Java scripts. We used mouse MEF ChIP seq data
from23 and human CD4+ T cell ChIP seq data from22. The C. elegans ubiq gene set
contains genes annotated as ubiquitously expressed in Wormbase and genes expected to be
expressed in most or all cells: ribosomal protein genes, nuclear pore proteins, protein
degradation machinery, basal transcription factors, and core translation factors. The
serpentine receptor set contains confirmed or partially confirmed genes of the following
classes: sra, srab, srb, srbc, srd, sre, srg, srh, sri, srj, srm, srn, srr, srsx, srt, sru, srv, srw, srx,
srz, str sra, srab, srb, srbc, srd, sre, srg, srh, sri, srj, srm, srn, srr, srsx, srt, sru, srv, srw, srx,
srz, str. Most encode chemosensory receptors expressed in only a few neurons and so are
expected to be transcriptionally inactive in most nuclei11. To generate the top10 and
bottom10 gene sets, we ranked all genes by mean expression array signal intensity across the
three replicates, then took the top and bottom deciles (1841 genes each) to represent genes
with high and low expression levels. The genes in these four sets are listed in Supplementary
Table 2.

Visualizing signals across different gene features
In Figures 2, 4 and Supplementary Figure 2, intron/exon and exon/intron pairs were each
aligned at the splice junctions. For C. elegans, we selected pairs where the intron was at least
400bp long and the exon at least 80bp long, and excluded first or last exons. For human and
mouse, minimum intron length was 500bp and exon length 200bp. Isolated transcript start
sites (TSSs) were used in Figure 1f, defined as the first base of an annotated transcript with
no other transcript starts within 1kb. A subset of isolated TSSs were marked as SL1 or SL2
sites if they corresponded exactly with an “SL1_acceptor_site” or “SL2_acceptor_site”
feature in Wormbase36. The remaining TSSs were marked as presumed non-trans-spliced
starts.

To visualize the level of each histone modification across whole C. elegans gene regions,
gene starts, intron, exons, and intron/exon junctions, we first collected normalized ChIP data
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around the relevant features. We then took samples at 10bp intervals across the resulting
landscape model, collected all ChIP data mapping to each sampling point, and calculated
95% confidence intervals on likely values of the mean ChIP signal by bootstrapping. This
procedure was repeated for subsets of genes (ubiq, serp, top10, bottom10).

To investigate possible technical effects in ChIP-chip data, we selected 50bp microarray
probes which either overlapped exons or fell entirely within introns, and subdivided these
depending on the number of G and C bases within the probe sequence. We then calculated
the mean ChIP signal for both exonic and intronic probes in each G+C bin. ChIP-seq data
was handled similarly, except that we considered arbitrary 50bp windows around each
sampling point in the ChIP-seq dataset.

Analysis of alternatively-spliced exons
We collected all possible alternatively spliced exon trios: that is, groups of three successive
exons from a gene with multiple annotated transcripts where the first and last exons are
constitutively included in all annotated transcripts, but the central exon is only included in a
subset of transcripts. For comparison, we also collected length-matched constitutively-
spliced trios (i.e. three successive exons that are always included). Specifically, we required
that the Cartesian difference between the three lengths of the alternatively-spliced trio and
its matching constitutively-spliced trio to be <= 5bp. Some alternatively spliced trios were
discarded at this point since a matching constitutive trio could not be found. We calculated
the GC content of probes within trios (as described above) and confirmed that alternatively-
spliced exons in this dataset do not have substantively different sequence composition. We
only considered trios where genes showed significant H3K36me3 (for C. elegans, mean
signal across all exons >=0.5; for mouse trios where at least one exon has non-zero tag
counts and alternative exon minimum length of 100bp). We then collected mean histone
modification log2 ratios (elegans) or the ratio of tag counts (mouse) across all exons in all
trios. We normalized scores within each trio by subtracting the trio-wide mean from each
exons score. Finally, we calculated 95% confidence intervals on the mean score at each of
the three exons by bootstrapping. Where differences were observed, their significance was
assessed by finding the difference in the means of the two sets of of log2 ratios, then
bootstrapping to determine how frequently such a difference might be observed by chance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank all the members of our modENCODE consortium for help and advice, and especially the Lieb lab for
help with ChIP protocol development and the Strome lab for discussions about H3K36me3. We are very grateful to
Heather Holster for expert microarray processing at NimbleGen Systems. This work was supported by National
Human Genome Research Institute modENCODE grant 1-U01-HG004270-01 to JA and XSL, by a Wellcome Trust
Senior Research Fellowship (054523) and Cambridge Newton Trust funding to JA, by a Gates Foundation
studentship to PK, and by a Wellcome Trust Research Career Development Fellowship (083563) to TD.

References
1. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;

447:407–12. [PubMed: 17522673]

2. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128:693–705. [PubMed:
17320507]

3. Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the
regulation of gene expression. Annu Rev Biochem. 2006; 75:243–69. [PubMed: 16756492]

Kolasinska-Zwierz et al. Page 6

Nat Genet. Author manuscript; available in PMC 2009 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4. Consortium, C.e.S. Genome sequence of the nematode C. elegans: a platform for investigating
biology. The C. elegans Sequencing Consortium. Science. 1998; 282:2012–8. [PubMed: 9851916]

5. Fire A, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature. 1998; 391:806–11. [PubMed: 9486653]

6. Kamath RS, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi.
Nature. 2003; 421:231–7. [PubMed: 12529635]

7. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998; 395:854. [PubMed:
9804418]

8. Cui M, Han M. Roles of chromatin factors in C. elegans development. WormBook. 2007:1–16.
[PubMed: 18050494]

9. Ercan S, et al. X chromosome repression by localization of the C. elegans dosage compensation
machinery to sites of transcription initiation. Nat Genet. 2007; 39:403–8. [PubMed: 17293863]

10. Whittle CM, et al. The genomic distribution and function of histone variant HTZ-1 during C.
elegans embryogenesis. PLoS Genet. 2008; 4:e1000187. [PubMed: 18787694]

11. Bargmann CI. Chemosensation in C. elegans. WormBook. 2006:1–29. [PubMed: 18050433]

12. Schneider R, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell
Biol. 2004; 6:73–7. [PubMed: 14661024]

13. Bernstein BE, et al. Genomic maps and comparative analysis of histone modifications in human
and mouse. Cell. 2005; 120:169–81. [PubMed: 15680324]

14. Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by
elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol
Cell. 2003; 11:709–19. [PubMed: 12667453]

15. Pokholok DK, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell.
2005; 122:517–27. [PubMed: 16122420]

16. Liu CL, et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol.
2005; 3:e328. [PubMed: 16122352]

17. Blumenthal T. Trans-splicing and operons. WormBook. 2005:1–9. [PubMed: 18050426]

18. Peters AH, et al. Partitioning and plasticity of repressive histone methylation states in mammalian
chromatin. Mol Cell. 2003; 12:1577–89. [PubMed: 14690609]

19. Schotta G, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive
heterochromatin. Genes Dev. 2004; 18:1251–62. [PubMed: 15145825]

20. Brinkman AB, et al. Histone modification patterns associated with the human X chromosome.
EMBO Rep. 2006; 7:628–34. [PubMed: 16648823]

21. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and
HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell.
2005; 19:381–91. [PubMed: 16061184]

22. Barski A, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;
129:823–37. [PubMed: 17512414]

23. Mikkelsen TS, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed
cells. Nature. 2007; 448:553–60. [PubMed: 17603471]

24. Krogan NJ, et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to
transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003; 23:4207–18. [PubMed:
12773564]

25. Li J, Moazed D, Gygi SP. Association of the histone methyltransferase Set2 with RNA polymerase
II plays a role in transcription elongation. J Biol Chem. 2002; 277:49383–8. [PubMed: 12381723]

26. Schaft D, et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional
elongation. Nucleic Acids Res. 2003; 31:2475–82. [PubMed: 12736296]

27. Carrozza MJ, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by
Rpd3S to suppress spurious intragenic transcription. Cell. 2005; 123:581–92. [PubMed:
16286007]

28. Keogh MC, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive
Rpd3 complex. Cell. 2005; 123:593–605. [PubMed: 16286008]

Kolasinska-Zwierz et al. Page 7

Nat Genet. Author manuscript; available in PMC 2009 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



29. Allemand E, Batsche E, Muchardt C. Splicing, transcription, and chromatin: a menage a trois. Curr
Opin Genet Dev. 2008; 18:145–51. [PubMed: 18372167]

30. Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between
transcription and splicing. Rna. 2004; 10:1489–98. [PubMed: 15383674]

31. Sims RJ 3rd, et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of
transcription postinitiation factors and pre-mRNA splicing. Mol Cell. 2007; 28:665–76. [PubMed:
18042460]

32. de la Mata M, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell. 2003;
12:525–32. [PubMed: 14536091]

33. Howe KJ, Kane CM, Ares M Jr. Perturbation of transcription elongation influences the fidelity of
internal exon inclusion in Saccharomyces cerevisiae. Rna. 2003; 9:993–1006. [PubMed:
12869710]

34. Ren B, et al. Genome-wide location and function of DNA binding proteins. Science. 2000;
290:2306–9. [PubMed: 11125145]

35. Song JS, et al. Model-based analysis of two-color arrays (MA2C). Genome Biol. 2007; 8:R178.
[PubMed: 17727723]

36. Rogers A, et al. WormBase 2007. Nucleic Acids Res. 2008; 36:D612–7. [PubMed: 17991679]

Kolasinska-Zwierz et al. Page 8

Nat Genet. Author manuscript; available in PMC 2009 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Patterns of histone methylations across C. elegans genes
(a, b). Mean log2 ChIP signal of normalized triplicate samples across a genomic region
containing (a) an actively transcribed gene and (b) a cluster of transcriptionally repressed
genes. (c) H3K9me3, (d) H3K4me3, and (e) H3K36me3 mean log2 ChIP signals across all
genes (black), ubiq genes (red) and serp genes (blue) aligned at the first and last nucleotides
(0% and 100%) and extended with 1kb upstream and downstream sequence. (f) H3K4me3
mean log2 ChIP signals from −1000 to +1000 relative to TSSs (transcript start sites; defined
as the first known nucleotide in the mature transcript, not including trans-spliced leaders).
Blue, SL1 genes; black, genes not annotated to contain spliced leaders.
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Figure 2. H3K36me3 is enriched across C. elegans exonic chromatin
Mean log2 ChIP signals for (a-c) H3K36me3 (d-f) H3K4me3 and (g-i) H3K9me3. (a, d, g)
plot signals across intron/exon and exon/intron boundaries where introns are at least 400bp
and exons at least 80bp, excluding first and last exons. Black, exons of all genes; red, ubiq
genes; blue, serp genes. In the gene model, thin grey lines represent 400bp of intron
sequence, black boxes 40bp of exon sequence, and thick grey lines the centres of exons that
vary in length. (b, e, h) mean log2 ChIP signals across exons of length 350-450bp flanked on
both sides by introns of >=500bp. (c, f, i) mean log2 ChIP signals across introns of length
950-1050bp. In diagrams below plots, black boxes represent exons and black lines introns.
Exon enrichment of H3K36me3 relative to a neighboring intron was confirmed by qPCR of
non-amplified ChIP material in 8/8 cases tested (not shown). (j,k,l) H3K36me3 signals for
exons and introns according to GC content. In C. elegans (j), mouse (k), and human (l), exon
signals are higher than those of introns at every % GC implicating that enrichment of
H3K36me3 on exons is not due to GC bias.
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Figure 3. Alternative exons have lower H3K36me3 signal than constitutive exons
(a-e) Mean log2 ChIP signal of each C. elegans trio exon (a-c) or the average tag count for
each mouse trio exon (d, e) is shown for the indicated histone modification. (f) Cartoon of
alternative and constitutive trios of exons used in the analysis; colours correspond to data
bars in (a-e). Exon sizes in alternative and constitutive sets were length matched. In (a) and
(d) the alternative central exons (red) have significantly lower H3K36me3 signal than their
matched constitutive central exons or than their constitutive neighbours (p<0.01). The
matched central exons do not show reduced H3K36me3 relative to their neighbours. There
is also no significant difference in signals for the alternative exons compared to the matched
exons for other histone modifications. The higher signals for exon 1 in (b) and (e) are due to
closer proximity to the TSS. For C. elegans trios, n=54, and for mouse n=190. Bars are 95%
confidence intervals. (g, h) Cumulative GC content of constitutive and alternative exons in
the alternative trios. (g) C. elegans (h) mouse. Alternative exons are similar in GC content to
constitutive exons.
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Figure 4. H3K36me3 is enriched across human and mouse exonic chromatin
Average tag counts of middle exons after ChIP of (a) H3K36me3 (d) H3K4me3 from mouse
MEF chromatin23 or (g) H3K36me3 (j) H3K4me3 (m) H3K27me1 from human CD4+ T
cell chromatin22 across intron/exon and exon/intron boundaries where introns are at least
500bp and exons at least 200bp. In the gene model, thin grey lines represent 500bp intron
sequence, black boxes 100bp exon sequence, and thick grey lines the centres of exons that
vary in length. Mean ChIP tag counts across exons (b, e, h, k, n) or introns (c, f, i, l, o) for
(b, c) mouse H3K36me3 (e, f) mouse H3K4me3 (h, i) human H3K36me3 (k, l) human
H3K4me3 (n, o) human H3K27me1. Exons of length 350-450bp and introns of length 5-6kb
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were used, excluding the first 2kb of the gene to eliminate promoter specific signals. In
diagrams below plots, black boxes represent exons and black lines introns.
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