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Abstract: Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been
associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone
having a role in reproduction, sexual maturation, brain health and biological activities. The study
aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP
kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex
and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses
were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg)
induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and
revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1
antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-
activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of
P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced
gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory
cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced
the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in
the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-
3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate
significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating
brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating
pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In
brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced
neurodegeneration. The study also encourages future studies investigating if E2 may be a potent
neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.

Keywords: 17β-estradiol; glutamate; oxidative stress; MAP-kinases; neuroinflammation; gliosis;
neurodegeneration

1. Introduction

Glutamate is a free amino acid, rich in CNS and known as a major excitatory neuro-
transmitter, connected to essentially most activities of the nervous system [1], including
fast synaptic communication, neuronal plasticity, survival and outgrowth [2]. However,
under pathological conditions, glutamate plays a crucial role in neuronal cell death [3], and
its dysregulation has been reported in both acute and chronic neurodegenerative disease,
including ischemia, amyotrophic lateral sclerosis, Huntington’s disease and Alzheimer’s
disease (AD) [1,4]. The over-activation of NMDA receptors due to excessive glutamate
can mediate abnormal Ca2+ influx, increase cellular reactive species generation (ROS)
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and damages mitochondrial membrane, inducing neuronal apoptosis and cell death [5,6].
Therefore, the neuroprotection against glutamate-induced excitotoxicity may present a
promising therapeutic strategy in alleviating acute/chronic neurodegenerative disease, at
least to delay their onset/appearance [7].

Prolonged glutamate excitotoxicity is known to induce cystine depletion, leading to
deficiency in the cellular store of glutathione, causing increase oxidative stress (OS) [8].
OS plays an important role in regulating the cellular redox state, contributing to ROS
generation, which are the main culprits in promoting neurodegenerative disease [9]. ROS
has deleterious effects on post-mitotic neuronal and glial cells, leading to programmed cell
death/apoptosis [10]. In neuronal tissue and brain, ROS in particularly are active due to
the unique brain metabolism of neurotransmitters and excitatory amino acids and serve
as a source of OS [11]. The normal brain has an antioxidant defense mechanism against
increased OS to regulate cellular redox homeostasis. Nrf2, an important transcription factor,
recognizes antioxidant response element (ARE) to encode key cytoprotective enzymes such
as glutathione peroxidase 1 (GPx1), heme oxygenase 1 (HO-1) and SOD1 [12] and also
regulates endogenous antioxidant genes, including glutathione (GSH), to promote cell
survival against brain OS [13].

ROS-induced oxidative damage is a risk factor in the development of many neu-
rodegenerative diseases [14] and is involved in the potential activation of the MAPKs
(serine-threonine protein kinases) pathway. MAPKs cascades regulate numerous cellular ac-
tivities, including cell survival/death and proliferation/differentiation [15]. The oxidative
modification due to increased ROS generation leads to regulation of MAPK/extracellular
signal-regulated kinase (Erk), c-jun NH2-terminal kinases (JNKs) or p38 MAPKs. Where the
Erk pathway is associated with cell survival, the stress-activated JNK and p38-MAPK path-
ways are associated with cell death [16]. MAPKs activation is responsible for astrogliosis
and microgliosis and induces the production of proinflammatory mediators such as tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) [17,18].
Excessive glutamate-induced OS may activate the p38 MAPK pathway and culminate with
glial and neuronal cell death and apoptosis [19].

17β-estradiol or estradiol (E2) exists as human steroid hormones having a role in
reproduction, sexual maturation, lipid metabolism, cardiovascular system and brain
health [20–23]. In addition to the importance of sexual characteristics, E2 is also cru-
cial for fetal and embryonal development of the brain networks [24]. E2 is considered as a
neurosteroid hormone, which is synthesized in the brain and is released to participate in
numerous signaling pathways [25–27]. Many studies have illustrated the neuroprotective
role of E2 [28–31]. Accumulative studies have shown the beneficial outcome of E2 in
different CNS injuries, including ischemic brain injury (IBI), spinal cord injury (SCI) and
traumatic brain injury (TBI) [32]. E2 mediates signaling pathways mostly through estrogen
receptors (ERs), either through genomic or non-genomic mechanism [33]. However, many
studies have demonstrated the ER-independent antioxidant effect of estrogens [34,35] to
protect different neuronal cell lines against oxidative stress induced by superoxide anions,
hydrogen peroxide and other pro-oxidants [36]. E2-mediated protection against oxidative
cell death induced by glutamate or amyloid-β was largely mitigated by pre-treatment
neuronal cells with MEK inhibitor PD98059, thus showing clearly the activation of Erk
by E2. Moreover, E2 can potentially activate Erk phosphorylation in the HT-22 mouse
hippocampus cell line, overexpressing ERα and ERβ [37,38]. Previously, we showed that
E2 modulates Sirt1 activities to impede oxidative stress-mediated cognitive decline in the
ageing mouse model [39]. Growing evidence also suggests the role of E2 and ERs ligands in
exerting anti-inflammatory effects in different models [40–44]. E2 replacement therapy has
been used clinically to improve cognitive performance and to reduce the risk of developing
AD in women after menopause [45,46]. Here, we examined for the first time the neuropro-
tective role of E2 in vivo against glutamate-induced oxidative stress, neuroinflammation
and neurodegeneration. Our results make evident that glutamate (subcutaneous injection;
10 mg/kg) excitotoxicity compromises the intracellular redox state, disrupting Nrf2/HO-1
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protein expressions enhancing ROS and mediating the P-JNK/P38 MAPK signaling path-
way, leading to neuroinflammation, neuronal apoptosis and synapse loss in postnatal
day 7 (P7) rat brains. However, co-treatment of E2 (subcutaneous injection; 10 mg/kg)
with glutamate alleviated oxidative stress, neuroinflammation and neurodegeneration and
improved the expression levels of synaptic protein.

2. Materials and Methods
2.1. Chemicals

Glutamate (Glu) and 17β-estradiol (E2) were purchased from Sigma Aldrich (St. Louis,
MO, USA and Madison, WI, USA, respectively).

2.2. Animals and Drug Treatment

The postnatal day 7 Dawley male rat pups (16–18 g body weight) were randomly
divided into four groups (n = 6 pups/group):

(1) Control group (treated subcutaneously with 0.9% saline as a vehicle)
(2) Glu group (treated subcutaneously with 10 mg/kg of glutamate)
(3) Glu + E2 group (co-treated subcutaneously with 10 mg/kg of glutamate plus 10 mg/kg

of 17β-estradiol).
(4) E2 group (treated subcutaneously with 10 mg/kg of 17β-estradiol)

Four hours after single subcutaneous injections, all the rat pups were euthanized and
sacrificed for biochemical and immunohistochemical analysis. The schematic (Figure 1) il-
lustrates the study design and treatment plan. The experimental procedures were approved
(Approval ID: 125) by the local animal ethics committee (IACUC) of the Division of Applied
Life Sciences, Department of Biology, Gyeongsang National University, South Korea.

Figure 1. Schematic representation of the research plan. The experimental postnatal day 7 (P7) rat
pups were randomly divided into four groups: (i) Pups treated with normal saline as a vehicle
(on day 7 subcutaneous injection); normal saline-treated (Cont.) group. (ii) Pups treated with
glutamate (subcutaneous injection: 10 mg/kg); glutamate-alone-treated group. (iii) Pups treated with
glutamate (10 mg/kg) + E2 (10 mg/kg) subcutaneous injection: Glut + E2 co-treated group. (iv) Pups
treated with E2 (subcutaneous injection: 10 mg/kg): E2-alone-treated group. Four hours after a
single injection, the experimental pups were euthanized and further subjected to biochemical and
immunofluorescence analyses.

2.3. Brain Tissue Collection/Sample Preparation

On postnatal day 7, Dawley (male) rat pups were sacrificed after 4 h of injection, and
the brain was removed immediately for biochemical analysis and stored at −80 ◦C. For
immunoblot analysis, tissues were homogenized in 0.2 M phosphate-buffered saline (PBS)
with phosphatase inhibitor and protease inhibitor cocktail. The sample was centrifuged
at 13,000 rpm at 4 ◦C for 20 min, and the supernatant was collected and stored at −80 ◦C.
For immunofluorescence analysis, the animals anaesthetized were perfused transcardially
with normal saline solution until the whole blood from the body was removed followed
by fixation with 4% paraformaldehyde (PFA). The brain was then removed, fixed in PFA
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at 4 ◦C for 72 h and then kept in 20% sucrose solution for 48 h and frozen in O.C.T.
(TissueTek O.C.T. Compound Medium, Sakura Finetek USA, Inc., Torrance, CA, USA). For
the preparation of brain slices, the coronal plane (14 µm) tissue sections were obtained and
thaw-mounted on the gelatin-coated slide using a CM 3050C cryostat (Leica, Germany).

2.4. Western Blot Analysis

The Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA, USA) was used to
quantify protein concentration. An equal amount of protein sample (20 mg) was elec-
trophoresed on 12% SDS-PAGE gel and then transferred to polyvinylidene fluoride (PVDF)
membrane. For covering a broad range of molecular weights, the pre-stained protein ladder
(GangNamstainTM, iNtRON Biotechnology, Burlington, NJ, USA) was used to detect the
molecular weights of the proteins. Five percent skim milk was used for membrane blocking
to reduce nonspecific binding, followed by incubation with primary antibodies of interest
at 4 ◦C overnight. After incubation, the membranes were washed with 1× TBST and
blocked with horseradish peroxidase-conjugated secondary antibody as appropriate. After
washing, the bands were detected using an enhanced chemiluminescent (ECL) detection
reagent (EzWestLumiOne, ATTO, Tokyo, Japan). The optical densities of the bands were
evaluated using ImageJ (v. 1.50, NIH, Bethesda, MD, USA) software.

2.5. Immunofluorescence

Immunofluorescence staining was performed as described previously [47]. The slides
were washed with 1× PBS followed by incubation at room temperature with proteinase
K solution and blocked with normal goat serum. The slides were then incubated with
primary antibodies (1:100 in PBS) at 4 ◦C overnight. The next day, the secondary antibodies
fluorescence-based (IgG-FITC/TRITC from Santa Cruz Biotechnology) were applied for 1 h
at room temperature. Finally, 4,6-diamidino-2-phenylindole (DAPI) was used for nucleus
staining, and the slides were then covered by coverslips with the help of a mounting
medium. For immunofluorescence microscopic images, a confocal microscope (FluoView
FV 1000; Olympus, Tokyo, Japan) was used. P-JNK, caspase-3 and GFAP cell bodies
(stained with DAPI) were manually counted and reviewed morphologically.

2.6. Antibodies

The following primary antibodies were used in this study (Table 1), while goat anti-
mouse and goat anti-rabbit horseradish peroxidase (HRP) were used as secondary anti-
bodies (dilution 1:10,000), purchased from Santa Cruz Biotech (Dallas, TX, USA) and Cell
Signaling Technology (Danvers, MA, USA).

Table 1. List of primary antibodies and their information used in this study.

Antibody Catalog/Product # Application (Conc.) Host Manufacturer

β-Actin SC-47,778 WB (1:1000) Mouse Santa Cruz Biotech
Nrf2 SC-722 WB/IF (1:1000) = =
HO1 SC-136,961 WB/IF (1:1000/1:100) = =
GFAP SC-33,673 WB/IF (1:1000/1:100) = =
Iba-1 SC-32,725 WB (1:1000) = =
Iba-1 PA5-27,436 IF (1:100) Rabbit Thermo Fisher
TNF-α SC-52,746 WB (1:1000) Mouse Santa Cruz Biotech
PSD-95 SC-71,933 WB (1:1000) = =
SYP SC-17,750 WB (1:1000) = =
Bax 2772S WB (1:1000) Rabbit Cell Signaling
Bcl-2 SC-7382 WB (1:1000) Mouse Santa Cruz Biotech
Caspase-3 SC-7272 WB (1:1000) = =
Caspase-3 9661S IF (1:100) Rabbit Cell Signaling
P-JNK SC-6254 WB/IF (1:1000/1:100) Mouse Santa Cruz Biotech
JNK SC-7345 WB (1:1000) = =
P-p38 #9212 WB (1:10,000) Rabbit Cell Signaling
p38 #9211s WB (1:1000) = =
P-Erk1/2 #9101 WB (1:10,000) = =
Erk1/2 9102S WB (1:10,000) = =
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2.7. GSH Assays

A glutathione assay kit (BioVision Incorporated155 S. Milpitas Boulevard, Milpitas,
CA 95035, USA) and fluorometric assay kit (catalogue #K264-100) were used to measure the to-
tal level of GSH and GSH/GSSG enzyme levels according to the manufacturer’s instructions.

2.8. Reactive Oxygen Species (ROS) Assay

For ROS detection, the brain homogenates were diluted in ice-cold Lock’s buffer at a
1:20 to make the final concentration of 2.5 mg tissue/500 µL. The final 1 mL reaction mixture
composed of Lock’s buffer (pH ± 7.4), brain homogenate 0.2 mL and 10 mL of DCFH-DA
(5 mM) was incubated for 15 min to convert DCFH-DA into the fluorescent product DCF
at room temperature. A spectrophotometer (Promega Biosciences, CA, USA, excitation at
484 nm and emission at 530 nm) was used to measure the fluorescent product DCF.

2.9. Lipid Peroxidation (LPO) Assay

The LPO levels were investigated by quantification of malondialdehyde (MDA) con-
tents. The colorimetric/fluorometric assay kit was used to measure MDA levels according
to the manufacturer’s instructions (Bio Vision, San Francesco, CA, USA, Cat #739-100).

2.10. Statistical Analyses

For the immunoblot, the band’s densities of the scanned X-ray films were measured
and analyzed via ImageJ software (v. 1.50, NIH, Bethesda, MD, USA). Immunofluores-
cence analysis was either analyzed by integrated densities using ImageJ or by manually
counting the number of positive cells stained with DAPI. The data were presented as
the mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA)
with Tukey’s post hoc test was used for statistical analysis/significance (p-value) using
GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA). p < 0.05 was considered
significant. * p < 0.05, ** p < 0.01 indicates the comparison between control and Glu-
treated groups; # p < 0.05, ## p < 0.01 indicates the comparison between Glu-treated and
E2 + Glu-treated groups, where p > 0.05 represents a non-significant (n.s) value.

3. Results
3.1. 17β-Estradiol Reduced Glutamate-Induced Oxidative Stress by Activating Nrf2/HO-1
Pathway and Enhanced Cellular Glutathione Stores in Postnatal Rat Brain

Glutamate plays an important role in neuronal excitotoxicity and mediates reactive
oxygen species (ROS) production [5,48]. Overwhelming production of ROS disrupts the
balance between pro-oxidants and antioxidants, causing alterations in cellular redox home-
ostasis, leading to oxidative stress, which in turn has been implicated in many neurodegen-
erative diseases [49,50]. In this study, we have demonstrated that the subcutaneous injection
of glutamate (10 mg/kg) to postnatal day 7 (P7) rat significantly depleted the cellular-store
of reduced glutathione (GSH) and GSH to oxidized glutathione (GSH:GSSG) ratio in the
cortex and hippocampal brain homogenates as revealed by GSH assay when compared to
control littermates (Figure 2a,b). Moreover, the reduced GSH levels in glutamate-injected
P7 pups were associated with enhanced ROS and lipid peroxidation (LPO) production as
revealed by increased levels of DCF fluorescence and MDA contents, respectively, com-
pared to the non-treated wild group (Figure 2c,d). Furthermore, the immunoblot results
also revealed alterations in the endogenous antioxidant pathway in glutamate-injected
pups, as indicated by the suppression of Nrf2 and HO-1 protein expressions in the cortical
and hippocampal brain homogenates when compared to the control pups (Figure 2e–g).
The immunofluorescence analysis of the brain slices further invigorated the disruption
of HO-1 enzyme expression in the cortex and within the hippocampal-DG region of the
glutamate-injected postnatal rat compared to the non-treated P7 group (Figure 2h,i). How-
ever, 17β-estradiol (E2), when co-injected subcutaneously (10 mg/kg) with glutamate,
significantly upregulated the Nrf2 protein expression and HO-1 expression and immunore-
activity (Figure 2e–i) and also prominently enhanced the GSH and GSH:GSSG enzyme
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ratio and reduced the ROS and MDA content in cortical and hippocampal brain regions
(Figure 2a–d). Notably, the treatment of E2-alone had no significant effect on the studied
parameters when compared to the saline-treated control group (Figure 2a–g).

Figure 2. 17β-Estradiol turndown ROS production in glutamate-treated postnatal rat brain. Representative histograms
show (a) GSH level, (b) GSH:GSSG enzymes ratio, (c) ROS level and (d) LPO assay levels in the P7 pups (n = 6 rats/group) of
brain homogenates. (e–g) Western blot analysis with their respective histograms of Nrf2 and HO-1 in the brain homogenates
of the developing rat brain. The bands were quantified by using ImageJ software; the differences were represented by
histograms. β-actin was used as a loading control. Statistical analysis was done through one-way ANOVA. The density
values are expressed in arbitrary units (A.U.) as the means ± S.E.M. for the respective indicated protein. (h,i) Confocal
microscopy of HO-1 (green) with respective histogram stained with DAPI (blue) in cortex and hippocampus (DG region) of
the postnatal brain. Data are presented relative to the control. Magnification 10×. Scale bar = 50 µm. Significance * p < 0.05,
** p < 0.01 vs control group and # p < 0.05, ## p < 0.01 vs glutamate-injected group. n.s = non-significant difference.

These results demonstrate that glutamate administration disrupts cellular redox home-
ostasis, leading to increased brain oxidative stress, while the estradiol treatment could pro-
tect against the glutamate-induced neurotoxicity by improving the endogenous antioxidant
activity through regulating cytoprotective enzymes (GSH and HO-1) in postnatal rat brain.

3.2. 17β-Estradiol Alleviates Glutamate Induced Neuroinflammation in Developing Rat Brain

Accumulative evidence revealed that glutamate-induced excitotoxicity enhances glial
cell activation and promotes neuroinflammatory response in the brain [51,52]. Being an
imperative mediator of neuroinflammation, we analyzed the expression of GFAP, Iba-1 and
tumor-necrosis factor (TNF-α) protein expressions in the cortex and hippocampal brain
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regions of the experimental animals. Compared to WT normal pups, the glutamate-injected
P7 rat brain displayed a significant induction of gliosis as revealed by increased expression
of GFAP and Iba-1 proteins and was also accompanied by the upregulated expression of
pro-inflammatory cytokine TNF-α (Figure 3a–d). Immunofluorescence analysis further
confirmed the induction of gliosis in the brain slices of glutamate-injected rat brain, as
illustrated by the increased number of positive GFAP and Iba-1 cell in the cortex and
hippocampal-DG region (Figure 3e–h). In contrast, co-treatment of E2 with glutamate
alleviated brain inflammation as revealed by decreased expression of GFAP, Iba-1 and TNF-
α (Figure 3a–d). The brain slices of E2 + glutamate-treated pups also displayed a reduced
number of GFAP and Iba-1-positive cell bodies within the cortex and hippocampal-DG
region (Figure 3e–g). These data illustrate that glutamate-induced oxidative damage is
accompanied by neuroinflammation, and treatment with E2 could protect the developing
brain against the neuroinflammatory mediator associated with the pathological state.

Figure 3. 17β-Estradiol treatment attenuates neuroinflammation in postnatal day 7 rat brain. (a–d) Western blot bands
with their respective histograms of GFAP, Iba-1 and TNFα in the cortex and hippocampus of postnatal day 7 rats
(n = 6 rats/group) brain. Bands were quantified by ImageJ software; the differences were represented by a histogram.
β-actin was used as a loading control. Statistical analyses were performed by one-way ANOVA. Arbitrary units (A.U.)
were used to express density values and means ± S.E.M. for the respective indicated protein. (e–h) Immunofluorescence
analysis of GFAP (green) and Iba-1 (red) stained with DAPI (blue) with a respective histogram showing no. of positive cells
in the cortex and hippocampus (DG region) in the P7 brain. The data are presented relative to control. Magnification 10×.
Scale bar = 50 µm. Significance * p < 0.05, ** p < 0.01 vs control group and # p < 0.05, ## p < 0.01 vs glutamate-injected group.
n.s = non-significant difference.
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3.3. 17β-Estradiol Abrogates Glutamate-Induced Synaptic Dysfunction in Postnatal Rat Brain

Glutamate-induced neuronal toxicity causes synaptic dysfunction [53,54], which is
a primordial step in mediating the cascade of neuropathological events associated with
many neurodegenerative disorders [55]. Accordingly, we observed that glutamate-injected
pups compared to their normal counterparts had reduced expression of presynaptic pro-
tein synaptophysin (SYP) and postsynaptic density protein 95 (PSD95) in cortical and
hippocampal homogenates gauged by Western blot analysis (Figure 4a–c). Moreover, the
confocal imaging of the brain slices of glutamate-injected rat pups also revealed the loss of
SYP immunoreactivity in the cortex and within the hippocampal-DG region (Figure 4d,e).
Conversely, E2 co-treatment significantly attenuated the synapse loss by perpetuating SYP
and PSD-95 protein expression in glutamate-injected rat brain (Figure 4a–e).

Figure 4. 17β-Estradiol inhibited synaptic dysfunction in postnatal day 7 rat brain. (a–c) Immunoblot with their respective
histograms of PSD-95 and SYP in the cortex and hippocampus of postnatal rats group (n = 6 rats/group). Bands were
quantified by ImageJ software; the differences were represented by a histogram. β-actin was used as a loading control.
Statistical analysis was performed via one-way ANOVA. The density values are expressed in arbitrary units (A.U.) and
mean ± S.E.M. for the respective indicated protein. (d,e) Immunofluorescence analysis of SYP (green) with respective
histogram stained with DAPI (blue) within the cortex and hippocampal-DG region. The data are presented relative to
control. Magnification 10×. Scale bar = 50 µm. Significance * p < 0.05, ** p < 0.01 vs control group and # p < 0.05, ## p < 0.01
vs glutamate-injected group. n.s = non-significant difference.

These data illustrate that exogenous glutamate administration instigates synaptotoxic-
ity by downregulating the expressions of pre-and post-synaptic protein, while E2 treatment
may potentially restrain the glutamate-induced synapse loss.

3.4. 17β-Estradiol Treatment Overcame Glutamate-Induced Neurodegeneration in Postnatal Rat Brain

Glutamate-induced oxidative damages are associated with the disruption of mitochon-
drial membrane potential and initiate the cascade of the pro-death process contributing to
cell death in many neurodegenerative diseases [56,57]. To analyze glutamate-induced cell
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death and neurodegeneration, we examined Bax, Bcl2 and caspase-3 protein expression in
the P7 brain. Immunoblot quantification revealed an increased Bax/Bcl-2 ratio and caspase-
3 expression in the cortex and hippocampal brain homogenates of glutamate-injected
rats when compared to the control group (Figure 5a–c). Confocal microscopy further
corroborated the evidence of caspase-3 activation in brain slices of the glutamate-injected
pups (Figure 5d,e). However, co-administering E2 with glutamate curtailed the expres-
sion of Bax/Bcl2 protein (Figure 5a,b). Moreover, the treatment with E2 also suppressed
caspase-3 expression (Figure 5a,b) and reduced the number of positive caspase-3 cell bodies
(Figure 5d,e), as indicated by immunoblot and immunofluorescence analysis, respectively,
in the cortex and hippocampal brain regions.

Figure 5. 17β-Estradiol alleviates neurodegeneration in postnatal rat brain. (a–c) Immunoblot analysis with their re-
spective histograms of Bax/Bcl-2 and Caspas3 proteins in the cortex and hippocampus of the P7 rat brain homogenates
(n = 6 rats/group). Bands were quantified by ImageJ software. The differences were represented by a histogram. β-actin
was used as a loading control. One-way ANOVA was used to determine statistical significance between the groups. The
arbitrary units (A.U.) were used to express the density values and means ± S.E.M. for the respective indicated protein.
(d,e) Immunofluorescence analysis of Caspas3 (red) stained with DAPI (blue) with a respective histogram showing no. of
positive caspase-3 cells in the cortex and hippocampus (DG region) of P7 brain slices. The data are presented relative to
control. Magnification 10×. Scale bar = 50 µm. Significance * p < 0.05 vs control group and # p < 0.05 vs glutamate-injected
group. n.s = non-significant difference.

Overall, these results suggest that exogenous glutamate has a deleterious effect on
mitochondrial functions in the developing brain and mediates the execution of apoptotic
cell death and neurodegeneration, whilst the E2 can protect the brain against glutamate-
induced neuronal apoptosis and cell death.

3.5. 17β-Estradiol Protect Developing Rat Brain against Glutamate-Induced Excitotoxicity
through Regulating P-JNK/P38 and Erk1/2 MAPK Signaling Pathways

Previous studies have reported that glutamate excitotoxicity increases the expression
of phosphorylated JNK (P-JNK) and p38 (P-p38) MAP kinases in culture cells and is
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associated with cell death and apoptosis [58,59]. In the current study, we found that
exogenous glutamate administration in the developing rat brain increased the quantified
ratio of P-JNK/total-JNK and P-p38/total-p38, indicating increased phosphorylation of JNK
and p38 (Figure 6a–c). The confocal analysis of immunostained brain sections also revealed
an upsurge in the number of P-JNK-positive cells stained with DAPI (Figure 6e,f). Moreover,
glutamate exposure also caused the downregulation of normalized P-Erk1/2/total-Erk1/2,
indicating a decrease in P-Erk1/2 expression (Figure 6a,d). Contrariwise, co-treating E2
with glutamate significantly reduced the quantified ratio of P-JNK/JNK and P-p38/p38
and enhanced P-Erk1/2 when normalized to total Erk1/2 (Figure 6a–d). Furthermore,
the E2 + glutamate co-treated brain slices also revealed a low number of P-JNK-positive
cells/immunoreactivity in the cortex and hippocampal brain regions (Figure 6e,f). Notably,
the E2-alone-treatment did not affect any of the studied parameters when compared to the
control group (Figure 6a–f).

Figure 6. 17β-Estradiol regulates the activation of glutamate-induced MAP kinases. (a–d) Immunoblot analysis with their
respective histograms of P-JNK/JNK, P-p38/p38 and P-Erk/Erk proteins of the experimental groups (n = 6 rats/group) of
the postnatal rat brain. ImageJ software was used for band quantification; the differences were represented by a histogram.
β-actin was used as a loading control. One-way ANOVA was used for statistical analysis. Arbitrary units (A.U.) were
used to expressed density values and means ± S.E.M. for the respective indicated protein. (e,f) Immunofluorescence
analysis of p-JNK (green) stained with DAPI (blue) with a respective histogram showing no. of positive P-JNK cells
in the cortex and hippocampus of the DG region. The data were presented relative to control. Magnification 10×.
Scale bar = 50 µm. Significance * p < 0.05, ** p < 0.01 vs control group and # p < 0.05, ## p < 0.01 vs glutamate-injected group.
n.s = non-significant difference.
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Collectively, these results demonstrate that the exogenous glutamate mediates its
detrimental effect by triggering the phosphorylation of stress-activated JNK and P38
protein kinases and concomitant inhibition of Erk1/2 phosphorylation to induce apoptosis
and cell death, while E2-treatment probably exerts neuroprotection by the induction of
the anti-apoptotic pro-survival pathway through Erk1/2 phosphorylation to alleviate
neurodegeneration in glutamate-injected postnatal rat brain.

4. Discussion

Glutamate is one of the salient neurotransmitters in the brain. Approximately 90% of
neurotransmission occurs through amino acid in which 40% is regulated by glutamate [60].
Glutamate is concentrated in the presynaptic terminal by synaptic vesicles; when the
presynaptic membrane depolarizes, it releases glutamate to the synaptic cleft [1]. The
excessive production of glutamate leads to loss of function and death of neurons, a process
called excitotoxicity [56]. It has been reported that glutamate excitotoxicity is involved in
many neurodegenerative diseases, like amyotrophic lateral sclerosis, Parkinson’s disease,
and Alzheimer’s disease (AD) [61]. In the current study, we focused on the excitotoxicity of
glutamate-induced reactive oxygen species (ROS) production that leads to dysregulation of
MAP kinase-mediated neuroinflammation, synaptic dysfunction, and neurodegeneration
in the cortical and hippocampal brain region of postnatal day 7 (P7) rats. Moreover, our
study also elucidated the neuroprotective role of 17β-estradiol (E2), female sex steroid
hormones, against the glutamate-induced detrimental effects in vivo for the first time. Our
results make evident that a single glutamate subcutaneous injection (10 mg/kg) induced
an intense surge in ROS production and alteration in cellular redox homeostasis. The
glutamate-induced oxidative damage was accompanied by the dysregulation in the MAP-
kinases pathway, neuropathological inflammation, neuronal degeneration and synapse
loss, as revealed through both immunoblot and immunofluorescence analysis. On the
contrary, the co-treatment of E2 with glutamate alleviated glutamate-induced discrepancies
by reducing brain oxidative stress and by inhibiting P-JNK and P-p38 and by activating
Erk1/2 phosphorylation.

Oxidative stress (OS) is a proximal event in many neurodegenerative disease patho-
genesis, including AD. The brain cortical and hippocampal regions are most vulnerable
to oxidative stress and are associated with the development of synapse/cognitive loss
and neurodegeneration [62]. Glutamate toxicity has been implicated in many neurodegen-
erative diseases, and its excessive production is known to increases ROS production in
neurons [63]. It has been reported that the exposure of neuronal cells to exogenous gluta-
mate induces oxidative stress due to the loss of cellular glutathione (GSH) levels and causes
mitochondrial dysfunctions [64–67]. The GSH depletion in neuronal cells alters the intracel-
lular redox state causing accumulations of oxidants [68]. Our present study also provides
similar evidence and extent of these findings to the in vivo P7 brain. Our results showed
that exogenous-glutamate administration to rat pups altered the brain antioxidant system
in both the cortical and hippocampal brain regions by reducing the cellular GSH store
and caused an upsurge in ROS and LPO as revealed by their respective assays. Cellular
redox dyshomeostasis was accompanied by dysregulation in the Nrf2/HO-1 anti-oxidant
signaling pathway. The Nrf2 and its downstream HO-1 inducible antioxidant enzyme
have conservative roles against increased oxidative stress, and its dysregulation has been
implicated in many neurodegenerative diseases [69,70]. On the contrary, stimulating the
Nrf2-ARE pathway in the brain using natural and/synthetic or electrophilic compounds
has been considered as one of the major pharmaceutical/therapeutic strategies for pre-
venting and treating neurodegenerative disease [71–76]. Our results also revealed that
co-treatment of E2, an antioxidant with glutamate, potentially reduced OS by regulating
Nrf2-mediated HO-1 and GSH cytoprotective enzyme expression. Previously, we have
reported the neuroprotective and antioxidant role of E2 against the increased oxidative
stress in the ageing mouse model as well as against ethanol-induced neurodegeneration in
the postnatal rat brain [39,77]. Likewise, E2 exhibits intrinsic anti-oxidant activity against
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numerous stressors in different cell lines [36–38]. Moreover, E2 has been reported to in-
crease the antioxidant capability by increasing Nrf2 activity [39,78,79] and by mediating
the activities of phase II antioxidant enzymes in the brain [80].

ROS-mediated oxidative stress is known to activate different cellular signaling path-
ways involving the activation of pro-apoptotic stress-responsive JNK and p38 MAP ki-
nase [15,81]. Both JNK and p38 kinases respond to stress stimuli of different origins, includ-
ing cytokine stimulation, ionizing radiation and osmotic shock [82]. The glutamate-induced
ROS in cultured neuronal cells has been reported to trigger the prolonged activation of
MAPKs, leading to cell death [83,84]. Moreover, several reports have demonstrated that
the activation of JNK and p-38 suppressed the activity of the Erk MAPK-signaling path-
way [85–93]. Similarly, Gclm–/– mice, which have depleted GSH levels, have increased
phosphorylation of JNK and p-38 paralleled by reduced anti-apoptotic Erk1/2 phosphoryla-
tion [94]. Accordingly, in the current study the glutamate-treated P7 pups, which presented
enhanced ROS/oxidative damage, were also associated with the increased activation of JNK
and p38 phosphorylation and inhibition of Erk1/2 phosphorylation. On the contrary, E2
co-treated with glutamate displayed inhibition of pro-apoptotic JNK and p38 and activation
of survival-promoting Erk1/2 MAPK signaling pathways. Erk1/2 is an important signal
molecule that regulates multicellular responses to diverse external stimuli, and its activity
is crucial for neuronal plasticity, neuronal survival and differentiation [95]. It has been well
established that E2 can activate the Erk1/2 MAPK pathway [96–98]. Dorsa and colleagues
have revealed that E2 can induce the phosphorylation of Erk [37,38,99]. Altogether, these
finding demonstrates that E2 confers neuroprotection against glutamate excitotoxicity by
promoting the cell survival instinct and opposing the pro-apoptotic activity possibly via
regulating the MAP-kinases in the developing rat brain.

Neuroinflammation is a complex phenomenon and is strictly interconnected with ex-
citotoxicity, since glutamate spillover critically favors glial cell activation, promoting brain
neuroinflammation [52,100,101]. Both p-JNK and p38 MAP-kinases are critical mediators of
inflammation [102,103]. Inhibition of P-JNK activity rescued microgliosis and suppressed
neuroinflammation by reducing the expression levels of TNF-α and IL-1β in ischemic
stroke [104]. Likewise, p38 MAP-kinase signaling is associated with increased astrogliosis
and GFAP protein expression [105] and also regulates chemokine production and the
recruitment of activated microglia to the injury site [106]. All of these findings support the
current study. Our glutamate-injected P7 pups revealed activated gliosis as indicated by in-
creased GFAP and Iba-1 protein expression. Importantly, E2 reduced the glutamate-induced
gliosis and secretion of proinflammatory cytokine (TNF-α). There is a greater consensus on
the potential of E2 to confine the glia’s hyper-immune response and exert anti-inflammatory
effects [107–109]. E2 protects brain neuronal cells from prolonged inflammation by attenuat-
ing microgliosis [40]. Moreover, treatment with E2 can suppress LPS-induced inflammation
and cytokine production in microglia [110–112]. Similarly, ovariectomized (OVX) mice,
when treated with E2, suppressed gliosis within the hippocampal-DG and CA region [113].
Together, these results illustrated that E2 can protect the brain from glutamate toxicity by
mitigating gliosis and the release of pro-inflammatory cytokines.

Excitotoxicity is a complex phenomenon contributing to synaptic loss and neurodegen-
eration [1,114,115]. The role of p38 MAPK pathway-induced cytokine production leading
to synapse loss and neurodegeneration has been extensively reviewed [116]. Inhibiting p38
MAPK activity suppresses brain neuroinflammation and attenuates synaptic dysfunction
and neurodegeneration in the AD model [117]. The activation of the p-JNK/p38 pathway,
also called a death pathway, negatively regulates the P-Erk pathway to induce the apoptotic
signal [85,90,94,118]. The dysregulation in MAP-kinases upregulates Bax and caspase-3 and
downregulates the anti-apoptotic Bcl-2 protein expression [119,120]. Our data also revealed
the downregulation of the synaptic (PSD95 and SYP) and dysregulation of the expression of
the pro-apoptotic (Bax, Bcl2 and caspase-3) protein associated with the abnormal intermedi-
ation of MAP-kinase pathway in glutamate-treated pups. Importantly, E2 co-administered
with glutamate improved synapse density and rescued the cortical and hippocampal neu-
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rodegeneration. CNS disorders associated with neurodegeneration have a huge impact on
healthcare systems [121]. Accumulative evidence suggests that sex is a significant variable
in the prevalence and incidence of neurodegenerative disorders like AD, MS and Parkin-
son’s disease and, personalized treatment [122–125]. Recent studies have revealed that in
male multiple sclerosis (MS) patients, estrogen synthesis and signaling are induced, while
in female MS patients, progestogen synthesis and signaling are induced that may affect
lesion pathogenesis [123]. Moreover, it has been reported that old postmenopausal and
perimenopausal women exhibit neurodegenerative phenotypes associated with a decrease
in the ovarian secretion of estrogen and progesterone [126,127]. This decline in estrogen
levels contributes to dysregulated glucose metabolism in different brain regions that confer
cognitive functioning and synaptogenesis [128]. Likewise, the OVX Sprague—Dawley rats
reveal a neurodegenerative phenotype and are commonly used to mimic the pathological
changes of post-menopausal females [129–131]. Importantly, replacing estradiol levels with
hormonal therapy in OVX rats improved mitochondrial function and rescued neurodegen-
eration [131–133]. Similarly, E2 has been reported to increase synaptic density [134,135] and
is widely known to induce synaptogenesis [135–138]. Altogether, these data demonstrate
that E2-treatment could alleviate glutamate-induced synapse and neuronal apoptosis. We
suggest a simple schema to illuminate how E2 may protect against glutamate-induced
oxidative damage, neuroinflammation and neurodegeneration (Figure 7).

Figure 7. The graphical representation of the neuroprotective mechanism of estradiol against glutamate-induced neu-
rodegeneration in developing rat brain. Exogenous glutamate (single subcutaneous injection of 10 mg/kg) treatment
increased brain oxidative stress associated with the dysregulated MAP kinase pathway mediated neuroinflammation,
synapse loss and neurodegeneration in postnatal 7-day rat brain. Co-administration of 17β-estradiol with glutamate
alleviated glutamate-induced neurodegeneration in the developing rats.
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5. Conclusions

Collectively, these data demonstrate that glutamate-induced oxidative stress (ROS)
mediates neuronal loss/induction of apoptosis by the persistent activation of the JNK/p38
pathway and by suppressing the survival-promoting Erk1/2 MAP-kinase pathway. Simi-
larly, we elucidated for the first time in vivo that 17β-estradiol can reverse the glutamate-
induced detrimental effects, likely by activating the expression of the cytoprotective enzyme
by activating the Nrf2/HO-1 antioxidant and regulating MAPKs pathways. The study
also demonstrates that 17β-estradiol is a highly potent agent against glutamate-induced
neuroinflammation, synapse loss and neurodegeneration. Future mechanistic studies are
warranted to illustrate the detailed molecular mechanism of 17β-estradiol neuroprotection.
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Abbreviations

OS Oxidative stress
ROS Reactive oxygen species
E2 Estradiol
Glu Glutamate
LPO Lipid peroxidation
Nrf2 Nuclear factor erythroid 2-related factor 2
HO-1 Heme oxygenase-1
p-JNK c-Jun n-terminal kinase
P-p38 phosphorylated p38
P-Erk1/2 Extracellular signal-regulated kinase 1 and 2
GFAP Glial fibrillary acidic protein
Iba-1 Ionized calcium-binding adaptor molecule 1
TNF-α Tumor necrosis factor alpha
Bax Bcl-2-associated X protein
Caspas3 cysteine-aspartic acid protease 3
Bcl-2 B-cell lymphoma 2
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