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ABSTRACT

Introduction: Naive Bayesian networks (NBNs) are one of the most effective and simplest Bayesian 

networks for prediction. Objective: This paper aims to review published evidence about the application 

of NBNs in predicting disease and it tries to show NBNs as the fundamental algorithm for the best 

performance in comparison with other algorithms. Methods: PubMed was electronically checked 

for articles published between 2005 and 2015. For characterizing eligible articles, a comprehensive 

electronic searching method was conducted. Inclusion criteria were determined based on NBN and 

its effects on disease prediction. A total of 99 articles were found. After excluding the duplicates (n= 

5), the titles and abstracts of 94 articles were skimmed according to the inclusion criteria. Finally, 38 

articles remained. They were reviewed in full text and 15 articles were excluded. Eventually, 23 articles 

were selected which met our eligibility criteria and were included in this study. Result: In this article, 

the use of NBN in predicting diseases was described. Finally, the results were reported in terms of 

Accuracy, Sensitivity, Specificity and Area under ROC curve (AUC). The last column in Table 2 shows 

the differences between NBNs and other algorithms. Discussion: This systematic review (23 studies, 

53,725 patients) indicates that predicting diseases based on a NBN had the best performance in most 

diseases in comparison with the other algorithms. Finally in most cases NBN works better than other 

algorithms based on the reported accuracy. Conclusion: The method, termed NBNs is proposed and 

can efficiently construct a prediction model for disease.

Key words: Naive Bayes Algorithms, Naive Bayes Models, Naive Bayesian Network, Naive Bayesian 

Network and disease prediction.

1.	 INTRODUCTION
Bayesian theory and probability 

are named after a British 18th cen-
tury mathematician, Thomas Bayes. 
Bayesian logic can show the result of 
a patient’s test with a pre-test proba-
bility (of the population), to predict 
or determine the chance of finding a 
disease. Bayesian theory implies that 
Bayes’ theorem can be used as a rule 
for inferring or updating the amount 
of ‘belief ’ in the light of new informa-
tion. Bayesian networks can be seen as a 
substitute for logistic regression models 
where we can formulate dependency or 
independency of variables (1, 2).

The NBNs consist only of one parent 
and several child nodes as in Figure 1 
and it is based on Bayes theorem in 
machine learning. Let D be a training 
set of database. Each database is repre-
sented by an n _ D attribute vector. X 
includes ‘n’ independent attributes (x1, 

x2, . . ., xn). Suppose there are ‘m’ classes 
such as c1,c2, . . .,cm, then classification 
is to derive the maximal p(ci|x). This 
can be derived from Bayes’ theorem as 
equation 1:
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For example, if a new sample posterior probability comes i.e. p (c2|x) has the highest value 

among the all p (ck|x) for all the k classes, it belongs to c2 class base on the NBN rule [3,4]. 
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Fig 1. The structure of the naïve Bayes network 
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For example, if a new sample posterior probability comes 
i.e. p (c2|x) has the highest value among the all p (ck|x) for all 
the k classes, it belongs to c2 class base on the NBN rule (3, 4).

NBNs can estimate the post-test probability given the 
values of various predictive variables. Astonishingly, the per-
formance of a NBN is somewhat competitive given that this 
is obviously an unrealistic assumption (5, 6).

The structure of NBNs can be showed with a directed acy-
clic graph which is showed in Figure 1, where the nodes rep-
resent variables and edges between the nodes show depen-
dency among the variables. Within a node, a variable can take 
many distinctive values, each with a special probability. One 
major issue in this model is that the root node of the network 
has a connection to all predictive variables and does not de-
pend on any other variables (7).

In a NBN, as used in this study, among the different fea-
ture variables, there is no inter-dependency. They are thus 
regarded as conditionally independent, hence the definition 
of ‘naive’. An example of the classification problems of these 
naïve Bayesian networks is the article published by Price et al. 
on the classification of cervical cancer patients (1).

This study was designed to perform a comprehensive re-
view of a naïve Bayesian network and its use in predicting 
diseases. The purpose of the present study was to review 
published evidence of using NBN in disease prediction to 
show the power of this method in comparison with the other 
methods. Moreover, to the best of our knowledge, it is the 
first study that directly compares NBN with other models for 
disease prediction.

2.	METHODS
Inclusion and exclusion criteria
Inclusion criteria were determined based on the topic of 

study and the effects of naïve Bayesian networks in predicting 
different diseases. The full text of articles needed to be avail-
able. The articles written in English language were selected.

The type of diseases predicted by Naïve Bayesian network 
and included in this review was shown in Table 1.

NBNs aim to improve disease treatment and also its diag-
nosis in early stages for a faster and better treatment. There-
fore, any NBNs attempt to:

* Make a faster and more accurate disease prediction.
* Help the physicians for making a reliable decision.
We classified the studies according to disease prediction 

and Method comparison. Original articles were included in 
this study. On the other hand, studies that used NBN as a fea-
ture selection (n =16) as well as those that reported survival of 
disease based on NBN (n =2) were excluded.

The titles and abstracts of the articles found were screened 
based on inclusion criteria as described above. Full texts 
of published articles were reviewed. Two reviewers inde-
pendently did the review process and summarized the in-
formation in every article. Any disagreements between the 
reviewers were discussed by the references to the original 
articles. Exclusion criteria were as the following: a) studies 
that used the naïve Bayesian networks as a feature selection, 
b) studies lacking in disease prediction (3) those which used 
naïve Bayesian networks for predicting anything but the dis-
ease. We did not include studies in languages other than En-
glish.

As shown in Figure 2, a total of 99 articles were identified 
based on the search conducted in PubMed. Just one database 
was selected because it is the reliable medical source. After the 
duplicates were excluded, we checked titles and abstracts of 
94 articles based on our inclusion criteria. Finally, 23 articles 
met our eligibility criteria and were included in this study.

2.2 Search strategy
A literature review was done on 26 July 2015 using PubMed 

database in order to peruse the relevant studies published in 
the past ten years from 2005 to 2015. We only used one valid 
database like PubMed in order to receive original and rele-
vant articles and PubMed is the main database that includes 
several medical articles. The more databases we searched, the 
more articles but irrelevant we got, so we preferred using 
only one database.

A combination of the following MESH terms and key-
words was used:

((“Naïve Bayes models”[Mesh] or (disease prediction) or 
(predicting disease), (“Naïve Bayes algorithms” [Mesh]), 
(“Naïve Bayesian network” [Mesh]).

We also set limits to our search according to the study re-
sult and language.

2.3 Data extraction
Titles and abstracts of all selected articles were reviewed 

independently by two reviewers. Papers categorized as rel-
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evant or of irrelevance based on the abstracts were again in-
dependently assessed by both reviewers. Any disagreements 
between the two reviewers were resolved through discussion. 
Reasons for exclusion were recorded according to the exclu-
sion criteria.

The data extraction and quality assessment of the articles 
were done by the first author and checked by the coauthor for 
accuracy to identify any missing information individually.

A data extraction was done independently. This extraction 
contains the following items:

* Article properties e.g. title and publication year,
* Subject,
* Illnesses,
* Number of Variables (features).
Results in terms of accuracy, sensitivity, specificity or Area 

under ROC (Receiver operating characteristic) curve (AUC) 
of NBNs.

And finally, the comparison with other methods that is 
mentioned in the related article.

All the extracted data were categorized in Table 2.
Data-synthesis and analysis
A narrative synthesis was carried out based on the classifi-

cation of diseases.
The outcomes were the effects on the following items:
a) Accuracy = TP + TN / (TP + FP + FN + TN),
b) Sensitivity = TP / (TP + FN),
c) Specificity = TN / (TN + FP),
d) Area under ROC curve (AUC): Accuracy is measured 

by the area under the ROC curve (As shown in Figure 3). A 
rough guide for classifying the accuracy of a diagnostic test is 
the traditional academic point system:

* 0.9-1 = excellent (A),
* 0.8-0.9 = good (B),
* 0.7-0.8= fair (C),
* 0.6-0.7 = poor (D),
* 0.5-0.6 = fail (F) [8].

3.	RESULTS
3.1 Description of the articles included
Articles were published between 2005 and 2015. A total of 

15 articles reported accuracy and 12 of them reported sensi-
tivity and specificity while only 11 studies in 23 studies re-
ported AUC. 5 studies used naïve Bayesian networks for pre-
dicting brain disease. Other diseases are presented in Table 1.

Table 1 demonstrates the frequency of diseases applied in 

the articles. The mean duration was approximately 9 years 
and the mean of variables or features that NBN used was 
about 17 cases. Results are explained based on the outcomes 
of naïve Bayesian networks performance. Table 2 demon-
strates the results and important factors that influenced our 
outcomes briefly. In the proceeding, we will explain the ef-
fects of NBNs on predicting different diseases and compare 
them with other methods like logistic Regression (LR), sup-
port vector machine (SVM), neural network (NN), decision 
tree (DT), tree augmented NBN (TAN), Bayesian network 
(BN).

In most cases, NBNs work better than the others and it 
shows that the fundamental algorithm can work well and it is 
really useful for disease prediction. Maybe, in some cases are 
not necessary to enhance our method, because of good effects 
of NBNs in accurate predictions.

3.1.1 Using NBN as a brain disease prediction
21.7 percent of the articles in this study included brain dis-

eases such as brain tumor, metastasis, trauma and Alzheimer 
(5, 9-11). Computed tomography (CT) is widely accepted as 
an effective method to diagnose and detect rare but clinically 
significant in patients suffering minor head injury or brain 
disease. As such, it has been increasingly utilized as a simple 
and available test for these patients (12). However, a seminal 
study conducted by Brenner and Hall (13) warns against its 
bad effects (particularly for children) due to the radiation ex-
posure associated with CT. Independent CT imaging studies 
(12, 14, 15) advocate the adoption of a comprehensive ap-
proach that targets physicians’ education to decrease the 
over-reliance on CT imaging for those suffering from brain 
disease. Therefore, to reduce the harmfulness of CT, it can 
be beneficial to use data mining methods specially, NBN as a 
predictor. As shown in Table 2, the final results are presented.

3.1.2 Naïve Bayesian networks predictor in cancer 
disease

3 articles belonged to this group. Two of them used naïve 
Bayesian networks for predicting breast cancer (16, 17). It is 
one of the most important cancer in women (18, 19), and one 
discussed the most common disease in men that is the prostate 
cancer (20). Cancer is a widely spread disease that accounts 
for many mortalities all over the world. In 2008, the World 
Health Organization (WHO) estimated the number of new 
cancer diseases in the world to be increasing up to 7.5 million 
(21). Among all types of cancer, prostate cancer is the most 9 
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Abbreviation Disease No. of studies

BD brain disease 5

BC breast cancer 2

AE asthma exacerbations 3

PC Prostate cancer 1

GS Glaucoma severity 1

DKD Diabetic kidney Dialysis 3

AA Acute appendicitis 1

TD Toothache Disease 1

SSc Systemic sclerosis 1

— Anesthesia 1

CAD
—
LV

Coronary artery disease
neonatal jaundice
Liver Disease

2
1
1

Total 23

Table 1 frequency of disease



ORIGINAL PAPER / ACTA INFORM MED. 2016 OCT; 24(5): 364-369 367

Applying Naive Bayesian Networks to Disease Prediction: a Systematic Review

Reference & 
Year

Subject
Study Illness Number

Of  Variables

Performance mea-
sure of NBN
 (p-value˂0.01)

comparison

(2014) [ 5] 35,605 patients 
with lung cancer

Brain metastasis
from
lung cancer

6 Variables accuracy:82.83% 
Sensitivity:80.84%
specificity:84.59%

BN:accuracy:82% Sensitivity:83.28%
specificity:80%

(2008) [11] Data of 142 brain 
tumor patients brain tumor 96 attributes

Accuracy: 84%
Specificity:87%
Sensitivity:80%

BN:accuracy:80% Sensitivity:73%
specificity:85%

(2011) [20] 1700 patients Prostate
Cancer

4 variables AUC = 66.2% TAN:
AUC = 58%

(2011) [9] 3866 patient Minor
head
trauma

17 attributes
Sensitivity:95% Spec-
ificity:95%
AUC: 95%

PIPPER:
Sensitivity:75.5% Specificity:76.9%
AUC: 84.1%

(2013) [22] 2318 patients glaucoma se-
verity 6 variables Accuracy values 

greater than 80% ---------------

(2007) [17]
210 high-risk 
women Breast Cancer 6 features

the ROC curve (AUC) 
: 67.5% ------------

(2013) [23]
119 Chinese pa-
tients with (DKD) & 
554 without DKD

diabetic
kidney disease

10 clinical attri-
butes Accuracy:84% Partial least squares regression (PLS): 

Accuracy: 71%

(2010) [24] 830 patients dialysis in ill pa-
tients

2 input variables AUC: 85.5% SVM: AUC: 83.3%

(2008) [16] 128 patients BC 13 variables

AUC :88.4%
accuracy: 81.8%
sensitivity: 75%
specificity &
PPV: between 83% 
and 86%

Logistic Regression (LR) :AUC :79.4%
accuracy: 76.1%
sensitivity: 75%
specificity: 83%

(2007) [25] 169  patients acute appendi-
citis

9 Variables
ROC analysis showed: 
BN model provided 
the most reliable & 
accurate results.

NBN works better than LR & artificial 
neural network (ANN)

(2013) [26] 240 patients AE. 42 Variables Accuracy: 68%, Decision Tree (DT):
Accuracy: 64.1%

(2011) [10] 1411 patients AD.

312 318  (single nu-
cleotide polymor-
phisms
(SNPs)) SNP

AUC: 59% LR:
AUC:61.3%

(2012) [27] 40 patients Toothache 14 pain parameters 
(P=14). Accuracy :72% ---------------------

(2010) [28]
population of 558
Italian SSc.  SSc. 19

Variable

accuracy:76.9% sen-
sitivity:72.2% speci-
ficity:81.6%

LR: accuracy:75.5% sensitivity:69.4% 
specificity:81.6%

(2006) [29] 1086 patients anesthesia
11 Preoperative and 
intraoperative char-
acteristics

AUC: 57%
accuracy: 77%; sen-
sitivity :18.3%, spec-
ificity:95.7%, PPV: 
57.6%
NPV: 78.6%.

LR: ROC curve: 66.9%
accuracy: 64.2%; sensitivity :62.5%, 
specificity:64.7%, PPV: 36.1%
NPV: 84.4%.

(2013) [30] 583 patients LV 12
Attributes

accuracy: 82.16%; 
sensitivity :82.35%, 
specificity:83%,

NN: accuracy: 79%; sensitivity : 77.54%, 
specificity: 75.83%,

(2007) [31] 59  patients AE. 5 Variables
Sensitivity: 85% 
Specificity: 78% Ac-
curacy: 82%
AUC: 88%

DT: Sensitivity: 79% Specificity: 94%

(2012) [32] 987 patients CAD 113 Variables AUC: 78% SVM: AUC: 75%

(2013) [33] 26 adult asthma 
patients AE. 20 Variables

Sensitivity: 80% 
Specificity: 77% Ac-
curacy: 77%

SVM:
 Sensitivity: 84%  
Specificity: 80% Accuracy: 80%
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frequent one among men. In 2008, around 900,000 new 
cases of prostate cancer were diagnosed, and approximately 
260,000 men died as a result over the same period (16).

This study considers the use of naïve Bayesian networks 
techniques in order to improve the prediction of pathological 
stage in prostate cancer and breast cancer.

The 2 articles that discussed breast cancer chose a different 
attribute in predicting with NBNs and finally achieved dif-
ferent results as shown in Table 2.

4.	DISCUSSION
This systematic review (23 studies, 53,725 patients) indi-

cates that predicting diseases based on NBNs had the best per-
formance in most diseases and the prediction model depends 
on the attributes defined for NBNs. Finally, the results show 
that in some cases NBNs work better than other methods that 
are reported in the last columns in Table 2. However, its use 
can improve physicians’ decision in disease diagnosis.

The results of studies were categorized in 6 groups as 
shown in Table 2. This study follows clear search methods as 
mentioned before.

Our findings show that 12 of the 15 (80%) articles that re-
ported the accuracy had an accuracy higher than 75% and it 
showed that NBN has a good performance. 6 of the 11 arti-
cles (54.5%) has the AUC higher than 80%. Although pre-
vious studies explained that using machine learning for pre-
dicting diseases specially NBNs can be useful and can help 
physicians for a better diagnosis (38).

Additionally, our review shows that it helps to use NBNs 
as a predictor especially for diseases categorized in Table 1.

Prediction models are increasingly important in clinical 
practice (39, 40), as indicated by the number of new publi-
cations which is described their development. One of their 
purposes is to aid clinical decision-making by merging pa-
tient characteristics in order to calculate the probability of a 
certain disorder or problem (diagnosis and prognosis) (41, 42). 

Our findings recommend that using NBNs can improve dis-
ease prediction better than other methods.

5.	CONCLUSION
A lot of machine learning strategies are currently used in 

predicting diseases. This systematic review has shown that 
one type called NBNs as the simplest one can be useful for 
predicting diseases and actually in some way can be better 

than other methods and this model can help health practi-
tioners to make decisions more confidently.

•	 Limitations: The articles used in this study as a systematic re-

view were selected exclusively from PubMed based on the search 

query described. In some cases, we could not access the full texts 

which is another limitation considered in this study.
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