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For the development of concentrated monoclonal antibody formulations for subcutaneous administra-
tion, the main challenge is the high viscosity of the solutions. To compensate for this, viscosity reducing
agents are commonly used as excipients. Here, we applied two computational chemistry approaches to
discover new viscosity-reducing agents: fingerprint similarity searching, and physicochemical property
filtering. In total, 94 compounds were selected and experimentally evaluated on two model monoclonal
antibodies, which led to the discovery of 44 new viscosity-reducing agents. Analysis of the results showed
that using a simple filter that selects only compounds with three or more charge groups is a good ‘rule of
thumb’ for selecting potential viscosity-reducing agents for two model monoclonal antibody
formulations.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The viscosity of protein solutions increases exponentially with
the protein concentration due to numerous noncovalent inter-
molecular interactions, non-native aggregation, and
concentration-dependent fluctuations of various antibody regions
[1]. Large transient networks of reversibly associated protein mole-
cules resist flow, and therefore show higher solution viscosity [2].
This presents a major challenge in the formulation development of
therapeutic proteins, such as monoclonal antibodies (mAbs),
despite their rapid development for pharmaceutical use. High-
concentration protein formulations (i.e., low volume) for subcuta-
neous administration are a sought-after alternative to low-
concentration protein formulations (i.e., high volume) adminis-
tered intravenously. Their development can allow home adminis-
tration by patients using autoinjectors [3], to relieve the burden
on healthcare providers, which is particularly important in the cur-
rent COVID-19 pandemic.

A common approach for the preparation of concentrated but
low-viscosity aqueous protein formulations is the addition of
viscosity-reducing agents (VRAs) that can attenuate the attractive
protein–protein interactions by binding to specific protein–protein
interaction sites. However, the pool of well-established VRAs for
subcutaneous administration that are approved by pharma-
copoeias and regulatory agencies is relatively small. Salts or
organic compounds that contain both hydrophilic and lipophilic
moieties are most commonly used. These control the intramolecu-
lar interactions between proteins by shielding charges or by inter-
acting with hydrophobic residues on the protein surface [4,5].
Examples of such compounds are NaCl and some amino acids, such
as arginine, lysine, histidine, and proline.

The best performing VRAs, which include arginine in particular,
can also have negative effects on the conformational stability of
proteins [6]. This can lead to increased protein aggregation and
can affect the safety of the product, which is of utmost importance
for biopharmaceutical applications. Consequently, some therapeu-
tic proteins in highly concentrated forms remain out of reach for
home use.

As the identification of new VRAs is still largely an empirical
process that is performed by random screening of compound
libraries [7–11], better understanding of the relationships between
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structure and viscosity-reducing properties is of great importance.
On the other hand, there are numerous databases of compounds
and methods for predicting these properties [12]. A tool tailored
to biopharmaceutical development using this vast amount of data
as an alternative to the empirical trial-and-error approach would
accelerate the discovery of new VRAs.

Here, we present the development of a computational filter that
can be used to predict alternative VRAs from a list of available
excipients that reduce the viscosity of protein solutions. We iden-
tified 44 new compounds to have viscosity-reducing effects on bio-
pharmaceutical protein formulations with mAbs.

2. Materials and methods

2.1. Analysis of model mAbs

For the purpose of in-silico analysis, the 3D structures of both
proteins (MW � 150 kDa) were generated by homology modeling.
Antibody sequences were used as an input for homology modelling
in Maestro program within Schrödinger suite (Release 2021–2,
Schrödinger, LLC, New York, NY). Templates for Fv region were
selected based on sequence identity. The framework for complete
antibody modelling was selected based on IgG type. Hydrophobic
interaction chromatography (HIC) retention factors were obtained
from the literature [13]. Surface aggregation propensity score was
calculated using an in-house implementation of the algorithm
using Python and PyMOL [14]. The isoelectric points were obtained
from the literature [15]. The net charge was calculated for the pro-
tein homology models using PROPKA3. Spatial charge map was cal-
culated for the protein homology models using an in-house
implementation of the algorithm using Python and PyMOL [16].

2.2. Virtual compound library preparation

2.2.1. Selected experimentally confirmed viscosity reducers
Known VRAs were manually selected from scientific publica-

tions and patent applications (Supplementary Excel file, L001–
L121) [4,8,10,17–25]. This provided 121 VRAs that were classified
into 33 clusters using the k-means clustering method based on
the RDKit molecular fingerprints [26] in the KNIME analytics plat-
form [27]. Up to two VRAs per cluster were manually selected,
which resulted in a set of 36 diverse VRAs (Supplementary Excel
file, L001–L121). Each selected VRA was used individually as a
query for the fingerprint similarity search.

2.2.2. Compounds available from commercial vendors
The largest library was used for virtual screening based on the

fingerprint similarity. The existing libraries from commercial ven-
dors Ambinter, Key Organics, eMolecules, Enamine, Life Chemicals,
Maybridge, Otava, Princeton BioMolecular Research, Specs, Vitas-
M, and UkrOrgSyntez were downloaded in SDF format and merged,
and duplicates were removed. A total of 30 million compounds
were used without filtering prior to virtual screening.

2.2.3. Compounds available from vendor Chemspace
A Chemspace catalog of compounds in stock (5.4 million com-

pounds) was used for filtering based on physicochemical proper-
ties. Compounds known to cause interference in assay systems
[28] and compounds with reactive functional groups [29] were
removed from the library.

2.2.4. Compounds classified as safe, and compounds already used in
clinical trials

Compounds classified as safe were taken from the following
public databases: Substances Added to Food (2,571 compounds)
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[30]; Food Substances Generally Recognized as Safe (GRAS) from
the Select Committee on GRAS Substances database (220 com-
pounds) [31]; US Food and Drug Administration inactive ingredi-
ents (428 compounds) [32]; and US Environmental Protection
Agency Safer Chemical Ingredients List (600 compounds) [33].
Approved drugs were taken from the DrugCentral database
(4,044 compounds) [34]. Compounds studied in clinical trials were
obtained from a ZINC in-trial subset (6,108 in stock compounds)
[35]. Substances that had been tested in humans but were not
approved or studied in trials (e.g., nutraceuticals, many metabo-
lites) were taken from a ZINC in-man-only subset (13,306 in stock
compounds) [35]. All of the compounds were pooled and dupli-
cates were removed, followed by filtering according to physico-
chemical properties.

2.2.5. Dipeptide library
A library of dipeptides (400 compounds) was assembled from

all possible combinations of 20 natural and common amino acids
[36].

2.3. Fingerprint similarity search

The merged compound library from various commercial ven-
dors was converted into one-dimensional (1D) structural represen-
tations using OpenBabel software, as described previously [37].
Briefly, linear fragments with 1–7 atoms were identified in each
compound, while ignoring single atom fragments C, N, and O. If
the atoms formed a ring, a fragment was terminated. For each of
the fragments, the information about the atoms, bonds, and forma-
tion of rings was stored in a set so that there was only one of each
fragment type. Chemically identical fragments were then identified
and only a single canonical fragment was retained. The remaining
fragments were assigned a hash number from 0 to 1020, which
was used to set a bit in a 1024-bit vector, called a path-based
FP2 fingerprint. Finally, a fast search index was created from the
fingerprints.

The database was searched for similar compounds to each of
the 36 manually selected queries from the known VRAs [37]. The
similarity of compounds from the database to each of the queries
was expressed using a Tanimoto similarity index: T = c/(a + b-c),
where a and b are the number of bits present in compounds A
and B, respectively, and c is the number of shared bits by A and
B. From the hits with Tanimoto similarity index > 0.7, a sample
of 18 diverse compounds was randomly selected for experimental
evaluation (Supplementary Excel file, T039–T056).

2.4. Filtering based on physicochemical properties

The KNIME analytics platform was used for filtering based on
physicochemical properties [27]. Only compounds with molecular
weight between 100 Da and 300 Da and SlogP between –2 and 2
(as calculated for neutral species using the RDKit Descriptor Calcu-
lation node [26]) were kept from the Chemspace library. Then, the
pKa values were calculated using the pKa node, as implemented in
the ChemAxon/Infocom JChem KNIME Extensions [38]. A negative
charge group was defined for acids with pKa < 6.4, and a positive
charge group for bases with pKa > 8.4. Of the 3,351 compounds
with one positive and one negative charge group, those with two
positive and one negative charge group (36 compounds) or one
positive and two negative charge groups (37 compounds) were
visually examined. A set of 17 diverse compounds was selected
for purchase (Supplementary Excel file, T057–T073).

For the third virtual screening campaign, a library of com-
pounds that are considered safe or that are already in clinical trials
was used. For the compounds with SlogP < 2 as calculated for the
neutral species using the RDKit Descriptor Calculation node [26],
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the Total Charge and Total Absolute Charge at pH 6.0 were calcu-
lated using the Epik node from the Schrödinger Extensions for
KNIME [39]. In addition, the toxicity of the compounds was pre-
dicted using the Derek Nexus rule-based expert system [40], and
those that showed a ‘‘probable” or ‘‘certain probability of toxicity”
for any of the endpoints were excluded from further evaluation.
Compounds with two positive and one negative charge groups or
one positive and two negative charge groups were visually
inspected, and 10 were selected for purchase (Supplementary Excel
file, T074–T083).

Finally, the Epik node [39] was used to calculate sequential pKa
values for the dipeptide library. Our goal for this library was to find
compounds with properties such that they could act as both VRAs
and buffering agents. To ensure sufficient buffering capacity at the
target pH of 6.0, compounds with pKa values between 5 and 7 were
investigated. Here, 11 compounds with two positive and one neg-
ative charge groups or one positive and two negative charge groups
were purchased (Supplementary Excel file, T084–T094).

2.5. Analysis of the results

For the analysis of the results, several descriptors were calcu-
lated with KNIME using the following nodes: RDKit Descriptor Cal-
culation (partition coefficient [SlogP], hydrogen bond acceptors,
hydrogen bond donors, rotatable bonds, heavy atoms, rings, frac-
tion Csp3); Canvas Molecular Descriptors (molecular weight
[MW], polar surface area); Epik (number of charges, net charge,
positive charges, negative charges); and QikProp (solvent accessi-
ble surface area, volume, predicted Caco-2 cell permeability in
nm/s, predicted aqueous solubility) [26,39]. The correlations
between the experimental results and calculated descriptors were
analyzed using Pandas, Matplotlib, Seaborn, and Statannot libraries
in Python v3.7.10.

2.6. Likelihood of toxicity prediction

The knowledge-based expert system Derek Nexus (Lhasa Lim-
ited, Leeds, UK) was used to estimate the toxicity of the com-
pounds [40]. This software can provide useful structural alert
information to help in compound selection. When batch prediction
mode was set up, all of the endpoints and the following species
were selected for the report: bacterium, Salmonella typhimurium,
mammal, and human. The likelihood of prediction was set to at
least plausible; i.e., plausible, probable, and certain. If no alerts
were triggered with a probability of plausible or higher, the test
compound was classified as nontoxic.

2.7. Sample preparation

Selected mAb dispersions were provided by Lek Pharmaceuti-
cals d.d., The protein material was dialyzed against purified water
(Purelab Chorus). The pHs of the protein stock solutions in water
were adjusted to the target pH value of pH 6.0 using low-
concentration HCl or NaOH (with no adverse effects on the pro-
teins, as confirmed by size-exclusion chromatography). Protein
stocks were then concentrated in tubes (ultra-centrifuge filter
units, 50 kDa MW cut-off; Amicon) to a protein concentration of
approximately 180 mg/mL. The concentrations were measured in
triplicate after dilution with water to approximately 1 mg/mL. In
parallel, stock solutions of VRAs were prepared in purified water
and their pHs were adjusted to the target pH of 6.0. The VRAs in
the stock solutions were prepared at concentrations 1.5-fold higher
than the final 25 mM concentration, because these were diluted in
the next step. At this stage, the protein stock and VRA stock solu-
tions were mixed volumetrically in a 1:2 ratio to obtain samples
with a protein concentration of 60 mg/mL. To obtain the final sam-
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ples with a protein formulation of 150 mg/mL, a concentration step
of all of the samples using the ultra-centrifuge filter units was
required (ultra-centrifuge filter units, 10 kDaMW cut-off; Amicon).
The pH increased by 0.2 during up-concentration from 60 mg/mL
to 150 mg/mL. The differences in concentrations in retentate and
permeate were < 10 % for some representative excipients (i.e.,
sucrose, histidine, and NaCl). As those excipients represent a range
of interactions, similar was assumed for all other excipients. This
approach to prepare the final samples with 25 mM VRAs and a pro-
tein concentration of � 150 mg/mL was the most feasible, because
in some cases the required VRA concentration exceeded the water
solubility for direct mixing. The prepared samples had similar pHs,
and the errors in the concentration measurements (estimated from
triplicate measurements at 1 %) were also considered.
2.8. Viscosity measurement

Viscosity was measured with a viscometer–rheometer (Rheo-
Sense VROC [viscometer-rheometer-on-a-chip]) that uses
microfluidic technology. The chip used had a
2 mm � 50 mm � 13 mm rectangular slit microfluidic channel.
All of the viscosity measurements were performed at 25 �C. The
shear rate was varied between 2,000 s�1 and 6,000 s�1 to retain
constant pressure in the channel. The protein solutions were previ-
ously measured as Newtonian in this range (i.e., viscosity changed
by 0.2 cP or about 1 % in this range). The protein concentration
determines the viscosity of the protein in water without excipients.
Therefore, the baseline viscosity of protein in water was measured
in the appropriate concentration range (120–200 mg/mL). An
exponential function g ¼ a � eb�c , where g is the viscosity of protein
in water and c is the protein concentration, was fitted to the data
(Fig. S3). Before each viscosity measurement of protein with added
VRA (g), the exact protein concentration was determined spec-
trophotometrically at 280 nm. The baseline viscosity of protein in
water (g0) was calculated for this concentration using the expo-
nential fit. Finally, relative viscosity (g=g0) was obtained.
3. Results

Two model IgGs were selected to be generally representative of
all therapeutic mAbs. The main considered criteria were hydropho-
bicity, charge, and charge distribution. HIC retention factors of
mAbs A and B are around 4 and 2, respectively. In comparison to
other therapeutic mAbs, mAb A can be considered hydrophobic
and mAb B hydrophilic [13]. This is confirmed by calculation of
the surface aggregation propensity score [14] of the protein homol-
ogy models. The surface aggregation propensity score projected to
both protein surfaces (Fig. S1A, B) revealed that mAb A has several
hydrophobic patches in and around the complementarity deter-
mining region. In contrast, mAb B has no significant hydrophobic
patches on the Fab. Overall, the total surface aggregation propen-
sity score of mAb A is higher by 5 points, which means a signifi-
cantly larger contribution of hydrophobic interactions to self-
association. The isoelectric point of mAb A is above pH 9, and the
isoelectric point of mAb B is below pH 8 (relative difference
between them is 1.5 units), which again puts both mAbs on the
opposite sides of the distribution of mAb properties [15]. At pH
6.0, mAb A has nearly twice the net charge of mAb B as calculated
with PROPKA3 (Fig. S2). Next, we inspected charge distribution on
the protein surface (Fig. S1C, D). mAb A is mostly positively
charged, while both negatively as well as positively charge surface
patches can be seen on the mAb B. The latter has especially promi-
nent negative patches near the complementarity determining
region, which have been shown to correlate strongly with
increased viscosity [16].



Fig. 1. Workflow used to identify new viscosity-reducing agents. A different source of compounds and a different filter were used for each step. The viscosity of two model
mAb solutions was measured in the presence of each compound tested. Overall, 68 of 94 compounds had a viscosity-reducing effects.
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The targeted protein concentration for preparation of formula-
tion was 150 mg/mL and the viscosities of mAb A and mAb B were
10–30 cP at this concentration (Fig. S3). According to a study by
Berteau et al., solutions for subcutaneous administration with vis-
cosity up to 20 cP are well tolerated without pain. Administration
of solutions with higher viscosity not only causes pain but also
requires forces that are too high for self-administration with a nee-
dle size commonly used for subcutaneous administration (i.e.,
thinner than 27 gauge) [41]. Therefore, our target viscosity range
was below 20 cP, since we considered this as the syringeability
limit. In this viscosity range, arginine as currently the best VRA
in general use reduces the viscosity by 40–50 % (relative viscosity
0.5–0.6) at 25 mM. Considering the experimental error arising
from both viscosity and protein concentration measurements
(around 0.1 for relative viscosity), we set the threshold for classifi-
cation of a compound as a VRA at an average relative viscosity for
two model mAbs of � 0.8. This is a reasonable limit within our
experimental setup to detect VRAs with similar viscosity reducing
effects as arginine.

Review of patents and scientific literature revealed 121 known
VRAs (Supplementary Excel file, L001–L121). The available com-
pounds from our in-house chemical library were tested on two
model mAbs. Less than two-thirds of the 38 compounds from the
literature that were tested (Supplementary Excel file, T001–T038)
had viscosity-reducing effect in our test systems (Fig. 1A). This
demonstrates that not all VRAs are universally applicable and high-
lights the importance of expanding the chemical space of known
VRAs to facilitate the development of new mAb formulations.

Ligand-based drug design is a commonly used approach in drug
discovery that uses a known compound as a query to find similar
compounds. This is based on the concept that structurally similar
compounds tend to have similar biological properties [42]. Accord-
ingly, our first virtual screening campaign was a search for com-
pounds similar to known VRAs. First, 36 diverse query
compounds were selected from the known VRAs. Second, we per-
formed a fingerprint similarity search in which the 2D chemical
structure was fragmented and converted into a bit sequence. This
linear (1D) representation of each query compound was compared
with each compound from the library of 30 million commercially
available compounds. Hits with a Tanimoto similarity index
of � 0.7 to any of the queries were considered as similar [37]. A
sample of 18 diverse compounds (Supplementary Excel file,
T039–T056) was then randomly selected for experimental evalua-
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tion. Almost half of the compounds tested reduced the solution vis-
cosity of two model mAbs (Fig. 1B).

To rationalize these results, we set filters for the next step of
computational screening. Filtering based on molecular descriptors
such as the Lipinski rule-of-five is commonly used in drug design
to increase the likelihood of selecting water-soluble and permeable
compounds [43]. We hypothesized that a similar approach could
be applied to the selection of compounds that have the potential
to reduce the viscosity of protein solutions. Therefore, we investi-
gated the relationships between the average relative viscosity of
two model mAbs and three basic molecular descriptors.

The first descriptor was the partition coefficient logP, as this is
important for drug design. We used a method implemented in
RDKit to estimate the logP value (i.e., SlogP) by summing the con-
tributions of atom-weighted solvent-accessible surface areas and
correction factors [44]. As most of the viscosity-reducing com-
pounds were in the range between –2 and 2 SlogP (Fig. 2A), we
used this range as a filter for the next step. Second, it was known
from previous studies that the masking of charges on the protein
surface is an important mechanism for preventing protein–protein
interactions and reducing the viscosity of a solution [45]. When we
examined the correlation of viscosity with the number of charge
groups, all compounds with three charge groups reduced the vis-
cosity of protein solutions (Fig. 2B). Therefore, compounds with
less than three charge groups would be sorted out in the next step.
Third, although MW is only lightly correlated with viscosity reduc-
tion (Fig. 2C), we arbitrarily limited the MW to 100 Da to 300 Da, to
retain only simple compounds. In addition, the combination of fil-
ters chosen should ensure good water solubility of the compounds.

To identify new viscosity reducers with novel scaffolds that are
structurally less similar to the already known VRAs but still share
the same key physicochemical properties, we applied the filters
selected above to the Chemspace library of in-stock compounds
(5.4 million). Therefore, only compounds with SlogP between –2
and 2, at least three charge groups at pH 7.4, and MW between
100 Da and 300 Da were considered. This resulted in 73 com-
pounds that met the criteria, which were then visually inspected.
We selected 17 diverse compounds for experimental evaluation
(Supplementary Excel file, T057–T073), and 15 of these were
shown to reduce solution viscosity (Fig. 1C). Encouraged by these
results, we wanted to determine which was the most important
descriptor and to establish rules of thumb that could be used for
rapid filtering of libraries containing approved or safe excipients.
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Therefore, we set less stringent filters with cut-off values as shown
in Fig. 3 to be used in the next step. In particular, the lower cut-off
value for SlogP of > –2 was omitted, as was the filter for MW,
which, as mentioned earlier, is only minimally correlated with
3
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the reduction in viscosity. The most important observation here
was that the majority of compounds with three or more charge
groups reduced mAb solution viscosity (Fig. 3B).

Our next aim was to reduce risk of unwanted toxicity for novel
excipients when going from in vitro to in vivo studies. Therefore,
we compiled a library of safe compounds [30–33], compounds
studied in clinical trials [35], and approved drugs [34] for the third
virtual screening campaign. Of the original 27,277 compounds, we
selected only those with SlogP < 2 and three or more charge groups
at pH 6.0, taking advantage of our experiences from the previous
two campaigns. In addition, the toxicities of selected compounds
were predicted using the Derek Nexus [40] rule-based expert sys-
tem and those that were likely to be toxic were excluded from fur-
ther evaluation. Ten compounds were tested (Supplementary Excel
file, T074–T083), and viscosity-reducing capabilities were experi-
mentally confirmed for all of them (Fig. 1D).

Finally, we have turned to another source of safe and naturally
occurring compounds. There are only five natural amino acids with
three charge groups at physiological pH: arginine, histidine, lysine,
glutamic acid, and aspartic acid. We confirmed the viscosity-
reducing effects for all of them (Supplementary Excel file, T003,
T010, T015, T016, T080). Moreover, histidine is commonly used
as a buffer in highly concentrated biopharmaceutical formulations
[46]. To expand the chemical space of amino acids, we assembled a
library of 400 dipeptides from all possible combinations of 20 nat-
ural and common amino acids. We selected dipeptides with at
least one pKa value between 5 and 7, which we assumed would
have a high buffering capacity at the targeted pH of 6.0. Of these
dipeptides, 11 dipeptides with three or more charge groups were
tested (Supplementary Excel file, T084–T094). Again, all these
compounds were found to reduce the viscosity of protein solutions
(Fig. 1E). This result further confirms the importance of three
charge groups in reducing the viscosity of our mAb formulations.
4. Discussion

In most VRA studies in the literature, a buffer is added to the
sample in addition to the compound of interest. However, various
buffer components in combination with the VRAs tested are
expected to have nonadditive effects on solution viscosity [47]. In
our study, we relied on the self-buffering effect of the highly con-
centrated protein solution [48], which eliminated the need for an
additional buffer in the formulation. Therefore, viscosity-reducing
effects of compounds can be unambiguously deduced from the
results.

Overall, a total of 94 compounds were evaluated experimentally
(Supplementary Excel file, T001–T094). For analysis, compounds
were categorized as those that decreased or did not decrease the
solution viscosity. To detect all VRAs with similar viscosity reduc-
ing effects as arginine, the threshold was set to an average relative
viscosity for two model mAbs � 0.8. Pearson correlation coeffi-
cients were calculated between this binary classifier and several
molecular descriptors. Analysis of all 94 compounds revealed that
the number of charge groups was indeed strongly correlated with
the decrease in viscosity of the protein solution (Fig. 4A). Moreover,
compounds with three or more charge groups significantly
Fig. 2. Analysis of experimental results for known viscosity-reducing agents (blue)
and compounds obtained by fingerprint similarity screening (orange) (N = 56).
Relationships between average relative viscosity and three basic molecular
descriptors are shown, for SlogP (A), number of charge groups at pH 6.0 (B), and
molecular weight (MW) (C). Black dashed lines represent threshold for viscosity
reduction; green areas represent selected values used for filtering in the next step.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



Fig. 3. Average relative viscosity results for known viscosity-reducing agents (blue), similar compounds based on fingerprint similarity (orange), and filtered compounds from
the Chemspace library (green) (N = 73). The relationships between average relative viscosity and SlogP (A) and average relative viscosity and number of charge groups at pH
6.0 (B) are shown. Black dashed lines represent threshold for viscosity reduction; green areas represent selected values used for filtering in the next step. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reduced the relative viscosities of the two model mAb formula-
tions, compared with compounds with two or fewer charge groups
(Fig. 4B, C). Filtering based on logP, which was used in the initial
screenings, was not necessary because three or more ionizable
functional groups already contributed sufficiently to the polarity
of the compounds, as can be seen from the series of compounds
in Fig. 4D. The descriptors that most strongly correlated with the
decrease in viscosity of the protein solution (Fig. 4A), namely
hydrogen bond donors, number of charge groups, polar surface
area (PSA), and polar surface area relative to solvent accessible sur-
face area (PSA/SASA) are not independent. Ionizable functional
groups contain hydrogen bond donors and increase PSA and PSA/
SASA as confirmed by the correlation with the number of charged
groups for the series of compounds in Fig. 4E, F, G.

From these observations, we can conclude that the number of
charge groups is the most important descriptor and can be used
as a rule of thumb to filter out compounds that are likely to reduce
viscosity for two model mAbs. We should note here that the appli-
cation of this rule of thumb excludes all viscosity reducers with
two or fewer charge groups already described in the literature.
Nevertheless, the high values of the metrics derived from the error
matrix confirm that this approach has acceptable predictive power
(Table S1). For example, filtering by charged compounds is most
appropriate when we have a list of potential excipients and want
to narrow it down to a few excipients that have a high probability
of reducing the viscosity of mAb formulations.

As in-silico prediction of toxicity was used as a filter in only one
of the screening campaigns, the toxicities of all remaining com-
pounds were also estimated using the Derek Nexus knowledge-
based expert system. The software identifies substructures or frag-
ments of compounds that may cause toxicity by applying a data-
base of rules compiled by toxicologists and experts. The rules
and relationships are based on empirical observations. The absence
of an alert indicates that toxicity is less likely [49]. There were only
four compounds with a ‘‘probable” or ‘‘certain probability of toxic-
ity” (i.e., acetylsalicylic acid, caffeine, ethanol, N,N-
dimethylacetamide), and all four have been previously used as
VRAs in the literature [10,22,24,50]. Another nine VRAs from the
literature were classified as having a ‘‘plausible probability of tox-
icity”. In contrast, of the newly discovered VRAs from the virtual
5425
screenings, 16 out of 44 compounds were classified as having a
‘‘plausible probability of toxicity” (see Supplementary Excel file
for structural alerts and toxicological endpoints). This indicates
that the majority of the newly discovered VRAs appear to have
unproblematic toxicological profiles.

However, to avoid overestimating the predictive power of the
in-silico estimated toxicity, we specifically wanted to highlight only
VRAs with known safety profiles. Therefore, ten newly discovered
VRAs were selected: four from databases of safe compounds (as-
partic acid, ethylenediaminetetraacetic acid,
hydroxyethylethylenediaminetriacetic acid, and diethylenetri-
aminepentaacetic acid), three studied in clinical trials (carnosine,
2,4-diaminobutyric acid, and ornithine), and three approved drugs
(alendronic acid, glutathione, and phosphocreatine) (Fig. 5A-C).

In addition, 11 dipeptides in which one of the side chains was
basic or acidic were shown to decrease the viscosity of the mAb
solution (Fig. 5D). Given their pKa values, the dipeptides tested
were expected to have a high buffering capacity at pH 6.0, similar
to histidine, and could thus be used as ‘dual excipients’ for viscos-
ity reduction and solution buffering. This would reduce the num-
ber of excipients needed and simplify the development of new
mAb formulations. Overall, the compounds shown in Fig. 5 can
be readily used as excipients for the development of highly concen-
trated mAb formulations.

Differences in mAb viscosities are largely due to differences in
hydrophobic and electrostatic interactions [47]. Therefore,
hydrophobicity, charge, and charge distribution were considered
in the selection of model mAbs to be representative of all therapeu-
tic mAbs. Under the specified experimental conditions (i.e., pH 6.0),
mAb A has several exposed hydrophobic patches but has a high net
charge leading to electrostatic repulsion. In contrast, mAb B is
much less hydrophobic but has a low net charge. We conclude that
attractive protein–protein interactions in mAb A are mostly
hydrophobic in nature, while in mAb B they are caused by electro-
static interactions between oppositely charged patches. This
implies that different factors contribute to the increase in viscosity
of our model mAbs solutions. At this point, it should be noted that
if the pH is lowered further (e.g., by 4 or more units below the iso-
electric point), the net electrostatic effects between protein mole-
cules alone should reduce the viscosity [47]. Therefore, the



Fig. 4. Analysis of all of the experimental results (N = 94). (A) Pearson correlation coefficients between the viscosity reducer classifier with a threshold average relative
viscosity of 0.8 and several descriptors. (B, C) Compounds with three or more charge groups significantly reduced the relative viscosity of two model mAb formulations,
compared to compounds with two or fewer charge groups. ***, p � 0.001; ****, p � 0.0001 (two-tailed Mann–Whitney–Wilcoxon tests). Black dashed lines, threshold for
viscosity reduction. (D) The relationship between SlogP and the number of charge groups for our series of compounds. (E) The relationship between the number of hydrogen
bond donors and the number of charge groups for our series of compounds. (F) The relationship between PSA and the number of charge groups for our series of compounds.
(G) The relationship between PSA/SASA and the number of charge groups for our series of compounds.
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conclusions presented here cannot be generalized to the entire pH
range, but only to a range of pH values around the isoelectric point
for globular proteins.
5. Conclusions

Here, we present the use of computational filters to single out
compounds that can reduce the viscosity of monoclonal antibody
solutions. Two computational approaches were used: searching
for fingerprint similarities, and filtering based on physicochemical
properties. In this way, 33 new compounds with viscosity-reducing
effects on two model mAbs were identified. In addition, 11 dipep-
tides were discovered that can be used as dual excipients to simul-
taneously reduce viscosity and buffer the solution. Most
5426
importantly, we discovered that compounds with three or more
charge groups at pH 6.0 have a high potential to reduce the viscos-
ity of model mAbs. Our iterative approach of filtering compounds
based on physicochemical properties is a simple and efficient strat-
egy that can be applied to other mAb formulations to identify new
VRAs.
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Fig. 5. Examples of newly discovered viscosity reducers from databases of safe compounds, compounds studied in clinical trials, and approved drugs with relative viscosity
for two model monoclonal antibodies, compared with arginine. The threshold for classification of a compound as a viscosity reducer was set at an average relative
viscosity � 0.8 for two model monoclonal antibodies. The charges of the major species at pH 6.0 are shown. (A-C) Based on the number of charge groups and considering the
predominantly positive charge on the protein surface at 2–3 units below the isoelectric point, we propose three different mechanisms for viscosity reduction: neutralization
of negatively charged regions (A); neutralization of predominantly positive charges (B); and charge reversal (C). EDTA, ethylenediaminetetraacetic acid; HEDTA,
hydroxyethylethylenediaminetriacetic acid; DTPA, diethylenetriaminepentaacetic acid. (D) Structures of dipeptides that can be used as dual excipients for viscosity reduction
and solution buffering.
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