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Abstract

Motivation: Across biology, we are seeing rapid developments in scale of data production without

a corresponding increase in data analysis capabilities.

Results: Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effect-

ive and scalable framework that uses linear programming to optimally bid on and deploy combin-

ations of underutilized cloud computing resources. Our approach simultaneously minimizes the

cost of data analysis and provides an easy transition from users’ existing HPC pipelines.

Availability and implementation: Data utilized are available at https://pubs.broadinstitute.org/diabim

mune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosti

clab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org.

Contact: chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Aether

Data accumulation is exceeding Moore’s law, which only still pro-

gresses due to advances in parallel chip architecture (Esmaeilzadeh

et al., 2013). Fortunately, the shift away from in-house computing

clusters to cloud infrastructure has yielded approaches to computa-

tional challenges in biology that both make science more reprodu-

cible and eliminate time lost in high-performance computing queues

(Beaulieu-Jones and Greene, 2017; Garg et al., 2011); however,

existing off-the-shelf tools built for cloud computing often remain

inaccessible, cumbersome, and in some instances, costly.

Solutions to parallelizable compute problems in computational

biology are increasingly necessary; however, batch job-oriented cloud

computing ystems, such as Amazon Web Services (AWS) Batch,

Google preemptible Virtual Machines (VMs), Apache Spark and

MapReduce implementations are either closed source, restrictively

licensed, or locked in their own ecosystems making them inaccessible

to many bioinformatics labs (Shvachko et al., 2010; Yang et al., 2007).

Other approaches for bidding on cloud resources exist, but they neither

provide implementations nor interface with a distributed batch job

process with a backend implementation of all necessary networking

(Andrzejak et al., 2010; Tordsson et al., 2012; Zheng et al., 2015).

Our proposed tool, Aether, leverages a linear programming (LP)

approach to minimize cloud compute cost while being constrained

by user needs and cloud capacity, which are parameterized by the

number of cores, RAM, and in-node solid-state drive space.

Specifically, certain types of instances are allocated to large web ser-

vice providers (e.g. Netflix) and auctioned on a secondary market

when they are not fully utilized (Zheng et al., 2015). Users bid

amongst each other for use of this already purchased but unused

compute time at extremely low rates (up to 90% off the listed price;

https://aws.amazon.com/ec2/pricing/). However, this market is not

without its complexities. For instance, significant price fluctuations,
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up to an order of magnitude, could lead to early termination of

multi-hour compute jobs (Fig. 1A). Clearly, bidding strategies must

be dynamic to overcome such hurdles.

Aether consists of bidder and batch job processing command line

tools that query instance metadata from the vendor application pro-

gramming interface (APIs) to formulate the LP problem. LP is an op-

timization method that simultaneously solves a large system of

equations to determine the best outcome of a scenario that can be

described by linear relationships. The Aether bidder, described in de-

tail in the Supplementary Methods, generates and solves a system of

140 inequalities using the simplex algorithm (Fig. 1B). For the pur-

poses of reproducibility, an implementation of the bidder using

CPLEX is also provided as an optional command line flag.

Subsequently, the replica nodes specified by the LP result are

placed under the control of a primary node, which assigns batch

processing jobs over transmission control protocol, monitors for any

failures, gathers all logs, sends all results to a specified cloud storage

location, and terminates all compute nodes once processing is com-

plete (Fig. 1C). Additionally, Aether is able to distribute compute

across multiple cloud providers. Sample code for this is provided

with the Aether implementation although it was not utilized in our

reported tests due to cost feasibility. Our implementation runs on

any Unix-like system; we ran our pipeline and cost analysis using

AWS but have provided code to spin up compute nodes on either

Microsoft Azure or on a user’s local physical clusters.

To test our bidding approach and batch job pipeline at scale, we

used our framework to de novo assemble and annotate 1572 metage-

nomic, longitudinal samples from the stool of 222 infants in Northern

Europe (Supplementary Fig. S1; Bäckhed et al., 2015; Kostic et al.,

2015; Vatanen et al., 2016; Yassour et al., 2016). The sequencing data

within datasets from the DIABIMMUNE consortium ranged from

4680 to 22, 435, 430 reads/sample with a median of 19, 020, 036

reads/sample. Assemblies were performed with MEGAHIT and annota-

tions were done with PROKKA (Li et al., 2015; Seemann, 2014).

Metagenomic data, typically shotgun DNA sequencing of microbial

communities, is difficult to analyze because of the enormous amounts

of compute required to naively assemble short sequence reads into large

contiguous spans (contigs) of DNA. To accomplish our assemblies, our

bidding algorithm suggested that the optimal strategy would be to spin

up 30TB of RAM across underutilized compute nodes. Our networked

batch job processing module utilized these nodes for 13 h and

yielded an assembly and annotation cost of �US$0.30 per sample

(Supplementary Fig. S2). Theoretically, the pipeline can complete in the

time it takes for the longest sub-process (i.e. assembly in this case) to fin-

ish (�7h). Spinning up the same nodes for this long without a bidding

approach would cost �US$1.60 per sample (Supplementary Fig. S3). In

order for on-site hardware to achieve the same cost efficiency as our

pipeline, one would have to carry out on the order of 1 million assem-

blies over the lifespan of the servers, a practically insurmountable task

(Supplementary Fig. S2). Such efficiency in both time and cost at scale is

unprecedented. In fact, due to resource paucity, computational costs

have forced the field of metagenomics to rely on algorithmic approaches

that utilize mapping back to reference genomes rather than de novo

methods (Truong et al., 2015).

Additional testing of Aether showed marginally better relative

cost savings (compared to the assembly example) when tasked with

aligning braw reads to the previously assembled genomes with

BWA-MEM (Li, 2009; http://arxiv.org/abs/1303.3997); this is not

surprising as shorter computational tasks are less sensitive to the

risks of early spot instance termination. Additionally, in simulated

runs of the bidder incorporating pricing history from periods where

ask prices were approximately an order of magnitude higher than

normal on the east coast of the United States (Fig. 1A), Aether sug-

gested utilization of different instance types that would have resulted

in similar cost and time to completion as our actual run. To allow

users to make optimal usage of these benefits, the ability to simulate

bidding for different timeframes is included as a feature. By not hav-

ing to potentially re-run analysis pipelines (due to being outbid on

compute during runtime), we claim that utilizing Aether leads to a

reduction of market inefficiencies. We have both qualitatively

and empirically compared Aether to existing AWS tools such as

AWS Batch and Spot Fleet Pricing (Supplementary Fig. S1.3 and

Supplementary Methods). Additionally, where empirical validation

of benefit was possible, we have iterated on previous work and

incorporated strategies such as basing a subset of constraints on ser-

vice level agreements (Andrzejak et al., 2010). Future directions in-

clude training the bidding algorithm to predict its own effect on

pricing variability when being utilized at massive scale as well as dis-

tributing compute nodes across datacenters when enough resources

are being spun up to strongly influence the market.

To our knowledge, this is the first implementation of a bidding al-

gorithm for cloud compute resources that is tied both to an easy-to-use

front-end as well as a distributed backend that allows for spinning up

purchased compute nodes across multiple providers. Conceivably, this

tool can be applied to any number of disciplines, bringing cost-effective

cloud computing into the hands of scientists in fields beyond biology.
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Fig. 1. Overview of Aether. (A) Pricing history of an x1.16xlarge EC2 Instance

showcasing variability of an order of magnitude, in both directions, for spot

prices. (B) Simplified example showing three constraints on a sample bidding

approach minimizing an objective function cTx considering cost according to

a system of constraints represented as inequalities. x1, x2, . . . xn represent the

number of specific types of compute nodes to solve for. Each inequality rep-

resents a constraint and adds another dimension to the space which the sim-

plex algorithm needs to traverse vertices in to find ideal solution. The green

line represents the optimal solution. (C) General overview of Aether

1566 J.M.Luber et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
http://arxiv.org/abs/1303.3997
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx787#supplementary-data


(J.M.L.); an AWS Research Credits for Education Grant (J.M.L. and A.D.K.);

a Microsoft Azure for Research Grant (B.T.T. and C.J.P.), NIH National

Institute of Environmental Health Sciences (NIEHS) R00 ES023504 (C.J.P.);

NIEHS R21 ES025052 (C.J.P.); National Science Foundation (NSF) Big Data

Spoke grant (C.J.P.), a Smith Family Foundation Award for Excellence in

Biomedical Research (A.D.K.); and an American Database Association

(ADA) Pathway to Stop Diabetes Initiator Award (A.D.K.).

Conflict of Interest: none declared.

References

Andrzejak,A. et al. (2010) Decision model for cloud computing under SLA con-

straints. In: 2010 IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems. pp. 257–266. IEEE.
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