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Abstract

Various environmental insults including diseases, heat and oxidative stress could lead to

abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth

and oocyte maturation. Despite the fact that cells exposed to oxidative stress are respond-

ing transcriptionally, the potential release of transcripts associated with oxidative stress

response into extracellular space through exosomes is not yet determined. Therefore, here

we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the

cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspi-

rated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented

with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells

were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were

subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Fur-

thermore, gene and protein expression analysis were performed in H2O2-challenged versus

control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocyto-

chemistry assay, respectively. Moreover, exosomes were isolated from spent media using

ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In

the second experiment, exosomes released by granulosa cells under oxidative stress

(StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were

co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of

defense molecules from exosomes to granulosa cells and investigate any phenotype

changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS,

reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant

genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apo-

ptosis. Granulosa cells exposed to oxidative stress released exosomes enriched with

mRNA of Nrf2 and candidate antioxidants. Subsequent co-incubation of StressExo with cul-

tured granulosa cells could alter the relative abundance of cellular oxidative stress response

molecules including Nrf2 and antioxidants CAT, PRDX1 and TXN1. The present study pro-

vide evidences that granulosa cells exposed to oxidative stress conditions react to stress by
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activating cascades of cellular antioxidant molecules which can also be released into extra-

cellular environment through exosomes.

Introduction

Stress induced by environment or physiology of the animals is considered as one of the impor-

tant causes of impaired fertility in the dairy cattle [1,2]. A considerable number of evidences

manifested that, various environmental and physiological insults including diseases, heat and

oxidative stress could lead to abnormal growth and function of granulosa cells in ovarian fol-

licular development [3,4]. Subsequently, granulosa cells apoptosis is responsible for follicular

atresia [5] and subsequently oocyte and ovarian dysfunction [6,7]. Oxidative stress is defined

as imbalance between the level of intracellular ROS production including superoxide anion

(O2
–), hydrogen peroxide (H2O2), and hydroxyl radicals (-OH.) and their scavenger by antioxi-

dants [8–10]. Although−OH is the most harmful free radical, H2O2 has long half-life than the

other free radicals which allowed a longer reaction with all of the cellular component including

DNA. Therefore, despite lower reactivity of H2O2, its relatively longer half-life provides

enough time for the molecule to move into the nucleus of the cell [11]. Despite the fact that

cells exposed to oxidative stress respond transcriptionally [12–14], the role of extracellular ves-

icles including exosomes in mediating cell´s response to oxidative stress should be carefully

ruled [15].

Direct or indirect interactions of mammalian gametes with the surrounding somatic cells

including granulosa and theca cells is vital for successful folliculogenesis [16–19]. The bidirec-

tional communication between oocyte and surrounding cells during follicular development

[20] can be mediated by extracellular vesicles [21,22]. Extracellular vesicles including exosomes

(30–150 nm), microvesicles (150–1500) and apoptotic bodies (500–2000 nm) are derived from

plasma membrane, outward budding of plasma membrane and outward blebbing of apoptotic

cell membrane, respectively [23]. Exosomes are nano-sized vesicles and a member of extracel-

lular membrane vesicles which mediate cell-to-cell communication under various conditions

[22,24,25]. Furthermore, they are able to carry different cytosolic macromolecules (mRNA,

miRNA and proteins) which can be transferred to recipient cells and induced alterations in

their physiological functions [21].

Exosomes are part of extracellular vesicles with a size of 30–150 nm [26,27] that released

through exocytosis process to the extracellular space and found in various biological fluids

[28–32]. Regardless of origin, exosomes have similar and specific surface proteins such as

CD9, CD63, CD81 and Alix [33]. In fact, exosomes contain a cargo of nucleic acids (DNA,

mRNA, ncRNA), proteins, lipids and other molecules [34] and play vital role in cell-to-cell

communication resulting in physiological changes in recipient cells [35,36]. Various cell types

have been shown to release exosomes with various diversity in quality and quantity into the

extracellular space as a response to various environmental insults and different pathological

conditions [15,37]. Especially exosomes released under oxidative stress conditions could

mediate a signal to recipient cells that alter their defense mechanism to prevent cell death

under oxidative stress conditions [15]. Therefore, extracellular vesicles have been regarded as

signalosomes: multifunctional signaling complexes for regulating fundamental cellular and

biological functions [23].

Therefore, we hypothesized that granulosa cells under oxidative stress respond via activa-

tion of the cellular Nrf2 and downstream antioxidant molecules and those molecules will be
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released into extracellular space through exosomes. To proof this hypothesis granulosa cells

culture system was used as a model to investigate the response of cells to oxidative stress

induced by H2O2. Results demonstrated the significant effect on granulosa cells ROS level,

mitochondrial activity, proliferation, differentiation and cell cycle. Moreover, exosomes

released from granulosa cells under oxidative stress conditions into extracellular space were

investigated for the presence of antioxidant molecules as molecular responses to cellular stress.

Material and methods

Experimental design

To determine the right concentration of H2O2 that induces ROS accumulation without a dele-

terious effect on granulosa cells, differet doses of H2O2 (2.5, 5, 10, 20 and 50 μM) were used to

treat in vtro cultured bovine granulosa cells. Depending on the various investigations includ-

ing morphological evaluation, ROS staining, mitochondrial activity and cell viability assays as

shown in supplemental figures, a concentration of 5 μM H2O2 was selected as moderate oxida-

tive stress inducer in cultured granulosa cells in the present study. The first experiment was

conduceted to assess the effect of oxidative stress on granulosa cell functions as well as their

cellular and extracellular response with regard to antioxidant molecules. For that, bovine gran-

ulosa cells were aspirated from small follicles (3–8 mm) and cultured in DMEM/F-12 Ham

culture medium supplemented with 10% exosome-depleted fetal bovine serum (System Biosci-

ences, CA, USA). Sub-confluent cells were exposed to 5 μM H2O2 for 40 min. Twenty four

hours post-treatment intracellular ROS level, mitochondrial activity, cell proliferation and the

cell cycle assays were performed. Moreover, the cellular mRNA and protein expression levels

were quantified. The spent media of the same cultured granulosa cells were collected for exo-

some isolation and subsequent analysis of transcript abundance for Nrf2 and its antioxidant

downstream genes. The second experiment was carried out to elucidate the potential horizon-

tal transfer of oxidative stress related molecular signal carried by exosomes from donor to

recipient cells. For that, sub-confluent granulosa cells were co-cultured (with or without

H2O2) with exosomes derived from spent media of stressed granulosa cells (StressExo) or from

spent media of granulosa cells without stress (NormalExo). All phenotypic and molecular

changes in recipient cells were investigated to proof the effect of exosome mediated horizontal

transfer of defence molecules in recipient cells.

Bovine granulosa cell culture

Bovine ovaries were collected from a local abattoir and transported within 1–2 hr to the lab in

a thermic flask containing physiological saline solution (0.9% NaCl) at 37˚C. Upon arrival,

ovaries were washed 2–3 times with 37˚C 0.9% NaCl, followed by rinsing in 70% warm ethanol

for 30 sec and washed 3 times with 0.9% NaCl. Granulosa cells were aspirated from small

growing follicles (3–8 mm diameter) using 18-gauge sterile needle and transferred into a 15 ml

sterilized falcon tube containing Ca2+/Mg2+ free 1x phosphate buffer saline (PBS-CMF). The

cumulus-oocyte-complexes (COC) were left to stabilize at the bottom of the tube under 37 oC.

The upper phase containing granulosa cells was carefully transferred into new tubes with 1x

PBS-CMF and centrifuged at 750xg for 7 min. The granulosa cell pellets were re-suspended in

500 μl red blood cell (RBC) lysis buffer for 1 min, followed by adding 3 ml DMEM/F-12 Ham

(Sigma, Germany) and centrifuged at 500xg for 5 min. Afterwards, the pellets were washed

with DMEM/F-12 Ham culture media supplemented with 10% exosome-depleted fetal bovine

serum (System Biosciences, USA), 100 IU/ml penicillin and 100 μg/ml of streptomycin

(Sigma, Germany), and 100 μg/ml fungizone (Sigma, Germany). Cell viability and concentra-

tion were determined using trypan blue exclusion method. Finally, a total of 2.5 x 105 live cell
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per well were seeded into CytoOne1 24-well plate (Starlab International GmbH, Germany) in

600 μl DMEM/F-12 Ham culture media supplemented with 10% exosome free FBS and incu-

bated at 37˚C with 5% CO2.

ROS detection

Intracellular ROS level was determined using 2’, 7’-dichlorofluorescin diacetate (H2DCFDA)

(Life Technologies, Germany) according to manufacturer´s instructions with some modifica-

tions. Briefly, granulosa cells from each group were cultured in 96-well plate and then incu-

bated with 50 μl of 75 μM H2DCFDA for 20 min in dark at 37˚C. Afterwards, incubated cells

were washed twice with (PBS-CMF) and images were captured under inverted fluorescence

microscope (Leica DM IRB, Leica, Wetzlar, Germany) using a green-fluorescence filter and

images were analyzed using imageJ 1.48v (National Institutes of Health, USA, http://imagej.

nih.gov).

Mitochondrial staining

Approximately 3 x 104 live cell per well were cultured in 8-well slide chamber and subjected to

mitochondrial activity assay. For this, cells were incubated with 200 nM of MitoTracker red

dye (MitoTracker1 Red CMXRos, M7512; Invitrogen) for 30 min. After washing twice with

PBS-CMF, cells were fixed with 4% paraformaldehyde overnight at 4˚C. Fixed cells were

mounted with Vectashield (H-1200) containing DAPI. Images were acquired under confocal

microscope CLSM LSM-780 and analyzed with imageJ 1.48v (National Institutes of Health,

USA, http://imagej.nih.gov).

Cell proliferation assay

Cell Counting Kit-8 (CCK-8) (Dojindo Molecular Technology, Japan) was used in the present

study to perform cell proliferation assay. Briefly, 1 x 104 live cell per well were seeded in

96-well plate and manufacturer´s instructions 10 μl of CCK-8/well was added to sub-confluent

cells from all experimental groups, and then incubated for 3 hr at 37 oC in 5% CO2. The optical

density (OD) of released formazan dye which an indirect indicator of the number of living

cells was measured at a wave length of 450 nm using a microplate reader (BioTek Instruments

Inc, Germany). The OD of wells that contain only culture media were used as blank for nor-

malization purpose.

Cell cycle assay

Flow cytometery was used to demonstrate cell cycle profile in granulosa cells from each group

under study. For that, cultured cells were trypsinized and centrifuged at 750xg for 5 min followed

by two times washing with PBS-CMF. Cells were counted and a minimum 1x106 of live cells

were fixed in 70% ice-cold ethanol overnight at 4˚C. The fixed cells were then centrifuged at

1200xg for 5 min, and the pellets were re-suspended and washed twice with 500 μl of PBS-CMF.

Thereafter, cells were stained with 50 μg/ml of propidium iodide (PI) and 50 μg/ml of RNase

and kept at 37˚C for 30 min. Cell cycle analysis was performed using BD LSRFortessa™ Flow

cytometer (BD Biosciences). Data were analyzed using ModFit LT software (http://www.vsh.

com/products/mflt/index.asp).

Exosome isolation

Spent culture media from control and H2O2-challenged groups were collected and subjected

to exosomes isolation procedure. Briefly, collected spent media were centrifuged at 300xg for
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10 min to discard cells and 3000xg for 30 to remove dead cells and 10000xg to discard cellular

debris followed by 30 min centrifugation at 30000xg to remove micro vesicles. After that, exo-

somes were isolated using ultracentrifugation at 120,000xg for 70 min in a Beckman SWTi55

rotor. Exosomes were washed with PBS-CMF and centrifuged once more at 120,000xg for 70

min. All centrifugation steps were performed at 4˚C unless indicated. Finally, isolated exo-

somes were suspended in PBS-CMF and stored at -80˚C for further applications.

Nanoparticle tracking and electron microscopy analysis

Exosomes identity and purity were determined by immune blotting of exosomal and cellular

marker proteins (CD63, Alix and CYCS). Concentration and size distribution of exosomes

was performed using NanoSight NS300 following manufacturer protocols (Malvern Instru-

ments, Malvern, UK). Briefly, 10 μl of purified exosomes were diluted in 1 ml PBS-CMF and

used for five recording videos, videos were analyzed to give mean, mode, standard division

and concentration of particles using NTA software. Moreover, electron microscope (Ziess EM

109, Carl Zeiss) was used for exosomes characterization, 30 μl drops of purified exosomes on

parafilm were used to be absorbed by Formvar/carbon-coated grids. Five minutes later the

Formvar/carbon-coated grids were washed using drops of PBS before incubation with 30 μl

drops of 2% uranyl acetate. Grids were washed with drops of PBS then examined and captured

under electron microscope.

RNA extraction and cDNA synthesis

Total RNA was isolated from collected cells and isolated exosomes using the miRNeasy Mini

kit (Qiagen, Hilden; Germany) according to manufacturer’s protocol including DNase diges-

tion for removal of possible genomic DNA contamination. RNA concentration was measured

using NanoDrop 8000 spectrophotometer (NanoDrop technologies). The cDNA was synthe-

sized from total RNA using first stand cDNA synthesis kit (Thermo Fisher scientific, Ger-

many). RNA concentration was adjusted using RNase free water and a maximum volume of

10 μl RNA from each replicate was co-incubated with 0.5 μl of 100 μM Oligo (dT)18 and 0.5 μl

of Random Primer at 65˚C for 5 min then chilled on ice for 2 min. Thereafter, 1 μl RiboLock

RNase Inhibitor, 4 μl 5x Reaction Buffer, 2 μl dNTP and 2 μl RevertAid Reverse Trancriptase,

were added and incubated at 25˚C for 5 min, 37˚C for 60 min and 70˚C for 5 min then sub-

jected to gene expression analysis.

Quantitative RT-PCR analysis of selected candidate genes

Relative transcript abundance of oxidative stress response genes (Nrf2, Keap1, SOD1, CAT,

PRDX1, HMOX1, TXN1 and NQO1) was quantified using cDNA generated from cultured

granulosa cells and isolated exosomes. Moreover, cell proliferation related genes (CCDN2 and

PCNA), cell differentiation related genes (CYP11A1 and STAR1) and proapoptotic (Casp3)

and antiapoptotic (BCL2L1) related genes were quantified only in granulosa cells using quanti-

tative real time PCR in Applied Biosystem1 StepOnePlus™ System (Thermo Fisher Scientific,

Germany), using iTaq™ Universal SYBR1 Green Supermix (Bio-Rad Laboratories GmbH,

Germany). The real time PCR was run using the following program: 95˚C for 3 min, 40 cycles

at 95˚C for 15 sec, 60˚C for 45 sec followed by melting curve analysis. Data were analyzed

using comparative threshold cycle method (ΔΔCT) using actin, beta (ACTB) and phosphate

dehydrogenase (GAPDH) as internal controls for cellular mRNA and ACTB, GAPDH and 18S

genes for exosomal mRNA. All Primers listed in S1 Table were designed using primer design-

ing tool online software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).
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Western blotting

Protein expression of (ACTB, Nrf2, Keap1, CAT, StAR1, PCNA) proteins in granulosa cells

and (CYCS, CD63 and Alix) proteins in isolated exosomes were performed using immuno-

blotting. Isolated cellular protein and exosomes from each group were boiled with 2x SDS

loading buffer at 95˚C for 5 min before loading on a 12% SDS-PAGE gel. After electrophoresis,

proteins were transferred to nitrocellulose membranes (Protran1, Schleicher &Schuell Biosci-

ence) using blotting apparatus adjusted to 84 mA for 55 min. Membranes were blocked at

room temperature with Roti-block solution (Carl Roth GmbH) for 1 hr and then incubated

over night at 4˚C with primary antibody against each of the candidate cellular proteins (Santa

Cruz Biotechnology Inc, Germany: mouse monoclonal β-Actin (1:500), rabbit polyclonal Nrf2

(1:200), Keap1 (1:300), StAR1 (1:350), PCNA (1:350) and 1:300 rabbit polyclonal CAT, Life

span Biosciences, Inc. Germany) or exosomal marker proteins (Santa Cruz Biotechnology Inc,

Germany: goat polyclonal CYCS (1:350), Alix (1:350) and 1:250 rabbit polyclonal CD63, Sys-

tem BioSciences, USA). Afterwards, the membranes were washed with Tween-Tris-buffer

saline (TTBS) and then incubated with secondary antibody (Santa Cruz Biotechnology Inc,

Germany: goat anti mouse (1:5000), goat anti rabbit (1:5000) and donkey anti goat (1:5000))

for 1 hr at room temperature. Thereafter, the membranes were incubated with equal amount

of peroxide solution and luninol\enhancer at room temperature for 5 min in dark. Images

were developed on ChemiDoc™ XRS+ system (Bio-Rad Laboratories GmbH, Germany).

Immunocytochemistry

The cellular detection and localization of Nrf2 (Santa Cruz Biotechnology Inc, Germany, 1:200

polyclonal rabbit Nrf2) and CAT (1:250 polyclonal CAT, Life span Biosciences, Inc. Germany)

proteins were determined using immunocytochemistry assay. For this, granulosa cells from

each group were cultured in 4-well slide chamber and subjected to immunocytochemistry

assay. Cells were fixed in 4% paraformaldehyde overnight at 4˚C. Fixed cells were then washed

3 times with PBS-CMF and subsequently incubated with 0.3% triton for 10 min followed by

blocking with 3% donkey serum for 1 hr at room temperature followed by incubation with pri-

mary antibody overnight at 4˚C. Following that, cells were washed 3 times with PBS-CMF and

incubated with fluorescent secondary antibody (Santa Cruz Biotechnology Inc, Germany,

Alexa flour goat anti rabbit 1:350) for 3 hr at 37˚C. After washing twice with PBS-CMF, the

cells were mounted in mounting medium containing DAPI. Images were taken under laser

scanning confocal microscope (LSM780-Carl Zeiss, Carl Zeiss GmbH; Germany) and analyzed

with imageJ 1.48v (National Institutes of Health, USA, http://imagej.nih.gov).

Exosome labeling and co-incubation with cultured granulosa cells

The uptake of exosomes by cultured granulosa cells was assessed after co-incubation using

confocal microscope (LSM780-Carl Zeiss, Carl Zeiss GmbH; Germany). For this, purified exo-

somes were labeled using PKH67 dye (Sigma, Germany) according to the manufacturer’s

instructions as described previously [22]. Briefly, exosomes were suspended in 1 ml of diluent

C containing 5 μM PKH67 and incubated for 5 min. The labeling action was stopped by incu-

bating for 1 min with an equal volume of exosome free FBS (system Biosciences, CA; USA)

and then DMEM/F-12 media (Sigma, Germany) supplemented with 10% exosome free FBS

was added and centrifuged at 120,000xg. Exosomes were washed two times with DMEM/F-12

and centrifuged at 120,000xg. Thereafter, exosomes were re-suspended in DMEM/F-12 media

supplemented with 10% exosome free FBS. Granulosa cells were cultured in 8-well slide cham-

ber in DMEM/F-12 media supplemented with 10% exosome free FBS and labeled exosomes

were co-incubated with granulosa cells treated with or without H2O2. Cells were fixed in 4%
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paraformaldehyde overnight at 4˚C. After washing 2 times with PBS-CMF, cells were mounted

in mounting medium containing DAPI and the up-take of exosomes was confirmed under a

laser scanning confocal microscope (LSM780-Carl Zeiss Carl Zeiss GmbH; Germany). Twenty

four hours post-treatment cells were investigated for ROS level, mitochondrial activity, cell

proliferation, cell cycle, protein analysis using immunoblotting and immunocytochemistry

assays. Moreover, mRNA expression of Nrf2 and antioxidant downstream genes was per-

formed after co-nicubation granulosa cells with exosomes from stressed cells (StressExo) or

exosomes form untreated normal cells (NormalExo).

Statistical analysis

Data were analyzed using GraphPad Prism (Version 5) and presented as mean ± SEM of four

independent biological replicates. For response of granulosa cells to oxidative stress induced

by H2O2 in the first experiment, statistical differences in the mean values between treatment

groups were compared using a two-tailed student´s t-test. Statistical differences among means

in the second experiment were analyzed using two-way analysis of variance (ANOVA) fol-

lowed by multiple pair-wise comparisons using Tukey post-hoc test. Statistical significance

was defined at p� 0.05.

Results

Dose dependent effect of H2O2 on cultured bovine granulosa cells

In order to select a physiologically acceptable ROS inducer we have tested different doses of

H2O2 (2.5, 5, 10, 20 and 50 μM) and subsequent morphological and physiological assessments

were done to select the optimal dose of H2O2 for further studies. As shown in supplemetal file

1 morphological evaluation of granulosa cells after treatment revealed physical death of cells at

concentrations beyond 5 micro molar of H2O2. Especially at doses beyond 50 micro molar of

H2O2 significant proportion of cells were found dead. In addition to that the ROS signal

started to increase at 5 μM H2O2 compared to 2.5 and it does not change beyond the 5 μM con-

centration (S2 Fig). Moreover, treatment of granulosa cells with all doses of H2O2 except

2.5 μM resulted in significant reduction in mitochondrial activity (S3 Fig). The 5 μM dose is

the minimum dose which resulted in significant reduction in mitochondrial activity compared

to the other higher doses. Therefore, due to an induction of significant accumulation of ROS

with with moderate effect on morphology, mitochondrial activity and cell viability, a 5 μM

H2O2 dose was selected to be used in the further experimental setups.

Effect of oxidative stress on cell morphology, ROS accumulation and

mitochondrial activity in bovine granulosa cells

The H2O2 treatment resulted in morphological changes associated with semi rounded shape

and shrunken membrane (Fig 1A and 1B). Moreover, cells challenged with 5 μM H2O2 exhib-

ited significantly higher accumulation of intracellular ROS as compared to the untreated con-

trol at 24 hours post treatment (Fig 1C and 1D). On the other hand, the mitochondrial activity

of H2O2 challenged cells was lower than the untreated controls as illustrated in Fig 2.

Oxidative stress reduced cell proliferation and G0/G1 cell cycle transition

Cell proliferation assay results showed a reduction in cell viability of bovine granulosa cells

challenged with 5 μM H2O2 compared to untreated controls (Fig 3A). These results were in

agreement with cell cycle profile, which showed lower proportion of cells arrested at G0/G1

phase (72.24%) in H2O2 challenged cells as compared to the control ones (79.04%). Moreover,
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Fig 1. H2O2 altered cell morphology and ROS accumulation in bovine granulosa cells. Cell morphological changes (A and B),

intracellular ROS level (C and D) and ROS fluorescence intensity analysis (E) in H2O2 untreated and treated groups, respectively. Data are

mean ± SEM from four independent biological replicates. Bars with different letters showed statistically significant differences (p < 0.01).

https://doi.org/10.1371/journal.pone.0187569.g001

Fig 2. Lower level of mitochondrial activity in H2O2-treated cells compared to control group. The mitochondrial activity (A) and the

fluorescence intensity analysis (B) in control and treated groups. The red colour indicated the MT-RED, while the blue colour indicated the

nuclear staining using 40,6-diamidino-2-phenylindole (DAPI). Data are mean ± SEM from four independent biological replicates. Bars with

different letters showed statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g002
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the percentage of cells that were found to be arrested at the G2/M phase was higher in cells

challenged with 5 μM H2O2 compared to untreated controls (16.73% vs. 10.61%) (Fig 3B and

3C).

Oxidative stress increased the mRNA and protein expression levels of

Nrf2 and its downstream antioxidants

Significantly higher mRNA and protein expression levels of Nrf2 was accompanied by lower

mRNA and protein levels of its inhibitor Keap1 in granulosa cells challenged with H2O2 com-

pared to those cultured under normal conditions (Figs 4, 5A and 5B). Moreover, cells challenged

with oxidative stress showed significantly increased expression level of Nrf2 downstream antioxi-

dants namely: PRDX1 and TXN1. However, despite an elevated expression of mRNA for SOD1,

CAT, HMOX1 and NQO1 antioxidants in challenged granulosa cells but those differences were

not statistically significant (Fig 4). In contrary to that immunoblotting and immunocytochemis-

try assays revealed a significantly higher level of CAT protein in granulosa cells under oxidative

stress conditions (Fig 5A and 5C).

Fig 3. Oxidative stress resulted in reduced granulosa cell proliferation and a shift in cell cycle transition. (A) The

proliferation rate in control (white bar) versus H2O2 treated cells (black bar). Cell cycle analysis of granulosa cells under normal (B)

or under oxidative stress conditions (C). The Y-axis indicated the cell count, while X-axis indicated the DNA content of cells

detected by PI staining. Data are mean ± SEM from four independent biological replicates. Bars with different letters showed

statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g003
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Expression of cell proliferation, differentiation, apoptosis marker genes

under oxidative stress conditions

Cell proliferation and cell cycle assay results were in consistent with the mRNA and protein

expression levels of candidate marker genes. Granulosa cells under oxidative stress conditions

showed significant reduction in mRNA and protein levels of cell proliferation markers (PCNA

and CCDN2) and anti-apoptotic (BCL2L1) marker genes. On the other hand, the mRNA and

protein expression levels of genes related to differentiation (CYP11A1 and STAR1) and pro-

apoptosis (Casp3) were higher in H2O2-challenged cells as compared to the control (Fig 6A,

6B and 6C).

Exosomes released into culture media contain mRNA of Nrf2 and

antioxidants

The identity of exosomes isolated from culture supernatant was confirmed by western blot

analysis of marker proteins (CD63 and Alix). The absence of any detectable protein band

for cytochrome c (CYCS) confirmed the purity of exosomes isolated using ultracentrifuga-

tion technique (Fig 7A). Nanoparticle tracking results revealed that, cells released higher

concentration of exosomes with distinct size to culture media when exposed to oxidative

stress as illustrated in Fig 6B. Moreover, the electron microscope results confirmed the

size range of the isolated exosomes using the ultracentrifugation technique (Fig 7B and

7C).

Exosomes released into culture media from both H2O2-treated (StressExo) and untreated

granulosa cells (NormalExo) were used for RNA isolation and investigation of the abundance

of Nrf2 and its downstream antioxidant genes using qRT-PCR. Exosomes released from

bovine granulosa cells under oxidative stress conditions were enriched with mRNA encoded

by Nrf2 and had lower level Keap1. Moreover, exosomes released under oxidative stress condi-

tions (StressExo) contained mRNA of CAT and TXN1 and significantly lower level of PRDX1

and HMOX1 genes mRNA compared to those exosomes released by untreated cells (Normal-

Exo). On the other hand, exosomes from both groups did not show any significant difference

in their mRNA content for SOD1 gene. Interestingly, NQO1 mRNA was not detected in exo-

somes of both treatment groups (Fig 8).

Fig 4. Oxidative stress increased cellular mRNA expression level of Nrf2 and its downstream antioxidants. qRT-PCR analysis of

Nrf2 and downstream antioxidant genes in granulosa cells under normal (white bar) or oxidative stress (dark bar) conditions. Data are

mean ± SEM from four independent biological replicates. Bars with different letters showed statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g004
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Fig 5. Immunoblotting analysis of Nrf2, Keap1 and CAT proteins (A) and immunocytochemistry of Nrf2 (B) and CAT (C) in bovine

granulosa cells under oxidative stress and normal conditions while, (D) the fluorescence intensity analysis of Nrf2 and CAT proteins

signal. The red colour indicated the expression of proteins, while the blue colour indicated the nuclear staining using 40,6-diamidino-

2-phenylindole (DAPI). Data are mean ± SEM from four independent biological replicates. Bars with different letters showed statistically

significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g005

Fig 6. Quantitative RT-PCR analysis of cellular proliferation and differentiation marker genes (A) and pro- and anti-

apoptotic marker genes (B) in granulosa cells under normal (white bar) or oxidative stress (dark bar) conditions.

Western blot analysis of PCNA and StAR1 proteins (C). Data are mean ± SEM from four independent biological

replicates. Bars with different letters showed statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g006
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Horizontal transfer of oxidative stress defense mechanism in granulosa

cells through exosomes

The uptake of labeled exosomes by granulosa cells during co-culture was confirmed under

confocal microscope (Fig 9). The co-incubation of granulosa cells with StressExo resulted in

lower intracellular ROS level and higher mitochondrial activity (Figs 10 and 11). Granulosa

cells co-cultured under normal conditions with StressExo or NormalExo showed increased

cell proliferation (Fig 12A). Similarly, cell cycle assay results demonstrated higher proportion

of cells arrested at G0/G1 phase and a lower proportion in G2/M phase in both cells co-cultured

with StressExo or NormalEXo under oxidative stress conditions (Fig 12B).

Co-culture of granulosa cells with StressExo increased the mRNA and

protein levels of Nrf2 and antioxidants

To investigate whether co-incubation of granulosa cells with exosomes result in transfer of

cargo molecules especially related to of oxidative response elements. Bovine granulosa cells

were co-cultured with StressExo and NormalExo either under oxidative stress or normal con-

ditions. Quantitative RT-PCR results showed that, the mRNA expression level of Nrf2 was sig-

nificantly higher in granulosa cells co-cultured with StressEXo compared to those co-cultured

with NormalExo in both under oxidative stress and normal conditions. Similarly, downstream

Fig 7. Granulosa cells exposed to oxidative stress released high concentration of exosomes with distinct size to

extracellular space compared to those cultured under normal conditions. Western blot analysis of exosomes marker

proteins (A). Electron microscope analysis (B) and nanoparticles tracking analysis (C) of exosomes released from granulosa

cells under normal (NormalExo) and oxidative stress (StressExo) conditions {The Y-axis indicated the concentration

(particles/ml) and X-axis indicated the size (nm)}.

https://doi.org/10.1371/journal.pone.0187569.g007
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genes of Nrf2 (CAT, PRDX1 and TXN1) showed higher abundance in granulosa cells co-cul-

tured with StressExo compared to those cocultured with NormalExo (Fig 13). Similar expres-

sion was detected for Nrf2 protein level in granulosa cells co-cultured with StressExo. Higher

expression of CAT protein was found in granulosa cells co-cultured with StressExo compared

to those cultured with NormalExo under normal conditions (Fig 14).

Fig 8. Exosomes released from granulosa cells under oxidative stress conditions contained significantly higher mRNA level

of Nrf2 and antioxidant genes compared to control group. The relative mRNA expression level of Nrf2 and antioxidant genes in

exosomes released from granulosa cells under normal (white bar) and oxidative stress (dark bar) conditions as analysed by qRT-PCR.

Data are mean ± SEM from four independent biological replicates. Bars with different letters showed statistically significant differences

(p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g008

Fig 9. Up take of PKH67 labeled exosomes by granulosa cells after co-incubation in vitro. While green colour

indicated labeled exosomes, blue colour represented nuclear staining using 40,6-diamidino-2-phenylindole (DAPI). Images

were captured under confocal microscope.

https://doi.org/10.1371/journal.pone.0187569.g009
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Discussion

In dairy cattle, oxidative stress can be a result of several environmental and physiological fac-

tors such as heat stress, diet, high milk production, negative energy balance, diseases [38–42],

that can lead to numerous deleterious effects on female reproduction and fertility [43,44].

Despite the fact that oxidative stress is an imbalance between reactive oxygen species (ROS)

and antioxidants [9,10], large set of evidences are available for the critical physiological role

Fig 10. Granulosa cells co-incubated with exosomes showed reduction in ROS level under oxidative stress or normal conditions

compared to control ones. The ROS level (A) was measured under normal or oxidative stress conditions in granulosa cells co-incubated with

exosomes released under normal (NormalExo) or stress (StressExo) conditions compared to groups cultured without exosomes. The ROS

fluorescence intensity analysis (B). Data are mean ± SEM from four independent biological replicates. Bars with different letters showed

statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g010

Fig 11. The mitochondrial activity (A) and fluorescence intensity analysis (B) in granulosa cells co-incubated with NormalExo (II), StressExo

(III) compared to those not coincubated with any exosomes (I) under normal conditions and the same treatment groups under oxidative stress

conditions (IV–VI). The red colour indicated the MT-RED, while the blue colour indicates the nuclear staining using 40,6-diamidino-

2-phenylindole (DAPI). Data flouresent intensity signals (B) are mean ± SEM from four independent biological replicates. Bars with different

letters showed statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g011
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of ROS particularly during folliculogenesis and ovulation being locally produced within the

follicle by endothelial cells, neutrophils and macrophages [45]. However, excess ROS level

including H2O2 leads to granulosa cells apoptosis and subsequently oocyte dysfunction [46].

Granulosa cells are layers of somatic cells that are surrounding oocyte and play vital role for

successful folliculogenesis and subsequently embryo development and pregnancy outcome

[47,48]. Granulosa cells and their antioxidant system during maturation are responsible for

preventing oocyte from oxidative stress damage [49,50]. Excess ROS level in granulosa cells

results apoptosis [51–53], which in turn resulted follicular atresia and ovarian dysfunction

[54]. Sevral evidences are accumulated for the effect of exogenous oxidative stress induced

by H2O2 resulted in higher ROS accumulation which is harmful for DNA, lipid, protein as

well as mitochondria activity and integrity and subsequently lead to granulosa cell apoptosis

[3,8,46,52,55]. In agreement with this, in the present study exposure of bovine granulosa cells

to moderate level of H2O2 resulted in higher intracellular ROS level accompanied with lower

mitochondrial activity compared to untreated control (Figs 1 and 2). Even though mitochon-

dria are considered one of the main sources of ROS in mammalian cells [56,57], its integrity is

essential for steroidogenesis in granulosa cells [52,58]. Therefore, the reduction in activity of

mitochondria in stressed granulosa cells in the present study may result in disturbances in the

energy metabolism of those granulosa cells and proper steriogenesis is impaired.

Cell cycle is a process regulated by growth factors that control different cellular pathways

such as proliferation [59]. It has been reported that H2O2 induced G2/M cell cycle arrest and

prevented osteoblasts cell proliferation by the reducing the expression of cyclin B1 [60]. Simi-

larly, our results revealed that the proportion of cells under G0/G1 phase were reduced while;

Fig 12. Co-incubation of bovine granulos cells with StressExo altered the cell cycle (A) and cell proliferation (B) profiles under normal or

oxidative stress conditions. Granulosa cells co-incubated without exosomes (I), NormalExo (II), StressExo (III) under normal conditions

or without exosomes (IV), NormalExo (V), StrssExo (VI) under oxidative stress conditions. The Y-axis indicates the cell count and X-axis

indicates the DNA content of cells detected by PI staining. Data are mean ± SEM from four independent biological replicates. Bars with

different letters are statistically significant (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g012
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higher proportion of cells were arrested at G2/M phase in H2O2-challenged granulosa cells

which is associated with a reduction in cell proliferation rate (Fig 3). This was further validated

with the expression level of transcripts related to cell proliferation and cell cycle (PCNA and

CCDN2). Moreover, significantly higher expression of pro-apoptotic marker gene (Casp3)

with concomitant reduction of anti-apoptotic gene (BCL2L1) was observed in garnulosa cells

under oxidative stress conditions as it has been reported before [46].

The mammalian cells are outfitted with an assortment of antioxidants that serve to offset

the impact of oxidative stress. The harmonic expression of these antioxidant genes eliminates

the stress in order to reach the homeostasis state in a manner of prohibiting damage to cellular

components that are sensitive to oxidative stress [61]. Nrf2-mediated oxidative stress response

is one of the most important cytoprotective mechanisms for antioxidant induction and it is

sequestered in cytosol by Keap1 protein. Under oxidative stress conditions, Nrf2 is released

from Keap1, translocated to nucleus, binds to antioxidant response elements (ARE) and results

in releasing of antioxidant molecules [62]. We have previously shown that the activation of

Nrf2 and its downstream antioxidant genes are vital for the survival of bovine embryos under

suboptimal culture conditions [63,64]. Similarly, in the present study we have evidenced the

induction of the mRNA and protein of Nrf2 and its downstream antioxidants (PRDX1, SOD1,

CAT, HMOX1, TXN1 and NQO1) in bovine granulosa cells in response to oxidative stress.

Moreover, H2O2-challenged cells showed morphological changes accompanied with semi

Fig 13. Higher mRNA expression level of Nrf2 and antioxidant genes was detected under oxidative stress conditions in

granulosa cells co-incubated with StressExo. Expression level of Nrf2 and antioxidant genes in cells cultured under oxidative

stress conditions (I), co-incubated with NormalExo (II) or StressExo (III) and cells cultured under normal conditions with

NormalExo (IV) or StressExo (V). Data are mean ± SEM from four independent biological replicates. Bars with different letters

showed statistically significant differences (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g013
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rounded and shrunken plasma membrane (Fig 1B). Previous studies reported that H2O2 affect

cell membrane permeability by altering changes in membrane composition and stage of cell

cycle [65]. The exposure of osteosarcoma cells to H2O2 resulted in rounded shape and detach-

ment of cells [66]. These findings may a result of dysregulation of focal adhesion and adhesion

skeleton [67], which may result in increased distance and gaps between cells and result in

impaired cell-to-cell communication.

The communication between various follicular somatic cells and the gamete during follicu-

logenesis can be either via gap junctions or through signal molecules mediated by the extracel-

lular environment mainly follicular fluid. The presence and potential role of extracellular

vesicles especially exosomes in follicular fluid has been reported in mare [25], women [68] and

cow [22,69]. The quality and quantity of these extracellular vesicles vary depending on the physio-

logical status of the cells, from where they are released [68,70,71] and are highly triggered by vari-

ous stresses factors including diseases, heat stress as well as oxidative stress [72]. In agreement

with that, our resultes demonstrated that culture media containing granulosa cells exposed to

stress contained higher concentration of exosomes compared to those released by granulosa cells

under normal conditions (Fig 7). Indeed, exosomes released under stress conditions are obvi-

ously differed in their RNA and protein contents compared to those released from physiologically

normal cells and depending also on the type of stress the cells are exposed to [15,73]. Therefore,

we were aiming at proofing the hypothesis that exosomes released from bovine granulosa cells

under stress conditions may contain molecules associated with oxidative stress defense mecha-

nism. Accordingly, exosomes released from bovine granulosa cells exposed to oxidative stress

contained significant copy of mRNA molecules encoded by Nrf2 and selective antioxidant

Fig 14. The protein expression level of Nrf2 and CAT in granulosa cells co-incubated with exosomes was in the same line with

their mRNA expression level. The immunecytochemistry of Nrf2 (A) and CAT (B) in bovine granulos cells co-incubated without exosome

(I), NormalExo (II) or StressExo (III) under oxidative stress conditions or under normal conditions co-incubated with NormalExo (IV) or

StressExo (V). The fluorescence intensity analysis (C) of Nrf2 and CAT immunocytochemistry signals. The western blot results of all

groups for Nrf2 (D) and CAT (E) proteins. In the immunocytochemstry pictures the red colour indicated the expression of proteins, while

the blue colour indicated the nuclear staining using 40,6-diamidino-2-phenylindole (DAPI). Data are mean ± SEM from four independent

biological replicates. Bars with different letters are statistically significant (p < 0.05).

https://doi.org/10.1371/journal.pone.0187569.g014
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molecules into extracellular space. As it has been shown in Fig 4 the enrichment of antioxidant

transcripts in exosomes released by the granulosa cells in response to oxidative stress is not valid

for all antioxidants. Exosomal mRNA level of Nrf2, CAT and TXN1 was significantly higher in

StressExo compared to NormalExo unlike PRDX1 which showed significantly lower mRNA level

in StessExo compared to NormalExo. On the other hand, ther was no significant different for

mRNA level of SOD1 and HMOX1 which tened to be lower in StressExo compared to Normal-

Exo. Interstingly, NQO1 was not detected at mRNA level in both groups (Fig 8). The mechanism

of selection and packaging of selective antioxidants into extracellular space through exosomes is

so far not clear and it is a subject for future research.

There are several mechanisms for the uptake of exosomes by recipient cells including endocy-

tosis [74,75], simple fusion [76,77] and exosomal surface ligands [78,79]. The uptake of exosomes

through either of these mechanisms resulting in functional alterations in recipient cells depend-

ing on the cargo molecule they are carrying with [22,80]. In the present study, we were aiming at

validating the potential horizontal transfer of exosome mediated oxidative stress defense mole-

cules among bovine granulosa cells. Following co-incubation of StressExo with cultured granu-

losa cells there was a significant increase in cellular mRNA levels of Nrf2 and its selective

downstream antioxidants (CAT, PRDX1 and TXN1) (Fig 13). Similarly, a significant increase in

protein expression of Nrf2 and CAT1 genes was observed in granulosa cells coincubated with

StressExo. Catalase (CAT) is an enzyme that can deactivate one million free radicals per second

per molecule in a single cycle of catalytic reaction [81]. We have evidenced in the first experi-

ment that alteration in relative abundance of cellular defense molecules was also accompanied

by a reduction in ROS accumulation and the corresponding increase in mitochondrial activity

under oxidative stress conditions (Figs 1 and 2). Simialrly, due to the horizontal transfer of oxi-

dative stress defence molecules through exosomes, granulosa cells coculterd with StressExo

showed a reduced ROS accumulation and the corresponding improved mitochondrial activity

(Figs 10 and 11). Moreover, we have also evidenced that co-incubation of bovine granulosa cells

with StressExo resulted in an increase in the proportion of cells under G0/G1 phase and decrease

in proportion of cells at G2/M phase, which is associated with increased proliferation rate under

oxidative stress conditions (Fig 12). Taken together, these results suggest that oxidative stress-

released exosomes carry antioxidant molecules defense molecules which can be uptaken by the

neighboring cells to enrich their cellular defense mechansism in order to protect themselves

against oxidative stress condition induced by the unfavourable environment.

Conclusion

The present study provides evidence that the survival of granulosa cells under oxidative stress

conditions is dependent on their ability to activate their Nrf2 mediated oxidative stress

response mechanisms. Moreover, these several cellular cascades of antioxidant molecules can

also be released into extracellular space being coupled with exosomes which have a great

potential in transfer of defense molecules form one cells to the others.
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S2 Fig. ROS accumulation in bovine granulosa cells treated with different doses of H2O2.

Data of ROS fluorescence intensity analysis are shown as mean ± SEM from four independent

biological replicates in the graph presented. The quantification of ROS for cells treated with

50 μM H2O2 was not possible as most cells were floating due to the toxic effect of the H2O2.

Bars with different letters showed statistically significant differences (p< 0.05).

(TIF)

S3 Fig. The mitochondrial activity of bovine granulosa cells treated with different doses of

H2O2.

(TIF)

S4 Fig. The effect of different doses of H2O2 on bovine granulosa cells proliferation. Data

are mean ± SEM from four independent biological replicates. Bars with different letters are sta-

tistically significant (p< 0.05).

(TIF)

S1 Table. The list of genes used for expression analysis and the corresponding forward and

reverse primer sequences with amplicon size.
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