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Abstract
Precise spike timing as a means to encode information in neural networks is biologically

supported, and is advantageous over frequency-based codes by processing input features

on a much shorter time-scale. For these reasons, much recent attention has been focused

on the development of supervised learning rules for spiking neural networks that utilise a

temporal coding scheme. However, despite significant progress in this area, there still lack

rules that have a theoretical basis, and yet can be considered biologically relevant. Here we

examine the general conditions under which synaptic plasticity most effectively takes place

to support the supervised learning of a precise temporal code. As part of our analysis we

examine two spike-based learning methods: one of which relies on an instantaneous error

signal to modify synaptic weights in a network (INST rule), and the other one relying on a fil-

tered error signal for smoother synaptic weight modifications (FILT rule). We test the accu-

racy of the solutions provided by each rule with respect to their temporal encoding

precision, and then measure the maximum number of input patterns they can learn to mem-

orise using the precise timings of individual spikes as an indication of their storage capacity.

Our results demonstrate the high performance of the FILT rule in most cases, underpinned

by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence

towards a desired solution during learning. We also find the FILT rule to be most efficient at

performing input pattern memorisations, and most noticeably when patterns are identified

using spikes with sub-millisecond temporal precision. In comparison with existing work, we

determine the performance of the FILT rule to be consistent with that of the highly efficient

E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also imple-

mentable as an online method for increased biological realism.

Introduction
It is becoming increasingly clear that the relative timings of spikes transmitted by neurons, and
not just their firing rates, is used to convey information regarding the features of input stimuli
[1]. Spike-timing as an encoding mechanism is advantageous over rate-based codes in the
sense that it is capable of tracking rapidly changing features, for example briefly presented
images projected onto the retina [2] or tactile events signalled by the fingertip during object
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manipulations [3]. It is also apparent that spikes are generated with high temporal precision,
typically on the order of a few milliseconds under variable conditions [4–6].

The indicated importance of precise spiking as a means to process information has moti-
vated a number of theoretical studies on learning methods for SNN (reviewed in [7, 8]).
Despite this, there still lack supervised learning methods that can combine high technical effi-
ciency with biological plausibility, as well as those claiming a solid theoretical foundation. For
example, while the previously proposed SPAN [9] and PSD [10] rules have both demonstrated
success in training SNN to form precise temporal representations of spatio-temporal spike pat-
terns, they have lacked analytical rigour during their formulation; like many existing supervised
learning methods for SNN, these rules have been derived from a heuristic, spike-based reinter-
pretation of the Widrow-Hoff learning rule, therefore making it difficult to predict the validity
of their solutions in general.

The E-learning CHRON [11] has emerged as a supervised learning method with stronger
theoretical justification, considering that it instead works to minimise an error function based
on the VPD [12]; the VPD is a metric for measuring the temporal difference between two neu-
ral spike trains, and is determined by computing the minimum cost required to transform one
spike train into another via the addition, removal or temporal-shifting of individual spikes. In
this study, two supervised learning rules were formulated: the first termed E-learning, which is
specifically geared towards classifying spike patterns using precisely-timed output spikes, and
which provides high network capacity in terms of the number of memorised patterns. The sec-
ond rule is termed I-learning, which is more biologically plausible than E-learning but comes
at the cost of a reduced network memory capacity. The E-learning rule has less biological rele-
vance than I-learning given its restriction to offline-based learning, as well as its dependence
on synaptic variables that are non-local in time. Further, analytical, spike-based learning meth-
ods have been proposed in [13], such as the HTP rule, and have demonstrated very high net-
work capacity, but these similarly have been restricted in their implementation to offline
learning.

A probabilistic method which optimises by gradient ascent the likelihood of generating a
desired output spike train has been introduced by Pfister et al. in [14]. This supervised method
has strong theoretical justification, and importantly has been shown to give rise to synaptic
weight modifications that mimic the results of experimental STDP protocols measuring the
change in synaptic strength, triggered by the relative timing differences of pre- and postsynap-
tic spikes [15]. Furthermore, the statistical framework in which this method has been devised is
general, allowing for its extension to diverse learning paradigms such as reinforcement-based
learning [16], backpropagation-based learning as applied to multilayer SNN [17] and recur-
rently connected networks [18, 19]. Despite this, a potential drawback to this approach comes
from its reliance on a stochastic neuron model for generating output spikes; although this
model is well suited to reinforcement-based learning which relies on variable spiking for sto-
chastic exploration [20], it is less well suited to the supervised learning of precisely timed out-
put spikes where variable responses become more of a hindrance.

To address these shortcomings, we present here two supervised learning rules, termed INST
and FILT, which are initially derived based on the statistical method of [14], but later adapted
for compatibility with the deterministically spiking LIF neuron model. In this way, these rules
claim a stronger theoretical basis than many existing spike-based learning methods, and yet
still allow for the learning of precisely timed output spikes. We then use these rules for demon-
strative purposes to explore the conditions under which synaptic plasticity most effectively
takes place in SNN to allow for precise temporal encoding. These two rules differ in their for-
mulation with respect to the treatment of output spike trains: while INST simply relies on the
instantaneous difference between a target and actual output spike train to inform synaptic
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weight modifications, FILT goes a step further, and exponentially filters output spike trains in
order to provide more stable weight changes. By this filtering mechanism, we find the FILT
rule is able to match the high performance of the E-learning CHRON rule. We conclude by
indicating the increased biological relevance of the FILT rule over many existing spike-based
supervised methods, based on this spike train filtering mechanism.

This work is organised as follows. First, the INST and FILT learning rules are formulated for
SNN consisting of deterministic LIF neurons, and compared with existing, and structurally
similar, spike-based learning rules. Next, synaptic weight changes triggered by the INST and
FILT rules are analysed under various conditions, including their dependence on the relative
timing difference between pre- and postsynaptic spikes, and more generally their dynamical
behaviour over time. The proposed rules are then tested in terms of their accuracy when encod-
ing large numbers of arbitrarily generated spike patterns using temporally-precise output
spikes. For comparison purposes, results are also obtained for the technically efficient E-learn-
ing CHRON rule. Finally, the rules are discussed in relation to existing supervised methods, as
well as their their biological significance.

Methods
This section proposes two supervised learning rules for SNN, termed INST and FILT, that are
initially formulated using the statistical approach of [14] for analytical rigour, but later adapted
for use with a deterministically spiking neuron model for the purpose of precise temporal
encoding. This section begins by describing the simplified SRM, underpinning the formulation
of the INST and FILT synaptic plasticity rules.

Single Neuron Model
The LIF neuron is a commonly used spiking neuron model, owing to its relative simplicity and
analytical tractability, and represents a special case of the more general Spike Response Model
[21]. For these reasons, we begin our analysis by considering a single postsynaptic neuron i with
a membrane potential ui at time t, defined by the simplified Spike Response Model (SRM0):

uiðtjx; yiÞ :¼
X

j

wij

X
t
f
j 2xj

�ðt � tfj Þ þ
X
t
f
i 2yi

kðt � tfi Þ ; ð1Þ

where the membrane potential is measured with respect to the neuron’s resting potential. This
equation signifies a dependence of the neuron’s membrane potential on its presynaptic input
pattern x = {x1, x2, . . ., xni} from ni synapses, as well as its own sequence of emitted output

spikes, yiðtÞ ¼ ft1i ; t2i ; . . . ; t̂ i < tg, where t̂ i is its latest spike before t. An actual output spike

occurs at a time tfi when ui crosses the neuron’s firing threshold ϑ from below. The first term on
the RHS of the above equation describes a weighted summation of the presynaptic input: the
parameter wij refers to the synaptic weight from a presynaptic neuron j, the kernel � corresponds
to the shape of an evoked PSP and xj ¼ ft1j ; t2j ; . . .g, xj 2 x, is a list of presynaptic firing times

from j. The second term on the RHS describes the refractoriness of the neuron due to postsyn-
aptic spiking, controlled by the reset kernel κ.

In more detail, the PSP kernel evolves according to

�ðsÞ ¼ 1

C

Z 1

s0¼0

exp � s0

tm

� �
aðs� s0Þ ds0 YðsÞ ; ð2Þ

where C is the neuron’s membrane capacitance and α describes the time course of a postsynap-
tic current elicited due to a presynaptic spike. The term Θ(s) is the Heaviside step function, and
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is defined such that Θ(s) = 1 for s� 0 and Θ(s) = 0 otherwise. Here we approximate the post-
synaptic current’s time course using an exponential decay [21]:

aðsÞ ¼ q
ts
exp � s

ts

� �
YðsÞ ; ð3Þ

where q is the total charge transferred due to a single presynaptic spike and τs is a synaptic time
constant. Hence, using Eq (3), the integral of Eq (2) can be evaluated to yield the PSP kernel:

�ðsÞ ¼ �0 exp � s
tm

� �
� exp � s

ts

� �� �
YðsÞ ; ð4Þ

where its coefficient is given by �0 ¼ q
C

tm
tm�ts

. The reset kernel in Eq (1) evolves according to

kðsÞ ¼ k0 exp � s
tm

� �
YðsÞ ; ð5Þ

with its coefficient given by κ0 = −(ϑ − ur), where the reset potential ur is the value the neuron’s
membrane potential is set to immediately after a postsynaptic spike is fired.

In our analysis we set the model parameters as follows: �0 = 4 mV, τm = 10 ms, τs = 5 ms, ϑ =
15 mV and ur = 0 mV; for these choices of parameters, a single presynaptic spike evokes a PSP
with a maximum value of 1mV after a lag time close to 7ms, and the postsynaptic neuron’s
membrane potential is reset to its resting value of 0mV immediately after firing. Shown in Fig 1
are graphical illustrations of the postsynaptic current, PSP and reset kernels, as well an example
of a resulting postsynaptic membrane potential as defined by Eq (1).

We now explore in more detail the spike generation mechanism of the postsynaptic neuron.
Currently, firing events are considered to take place only when the neuron’s membrane poten-
tial crosses a predefined firing threshold ϑ. Alternatively, however, we may instead consider
output spikes that are generated via a stochastic process with a time-dependent, instantaneous
firing rate ρi, such that firing events may occur even at moments when the neuron’s membrane
potential is below the firing threshold. The instantaneous firing rate ρi is formally referred to as
the stochastic intensity of the neuron, and arbitrarily depends on the distance between the neu-
ron’s membrane potential and formal firing threshold ϑ according to

riðtÞ ¼ gðuiðtÞ � WÞ ; ð6Þ

where ui is defined by Eq (1) and g is an arbitrary function that is commonly referred to as the
neuron’s ‘escape rate’ [21].

Various choices exist to define the functional form of the neuron’s escape rate. A common
choice is to assume an exponential dependence:

gðuiðtÞ � WÞ ¼ r0exp
uiðtÞ � W

Du

� �
; ð7Þ

where ρ0 is the instantaneous firing rate of the neuron at threshold ϑ, and the parameter Δu
determines the ‘smoothness’ of the firing rate about the threshold [22]. It is important to note
that in taking the limit Δu! 0 the deterministic LIF model can be recovered, the utility of
which shall become apparent later.

Supervised Learning Method
Implementing a stochastic model for generating postsynaptic spikes according to Eq (6) is
advantageous, given that it allows for the determination of the likelihood of generating some
desired sequence of target output spikes yrefi ¼ f~t 1i ;~t2i ; :::;~t nsi g containing ns spikes in response
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to an input spike pattern x. As shown originally by [14], the log-likelihood is given by

log Pðyrefi jxÞ ¼
Z T

0

log riðtjx; yrefi Þ� �
Yref

i ðtÞ � riðtjx; yrefi Þ dt ; ð8Þ

where Yref
i ðtÞ ¼P~t f

i
2yref

i
dðt � ~t fi Þ is a target postsynaptic spike train and T is the duration over

which the input pattern x is presented. Importantly, since the neuron model is described by the
linear SRM and the escape rate is exponential, the log-likelihood is a concave function of its
parameters [23]. Log-concavity is ideal since it ensures no non-global local maxima exist in the
likelihood, thereby allowing for computationally efficient parameter optimisation methods.

In our analysis, we seek to maximise the log-likelihood of a postsynaptic neuron generating

a desired target output spike train Yref
i through modifying the strengths of synaptic weights in

the network. This can be achieved through the technique of gradient ascent, such that a synap-
tic weight wij is modified according to

Dwref
ij � @logPðyrefi jxÞ

@wij

: ð9Þ

Hence, taking the derivative of Eq (8) and using Eq (1) provides the gradient of the log-

Fig 1. Illustration of the postsynaptic kernels used in this analysis, and an example of a resulting
postsynaptic membrane potential. (A) The time course of the postsynaptic current kernel α. (B) The PSP
kernel �. (C) The reset kernel κ. (D) The resulting membrane potential ui as defined by Eq (1). In this example,
a single presynaptic spike is received at tj = 0 ms, and a postsynaptic spike is generated at ti = 4 ms from
selectively tuning both the synaptic weight wij and firing threshold W values. We takeC = 2.5 nF for the
neuron’s membrane capacitance, such that the postsynaptic current attains a maximum value of 1nA.

doi:10.1371/journal.pone.0161335.g001
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likelihood:

@logPðyrefi jxÞ
@wij

¼
Z T

0

r0
iðtjx; yrefi Þ

riðtjx; yrefi Þ Yref
i ðtÞ � riðtjx; yrefi Þ� 	X

t
f
j 2xj

�ðt � tfj Þ dt ; ð10Þ

where r0
iðtjx; yrefi Þ ¼ dg

du
ju¼uiðtjx;yrefi Þ. Furthermore, using Eq (7) it follows that

r0
iðtjx; yrefi Þ

riðtjx; yrefi Þ ¼
1

Du
; ð11Þ

which, in combination with Eqs (9), (10) and (11), provides the weight update rule:

Dwref
ij ¼ Z

Du

Z T

0

Yref
i ðtÞ � riðtjx; yrefi Þ� 	X

t
f
j 2xj

�ðt � tfj Þ dt ; ð12Þ

where η is the learning rate. The above has been derived by [14], and has been shown to well
approximate results of experimental protocols on synaptic plasticity which depend on the coin-
cidence of pre- and postsynaptic firing times [15].

In our approach, however, we wish to instead consider a learning rule that depends on the
intrinsic dynamics of a postsynaptic neuron, rather than artificially clamping its firing activity
to its target response. To this end, we adjust the weight update rule of Eq (12) to the following
rule:

Dwij ¼
Z
Du

Z T

0

Yref
i ðtÞ � riðtjx; yiÞ

� 	X
t
f
j 2xj

�ðt � tfj Þ dt ; ð13Þ

where we have substituted riðtjx; yrefi Þ with ρi(t|x, yi), such that the instantaneous firing rate of
the postsynaptic neuron depends on its actual sequence of emitted output spikes yi rather than
its target output yrefi . Although Eq (13) is an approximation of the theoretical result of Eq (12),
it can be shown that it nevertheless converges towards a similar solution when certain condi-
tions are satisfied, depending on the magnitude of Δu and κ0, and the relative timing displace-
ments between target and actual output spikes (see S1 Text).

INSTantaneous-error (INST) Synaptic Plasticity Rule
The weight update rule of Eq (12) has been derived by taking a maximum-likelihood approach
based on a stochastic spiking neuron model, but can be adapted, using Eq (13), to the case of a
deterministically firing LIF neuron model to allow for precise temporal encoding. Specifically,
if the limit Δu! 0 is taken for the stochastic threshold parameter in Eq (7), the stochastic
intensity of an intrinsically spiking neuron instead assumes one of two values:

riðtÞ ¼
dðt � tfi Þ for uiðtfi Þ > W

0 otherwise ;

(
ð14Þ

where the term dðt � tfi Þ is the Dirac delta distribution about an actual postsynaptic firing time

tfi 2 yi, since immediately after a spike is emitted: uiðtfþi Þ < W as a result of the reset term in Eq
(1). In this way, the postsynaptic neuron’s stochastic intensity can be substituted with its output

spike train riðtÞ ! Y iðtÞ, where Y iðtÞ ¼
P

tf
i
2yidðt � tfi Þ. Hence, using Eq (13) and the result
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for Eq (14), a deterministic adaptation of Eq (12) is given by

lim
Du!0

Dwij ¼ Z
Z T

0

Yref
i ðtÞ � Y iðtÞ

� 	X
t
f
j 2xj

�ðt � tfj Þ dt ; ð15Þ

where we have renormalised the above equation by redefining the learning rate to maintain a
finite value: Z ! Z

Du. Strictly speaking, taking the limit Δu! 0 cannot be guaranteed to provide

convergence towards an optimal synaptic weight solution, as is otherwise predicted for small
postsynaptic timing displacements and finite Δu, but suitably simplifies the learning rule for
the case of a deterministic, and intrinsically spiking, neuron model. The convergence of this
simplified rule shall be experimentally analysed in detail in the Results section. Furthermore,
performing the straightforward integration of Eq (15) provides the batch weight update rule:

DwINST
ij ¼ Z

X
~t
g
i 2yrefi

X
t
f
j 2xj

�ð~t gi � tfj Þ �
X
thi 2yi

X
t
f
j 2xj

�ðthi � tfj Þ

2
64

3
75 ; ð16Þ

which we term the INST synaptic plasticity rule, to reflect the discontinuous nature of the post-
synaptic error signal. The INST rule can be summarised as a two-factor learning rule: presyn-
aptic activity describing a stimulus (first learning factor) is combined with a postsynaptic error
signal (second learning factor) to elicit a final synaptic weight change.

Broadly speaking, the INST rule falls into a class of learning rules for SNN which depend on
an instantaneous error signal to drive synaptic weight modifications. Key examples include the
PSD plasticity rule proposed in [10], the I-learning variant of the Chronotron [11] and the FP
algorithm [13]. Despite this, certain differences exist between INST and the aforementioned
examples. Specifically, weight updates for both PSD and I-learning rely on the postsynaptic
current α, rather than the PSP � as is used here, as a presynaptic learning factor (compare Eqs
(3) and (4), respectively). The selection of α as a presynaptic learning factor is somewhat arbi-
trary, while � is theoretically supported [14, 24].

Although INST and the FP algorithm share � as their presynaptic learning factor, the FP
algorithm just takes into account the first occurrence of an error due to a misplaced postsynap-
tic spike, rather than accumulating all postsynaptic spike errors as for INST. The authors’ deci-
sion to restrict FP learning to the first error in each trial was motivated by a desire to avoid
non-linear accumulation of errors arising from interacting postsynaptic spikes, due to the neu-
ron’s reset term, in order that weight updates alter the future time course of the neuron’s activ-
ity in a more predictable manner [13]. Here we relax this constraint for the sake of biological
plausibility and ease of implementation, but still ensure that target postsynaptic spikes are suf-
ficiently separated from each other to reduce this error accumulation effect.

FILTered-error (FILT) Synaptic Plasticity Rule
As it currently stands, the time course of the synaptic weight change Δwij(t) resulting from Eq

(15) depends on the instantaneous difference between two spike trains Yref
i and Y i during

learning. In other words, candidate weight updates are only effected at the precise moments in
time when target or actual postsynaptic spikes are present. Although this leads to the simplified
batch weight update rule of Eq (16), there are two distinct disadvantages to this approach. The
first concerns the convergence of actual postsynaptic spikes towards matching their desired tar-
get timings; as we shall show in the Results section, and as previously indicated in [11, 13], if
the temporal proximity of postsynaptic spikes is not accounted for by the learning rule, then
fluctuations in the synaptic weights can emerge as a result of unstable learning. It then becomes

Supervised Learning for Precise Temporal Encoding

PLOS ONE | DOI:10.1371/journal.pone.0161335 August 17, 2016 7 / 28



problematic for the network to smoothly converge towards a desired weight solution, and
maintain fixed output firing activity. Secondly, from a biological standpoint it is implausible to
assume that synaptic weights can be effected instantaneously at the precise timings of postsyn-
aptic spikes. More realistically, it can be supposed that postsynaptic spikes would leave some
form of synaptic trace that persists on the order of the membrane time constant, which, in
combination with coincident presynaptic spiking as detected via evoked PSP, would inform
more gradual synaptic weight changes.

To address these limitations of instantaneous-error based learning we convolve the target
and actual output spike trains of the postsynaptic neuron of Eq (15) with an exponential kernel,
thereby providing the following learning rule:

Dwij ¼ Z
Z 1

0

~Y ref
i ðtÞ � ~Y iðtÞ

� 	X
t
f
j 2xj

�ðt � tfj Þ dt ; ð17Þ

where a convolved actual output spike train is equivalent to

~Y iðtÞ �
1

tq

Z t

0

Y iðt0Þexp � t � t0

tq

 !
dt0 ; ð18Þ

and a similar equivalence for a target output spike train ~Y ref
i . The decay time constant is set to

τq = 10 ms, similar to the membrane time constant τm, which has been indicated to give opti-
mal performance from preliminary parameter sweeps. The upper limit of1 in Eq (17) is nec-
essary in order to account for the entire time course of convolved postsynaptic traces.
Performing the integration of Eq (17) using the PSP kernel given by Eq (4) yields the batch
weight update rule:

DwFILT
ij ¼ Z

X
~t
g
i 2yrefi

X
t
f
j
2xj

lð~t gi � tfj Þ �
X
thi 2yi

X
t
f
j
2xj

lðthi � tfj Þ

2
64

3
75 ; ð19Þ

where the learning window λ arises from interacting pre- and postsynaptic spikes, and is given
by

lðsÞ ¼
�0 Cm exp � s

tm

� �
� Cs exp � s

ts

� �� �
for s > 0

�0 Cm � Csð Þ exp s
tq

 !
for s � 0 :

8>>>><
>>>>:

ð20Þ

In the above equation, the membrane and synaptic coefficient terms are Cm ¼ tm
tmþtq

and

Cs ¼ ts
tsþtq

, respectively. We term Eq (19) the FILT synaptic plasticity rule, that depends on the

smoothed difference between filtered target and actual output spike trains.
The FILT rule falls into a class of learning rules for SNN which rely on a smoothed error sig-

nal for weight updates, and which more effectively take into account the temporal proximity of
neighbouring target and actual postsynaptic spikes, such as the SPAN rule [9] and E-learning
variant of the CHRON [11]. In particular, Eq (17) bears a similarity with SPAN, in the sense
that weight updates depend on convolved pre- and postsynaptic spike trains. However, as for
the PSD rule, SPAN makes no prediction for the choice of kernel function with which to con-
volve presynaptic spike trains. In our analysis, presynaptic spikes are suitably convolved with
the PSP kernel of Eq (4). The exponential filtering of postsynaptic spike trains by the FILT rule
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may appear arbitrary, but it is not unreasonable to suppose that this operation is carried out via
changes in the neuron’s membrane potential in response to postsynaptic spikes: especially
since the filter time constant has an optimal value, as determined through preliminary parame-
ter sweeps, that is similar to the neuron’s membrane time constant, τq � τm.

Additionally, selecting an exponential filter simplifies the resulting batch weight update
rule, and coincidentally provides a resemblance of FILT to the vRD as is used to measure the
(dis)similarity between neuronal spike trains [25], where the vRD is defined by

DðY i;Y
ref
i Þ :¼ 1

tq

Z 1

0

½~Y iðtÞ � ~Y ref
i ðtÞ�2dt : ð21Þ

Hence, the FILT rule might also be interpreted as an error minimisation procedure that
reduces, by gradient descent, a vRD-like error function measuring the distance between target
and actual postsynaptic spike trains.

Results

Analysis of the Learning Rules
We first analyse the validity of synaptic weight modifications resulting from the INST and
FILT rules under general learning conditions. For ease of analysis we examine just the weight
change between a single pair of pre- and postsynaptic neurons: each emitting a single spike at
times tj and ti, respectively. A single target output spike at time ~t i is also imposed, which the
postsynaptic neuron must learn to match.

This subsection is organised as follows. First, simplified weight update rules for INST and
FILT are presented based on single pre- and postsynaptic spiking. Next, two distinct scenarios
of weight change driven by each learning rule are examined. The first scenario examines the
weight change as a function of the relative timing difference between a target postsynaptic
spike and presynaptic spike. The second scenario then considers the dynamics of each learning
rule by examining their weight change as a function of the current weight value, with the intent
of establishing their potential for stable convergence towards a desired weight solution.

Synaptic weight updates for single spikes. According to the definition of the INST rule in
Eq (16), the synaptic weight change triggered by single spikes is given by

DwINST
ij ¼ Z �ð~t i � tjÞ � �ðti � tjÞ

h i
; ð22Þ

that is simply the difference between two PSP kernels. For the above equation there exist sev-
eral conditions under which no weight change results, including the trivial case when both PSP
terms are equal to zero as a result of post- before presynaptic spiking (i.e. ti;~t i � tj). Addition-

ally, no weight change occurs when both PSP terms share the same value: ideally this would
take place when target and actual output spikes become aligned, i.e. when ti ¼ ~t i. However, no
weight change is also possible for non-aligned output spikes, since the PSP kernel assumes the
same value for two distinct lag times (compare the rising and falling segments of the PSP curve
in Fig 1B).

Similarly, the FILT batch weight update rule of Eq (19) can be simplified for single pre- and
postsynaptic spikes:

DwFILT
ij ¼ Z lð~t i � tjÞ � lðti � tjÞ

h i
; ð23Þ

that is the difference between two synaptic learning windows, λ, as defined by Eq (20). As with
the INST rule, there is no weight change for the above equation in the event that both λ terms
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share the same value: like the PSP kernel � there exists two distinct lag times for which λ
assumes the same value (see the form of the curve in Fig 2B), hence target and actual postsyn-
aptic spikes need not necessarily be aligned to elicit a zero weight change. Unlike the INST
rule, however, a weight change for FILT can be non-zero for post- before presynaptic spiking.

In the rest of this subsection we start by simply examining the synaptic weight change as a
function of the relative timing difference between a target postsynaptic spike and input presyn-
aptic spike, in the absence of an actual postsynaptic spike, in order to establish the temporal
learning window of each synaptic plasticity rule. We then graphically study the dynamics of
each rule by plotting their phase space diagrams, to predict their long term temporal evolution
of the synaptic weight towards a limiting value. For demonstrative purposes the learning rate
of the INST and FILT rule is set to unity here, although there is no qualitative change in the
results for different values.

Temporal window of the learning rules. Shown in Fig 2 is the synaptic weight change for
each learning rule as a function of the relative timing difference between a target postsynaptic
spike and presynaptic spike, denoted by tref − tpre, including for negative relative timings. Both
panels in this figure correspond to the absence of an actual postsynaptic spike, to clearly illus-
trate the temporal locality of each synaptic plasticity rule.

From the top panel of Fig 2A for the INST rule, it is observed that the plot of the synaptic
change simply follows the form of a PSP kernel. In this case, the synaptic change is zero for
negative values of the relative timing difference, demonstrating the causality of a presynaptic
spike in eliciting a desired postsynaptic spike. Interestingly, the top panel of Fig 2B for the
FILT rule instead demonstrates a more symmetrical dependence of synaptic change on the rel-
ative timing difference, which is centred just right of the origin. This contrasts with the INST
rule, and can be explained by the FILT rule instead working to minimise the smoothed differ-
ence between a target and actual spike train, rather than just their instantaneous difference; in
other words, even if an actual, emitted postsynaptic spike cannot technically be aligned with its
target, then a close match is deemed to be sufficient under FILT.

Fig 2. Dependence of synaptic weight changeΔw on the relative timing difference between a target
postsynaptic spike and input presynaptic spike: tref and tpre, respectively. (A) Leaning window of the INST
rule. (B) Learning window of the FILT rule. The peak Δw values for INST and FILT correspond to relative timings
of just under 7 and 3 ms, respectively. Both panels show the weight change in the absence of an actual
postsynaptic spike.

doi:10.1371/journal.pone.0161335.g002
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Dynamics of the learning rules. We now turn to examining the dynamics of synaptic
weight changes elicited under the INST and FILT learning rules, in order to predict their long
term behaviour.

At this point it is necessary to discuss the relationship between the timing of an actual out-
put spike fired by a postsynaptic neuron and the shape of a PSP evoked by an input spike. In
response to a single synapse, a postsynaptic neuron is constrained to firing an output spike
with a lag time up to the peak value of the PSP kernel, since this is the only region over which
the neuron’s membrane potential can be adjusted to cross its firing threshold from below. For
this reason, we confine our analysis here to examining the dynamics of synaptic weight changes
arising from postsynaptic spikes that occur over the rising segment of the PSP curve, corre-
sponding to lag times up to*7 ms for our choice of parameters, as is visualised in Fig 1B.

In more detail, if a postsynaptic neuron i receives a single input spike at tj = 0 ms from a syn-
apse j with weight wij � W

2peak, then its actual output firing time ti is provided by the relation:

wij �ðtiÞ ¼ W ; ð24Þ

where the conditional parameter �peak corresponds to the maximum value � attains after a lag

time of speak ¼ tmts
tm�ts

log tm
ts


 �
. For values wij <

2peak

W there is insufficient synaptic drive to initiate

an output spike. Furthermore, if we isolate � over its sub-domain: [0, speak], corresponding to
the rising segment of the PSP, then the actual output firing time can be explicitly written in
terms of an inverse function of �:

ti ¼ ��1 W
wij

 !
; ð25Þ

and which can be determined as

ti ¼ tm log
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 W

�0 wij

q
0
B@

1
CA ; ð26Þ

when assuming the proportionality between the membrane and synaptic time constants:
ts ¼ tm

2
. As described by the above equation, an increase in the synaptic weight works to shift

an actual spike backwards in time, and a decrease in the synaptic weight shifts an actual spike
forwards in time. By this process, a neuron can be trained to find a desirable synaptic weight
value which minimises the temporal difference of an actual output spike with respect to its
target.

Using Eqs (25) and (22), assuming tj = 0 ms and taking η = 1, the INST weight update rule
can be summarised as follows for a single synapse:

DwINST
ij ¼

�ð~t iÞ �
W
wij

for wij �
W

�peak

�ð~t iÞ for wij <
W

�peak
;

8>><
>>: ð27Þ

that is a discontinuous function of the synaptic strength wij. The above synaptic plasticity rule
is plotted as a phase portrait in Fig 3A, illustrating the change in the synaptic weight as a func-
tion of its current strength. This figure displays two states of the postsynaptic neuron: the first
of which is quiescence for subthreshold weight values, and the other firing activity for supra-
threshold values. The sudden transition from positive to negative Δw about w/ϑ = 1 (coinciding

Supervised Learning for Precise Temporal Encoding

PLOS ONE | DOI:10.1371/journal.pone.0161335 August 17, 2016 11 / 28



with �peak = 1 mV) corresponds to a transition between these two states, whereupon the neuron
first responds with an output spike. This transition point also acts as an attractor for the sys-
tem, to the extent that weight values −1< w< w	 are drawn towards it, where w	 is a desired
weight solution. This point is unstable, however, due to the discontinuity in Δw, and ultimately
results in fluctuations of w. This unstable attractor is detrimental to network performance for
two key reasons: the first being that it potentially draws w away from its target value of w	, and
the second arising from its tendency to drive variable postsynaptic firing activity as the neuron
is effectively ‘switched on and off’ due to fluctuations in w about ϑ. The second fixed point in
Fig 3A, indicated by the second dashed line from the left, is a repeller, and, unless w is exactly
equal to w	, will work to repel w. This point in particular leads us to predict that learning is
unlikely to precisely converge under the INST rule, and especially for large initial values of w
for which divergence will result.

Fig 3. Phase portraits of the INST and FILT synaptic plasticity rules for a single synapse, each plotting
the change in the synaptic weight Δw as a function of its current strength relative to thresholdw/W. In
this example, a postsynaptic neuron receives an input spike at time tpre = 0 ms from a single synapse with
weightw. The postsynaptic neuron must learn to match a target output spike time tref = 4 ms, which
corresponds to a desired synaptic weight solutionw* as indicated in both panels. The actual output spike
fired by the neuron is shifted backwards in time for positive Δw, and vice versa for negative Δw. The
horizontal arrows in each panel show the direction in whichw evolves, and are separated by the vertical
dashed lines. The peak PSP value �peak = 1 mV (see Methods) results in an actual output spike being fired for
w/W� 1.

doi:10.1371/journal.pone.0161335.g003
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Starting with Eq (23) and again assuming: tj = 0 ms and η = 1, the FILT rule can be summa-
rised as follows for a single synapse:

DwFILT
ij ¼

lð~t iÞ � lðtiÞ for wij �
W

�peak

lð~t iÞ for wij <
W

�peak
;

8>><
>>: ð28Þ

where the actual output firing time ti, emitted over the PSP’s rising segment, is determined by
Eq (26). Shown in Fig 3B is a phase portrait of the FILT rule, where the weight change is plotted
as a function of its current strength. Similarly as discussed before in relation to the INST rule,
the postsynaptic neuron here exhibits two distinct states: quiescence for w< ϑ, and firing activ-
ity for w� ϑ. As for the INST rule there is a discontinuity in Δw as the neuron crosses its firing
threshold, however, unlike with INST, Δw remains positive until the desired weight solution is
reached at w	. This has the effect of shifting the system attractor to w	 (indicated by first
dashed line from the left), as well as making it a stable point by avoiding a discontinuous
change in Δw. Conversely, the second dashed line corresponds to an unstable fixed point, and
works to repel w. Taken together, it follows that for sufficiently small initial values of w the
FILT rule predictably leads to convergence in learning, with a stable synaptic weight solution.

However, depending on the filter time constant τq, there is a limit on the minimum value of
~t i that can reliably be learned when using the FILT rule. In more detail, and from using Eqs
(28) and (20), it can be shown that this lower bound on ~t i for stable convergence of the learning
rule is given by

~tmin
i ¼ tmts

tm � ts
log

tm þ tq
ts þ tq

 !
; ð29Þ

corresponding to the moment at which the associated weight solution w	 changes from a stable
to unstable fixed point. In other words, values of ~t i < ~tmin

i would result in diminished learning,
as w is instead repelled away from its target value of w	. From Eq (29) it is clear that the free
parameter τq influences the stability of the learning rule, such that τq 2 [0,1) is mapped to a
minimum target timing of ~tmin

i 2 ½speak; 0Þ as illustrated in Fig 4 for τq � 40 ms. Therefore,

decreasing ~tmin
i with respect to its parameter τq should predictably lead to increased temporal

precision of the FILT rule. As stated in the previous section, we select τq = 10 ms for use in our
simulations: this corresponds to a value of ~tmin

i that is just under 3ms.
Summary. This subsection has analysed synaptic weight modifications driven by the INST

and FILT learning rules, based on single pre- and postsynaptic spiking for a single synapse. In
particular, FILT is predicted to provide convergence towards a stable and accurate solution in
most cases, which depends crucially on the magnitude of its filter time constant τq. By contrast,
the INST rule is predicted to give rise to less accurate solutions, and typically result in variable
firing activity due to fluctuations in the synaptic strength close to the postsynaptic neuron’s fir-
ing threshold. In fact, this instability is indicative of a key difference between the INST rule and
Pfister’s learning rule as defined by Eq (12): while postsynaptic spiking, post-training, under
Pfister’s rule would fluctuate around its target timing, INST would instead lead to fluctuating
spikes around a timing coinciding with the peak value of the PSP, independent of the target
time. Finally, it is noted that, for analytical tractability, these dynamical predictions for INST
and FILT have been made for single, rather than multiple, synapses. Hence, it shall be the aim
of the next section to explore the validity of these learning rules in larger network sizes through
numerical simulation.
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Simulations
This subsection presents results from computer simulations testing the performance of the
INST, FILT and E-learning rules. E-learning, henceforth referred to here as CHRON, is used in
our simulations, being an ideal benchmark against which our derived rules can be compared;
CHRON is ideal since it incorporates a mechanism for linking together target and actual post-
synaptic spikes, analogous to the proposed FILT rule in the sense that it accounts for the tem-
poral proximity of neighbouring postsynaptic spikes, as well as allowing for a very high
network capacity in terms of the maximum number of input patterns it can learn to memorise
[11]. It is worth noting that these three learning rules are essentially based on distinct spike
train error measures: the INST rule simply based on a momentary spike count error, the FILT
rule based on a smoothed vRD-like error function [25], and the CHRON rule based on an
adaptation of the VPD measure [12].

Network setup. In simulations, the network consisted of either one or multiple postsynap-
tic neurons receiving input spikes from a variable number ni of presynaptic neurons in a feed-
forward manner. The dynamics of the postsynaptic neuron’s membrane potential ui was
governed according to the SRM defined by Eq (1), and output spikes were instantly generated
when the neuron’s membrane potential reached the formal firing threshold ϑ; hence, we imple-
mented a deterministic adaptation of the stochastic neuron model presented in Eq (7), as
necessitated by the derived INST and FILT learning rules. The internal simulation time step
was taken as 0.1ms.

The synaptic weight between each presynaptic neuron j and the postsynaptic neuron i was
initialised randomly at the start of every simulation run, with wij values uniformly distributed
between 0 and 200/ni; as a result, the initial firing rate of the postsynaptic neuron was driven to
*1 Hz.

Input patterns were conveyed to the network by the collective firing activity of presynaptic
neurons, where a pattern consisted of a single spike at each neuron. Presynaptic spikes were
uniformly distributed over the pattern duration, and selected independently for each neuron.
The choice of single rather than multiple input spikes to form pattern representations proved

Fig 4. Theminimum target output firing time~t min
i , relative to an input spike time, that can accurately be

learned using the FILT rule, plotted as a function of the filter time constant τq. This figure makes

predictions based on a single synapse with an input spike at 0ms. At τq = 0 ms the minimum time~t min
i is

equivalent to speak, that is the lag time corresponding to the maximum value of the PSP kernel, and FILT
becomes equivalent to INST. As a reference, the value τq = 10 ms was selected for use in our computer
simulations, which was indicated to give optimal performance on preliminary runs.

doi:10.1371/journal.pone.0161335.g004
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to be more amenable to the subsequent analysis of gathered results. In all cases, an arbitrary
realisation of each pattern was used at the start of each simulation run, which was then held
fixed thereafter. By this method, a total number p of unique patterns were generated. Patterns
were generated with a duration T = 200 ms, that is approximately the time-scale of sensory pro-
cessing in the nervous system.

General learning task. The postsynaptic neuron was trained to reproduce an arbitrary tar-
get output spike train in response to each of the p input patterns through synaptic weight mod-
ifications in the network, using either the INST, FILT or CHRON learning rules. In this way,
the network learned to perform precise temporal encoding of input patterns. During training,
all p input patterns were sequentially presented to the network in batches, where the comple-
tion of a batch corresponded to one epoch of learning. Resulting synaptic weight changes com-
puted for each of the individually presented input patterns (or each trial) were accumulated,
and applied at the end of an epoch.

The learning rate used for the rules was by default η = 600/(ni ns p), which scaled with the
number of presynaptic neurons ni, target output spikes ns and patterns p; any exceptions to this
are specified in the main text. As shall be shown in our simulation results, it was indicated that
all of the learning rules shared a similar, optimal value for the learning rate.

Performing a single input-output mapping. For demonstrative purposes, we first applied
the INST and FILT learning rules to training the network to perform a mapping between a sin-
gle, fixed input spike pattern and a target output spike train containing four spikes. The net-
work contained 200 presynaptic neurons, and the target output spikes were equally spaced out
with timings of 40; 80; 120; 160ms. These wide separations were selected to avoid excessive
nonlinear accumulation of error due to interactions between postsynaptic spikes during learn-
ing. Simulations for the learning rules were run over 200 epochs, where each epoch corre-
sponded to one, repeated, presentation of the pattern. Hence, a single simulation run reflected
40s of biological time.

Shown in Fig 5A is a spike raster of an arbitrarily generated input pattern, consisting of a sin-
gle input spike at each presynaptic neuron. In this example, two postsynaptic neurons were
tasked with transforming the input pattern into the target output spike train through synaptic
weight modifications, as determined by either the INST or FILT learning rule. From the actual
output spike rasters depicted in panel B, it can be seen that both postsynaptic neurons learned to
rapidly match their target responses during learning. Despite this, persistent fluctuations in the
timings of actual output spikes were associated with just the INST rule, while the FILT displayed
stability over the remaining epochs. Finally, panel C shows the accuracy of each learning rule,
given as the average vRD (see Eq (21)) plotted as a function of the number of learning epochs.
With respect to the INST rule, it can be seen the vRD failed to reach zero and was subject to a
high degree of variance, as reflected by the corresponding spike raster in panel B; its final, conver-
gent vRD value was 0.2 ± 0.2, that is an output spike timing error of around 1ms with respect to
its target. By contrast, the FILT rule’s vRD value rapidly approached zero, and was subject to
much less variation during the entire course of learning (final vRD value was 0.02 ± 0.05).

Synaptic weight distributions. Shown in Fig 6 are the distributions of synaptic weights
before and after network training for the INST and FILT learning rules, corresponding to the
same experiment of Fig 5. In plotting Fig 6, synaptic weights were sorted in chronological
order with respect to their associated presynaptic firing times; for example, the height of a bar
at 40ms reflects the average value of a synaptic weight from a presynaptic neuron which trans-
mitted a spike at 40ms. The gold overlaid lines correspond to the previously defined target out-
put spike timings of 40; 80; 120; 160ms.

From this figure, panel A illustrates the uniform distribution of synaptic weights used to
initialise the network before any learning took place, which had the effect of driving the initial
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postsynaptic firing rate to*1 Hz. Panels B and C show the distribution of synaptic weights at
the end of learning, when the INST and FILT rules were respectively applied. From these two
panels, a rapid increase in the synaptic weight values preceding the target output spike timings
can be seen, which then proceeded to fall off. Comparatively, the magnitude of weight change
was largest for the INST rule, with peak values over three times that produced by FILT. Fur-
thermore, only the INST rule resulted in negatively-valued weights, which is especially notice-
able for weights associated with input spikes immediately following the target output spike
timings. In effect, these sharp depressions offset the relatively strong input drive received by
the postsynaptic neuron just before the target output spike timings, which is indicative of the
unstable nature of the INST learning rule. By contrast, the FILT rule led to a ‘smoother

Fig 5. Two postsynaptic neurons trained under the proposed synaptic plasticity rules, that learned to
map between a single, fixed input spike pattern and a four-spike target output train. (A) A spike raster of
an arbitrarily generated input pattern, lasting 200ms, where each dot represents a spike. (B) Actual output spike
rasters corresponding to the INST rule (left) and the FILT rule (right) in response to the repeated presentation of
the input pattern. Target output spike times are indicated by crosses. (C) The evolution of the vRD for each
learning rule, taken as a moving average over 40 independent simulation runs. The shaded regions show the
standard deviation.

doi:10.1371/journal.pone.0161335.g005
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landscape’ of synaptic weight values, following a periodic pattern when plotted in chronologi-
cal order.

Impact of the learning rate. In this experiment we explored the dependence of each rule’s
performance on the learning rate parameter η in terms of the spike-timing accuracy of a
trained postsynaptic neuron, measured using the vRD. The primary objective was to establish
the relative sensitivity of each rule to large values of η, and secondly to establish a value of η
which provided a suitable trade-off between learning speed and final convergent accuracy.
Here we first include the E-learning CHRON rule proposed by [11], to provide a benchmark
for the INST and FILT rules. With respect to the experimental setup, the network consisted of
200 presynaptic neurons and a single postsynaptic neuron, and was tasked with learning to

Fig 6. Averaged synaptic weight values before and after network training, corresponding to the same
experiment of Fig 5. The input synaptic weight values are plotted in chronological order, with respect to their
associated firing time. (A) The distribution of weights before learning. (B) Post training under the INST rule. (C)
Post training under the the FILT rule. The gold coloured vertical lines indicate the target postsynaptic firing
times. Note the different scales of A, B and C. Results were averaged based on 40 independent runs. The
design of this figure is inspired from [9].

doi:10.1371/journal.pone.0161335.g006
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map a total of 10 different input patterns to the same, single target output spike with a timing
of 100ms. In this case learning took place over 500 epochs.

As shown in Fig 7 it is clear that the INST rule was most sensitive to changes in the learning
rate, with an average vRD value 2.5× that of FILT for the largest learning rate value η = 1. The
least sensitive rule turned out to be CHRON, which still managed to maintain an average vRD
value close to zero when plotted up to the maximum value of η. Interestingly, all three distance
plots displayed the same general trend over the entire range of learning rates considered: there
was a rapid decrease for small η values, followed by a plateau up to around η = 0.5, and then a
noticeable increase towards the end. The large distance values for small η related to a lack of
convergence in learning by the postsynaptic neuron after being trained over 500 epochs.

To summarise, these results support our choice of an identical learning rate for all three
learning rules as used in the subsequent learning tasks of this section. Additional, more exhaus-
tive parameter sweeps from further simulations conclusively demonstrated that the learning
rates for all three learning rules shared the same inverse proportionality with the number of
presynaptic neurons, patterns and target output spikes. This corresponded to an optimal value
of η = 0.3 ± 0.1 in Fig 7.

Classifying spike patterns. An important characteristic of a neural network is the maxi-
mum number of patterns it can learn to reliably memorise, as well the time taken to train it.
Therefore, we tested the performance of the network on a generic classification task, where
input patterns belonging to different classes were identified by the precise timings of individual
postsynaptic spikes. We first determine the performance of a network when trained to identify
separate classes of input patterns based on the precise timing of a single postsynaptic spike, and
then later consider identifications based onmultiple postsynaptic spike timings. In this experi-
ment, the network contained a single postsynaptic neuron, and was trained using either the
INST, FILT or CHRON learning rule for comparison purposes.

The network was tasked with learning to classify p arbitrarily generated input patterns into
five separate classes through hetero-association: an equal number of patterns were randomly
assigned to each class, and all patterns belonging to the same class were identified using a

Fig 7. The vRD as a function of the learning rate η for each learning rule. The E-learning CHRON rule of
[11] is included as a benchmark for the INST and FILT rules. In every instance, a network containing 200
presynaptic neurons and a single postsynaptic neuron was tasked with mapping 10 arbitrary input patterns to
the same target output spike with a timing of 100ms. Learning took place over 500 epochs, and results were
averaged over 40 independent runs. In this case, error bars show the standard error of the mean rather than
the standard deviation: the vRD was subject to very high variance for large η values, therefore we considered
just its average value and not its distribution.

doi:10.1371/journal.pone.0161335.g007
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shared target output spike timing. Hence, an input pattern was considered to be correctly iden-
tified if the postsynaptic neuron responded by firing just a single output spike that fell within
Δt of its required target timing. The value of Δt was varied depending on the level of temporal
precision desired, with values selected from the range Δt 2 (0, 5] ms corresponding to the typi-
cal level of spike timing precision as has been observed in the brain [5]. For each input class a
target output spike time was randomly generated according to a uniform distribution that ran-
ged in value between 40 and 200ms; the lower bound of 40ms was enforced, given previous evi-
dence indicating that smaller values are harder to reproduce by an SNN [9, 11]. To ensure
input classes were uniquely identified, target output spikes were distanced from each other by a
vRD of at least 0.5, corresponding to a minimum timing separation of 7ms.

Shown in the left column of Fig 8 is the performance of a network containing either 200,
400 or 600 presynaptic neurons, as a function of the number of input patterns to be classified.
In this case, we took Δt = 1 ms as the required timing precision of a postsynaptic spike with
respect to its target, for each input class. To quantify the classification performance of the net-
work, we defined a measure Pc which assumed a value of 100% in the case of a correct pattern
classification, and 0% otherwise. Hence, in order to determine the maximum number of pat-
terns memorisable by the network, we took an averaged performance level hPci > 90% as our
cut-off point when deciding whether all of the patterns were classified with sufficient reliability;
this criterion was also used to determine the minimum number of epochs taken by the network
to learn all the patterns, and is plotted in the right column of this figure. Epoch values not plot-
ted for an increased number of patterns reflected an inability of the network to learn every pat-
tern within 500 epochs.

As expected, Fig 8 demonstrates a decrease in the classification performance as the number
of input patterns presented to the network was increased, with a clear dependence on the num-
ber of presynaptic neurons contained in the network. For example, a network trained under
INST was able to classify 15, 30 and 40 patterns at a 90% performance level when containing
200, 400 and 600 presynaptic neurons, respectively. The number of input patterns memorised
by a network can be characterised by defining a load factor α≔ p/ni, where p is the number of
patterns presented to a network containing ni presynaptic neurons [26]. Furthermore, themax-
imum number of patterns memorisable by a network can be quantified by its memory capacity
αm≔ pm/ni, where pm is the maximum number of patterns memorised using ni synapses.
Hence, using 90% as the cut-off point for reliable pattern classifications, we found the INST
rule had an associated memory capacity of αm = 0.07 ± 0.01. By comparison, the memory
capacities for the FILT and CHRON rules were 0.14 ± 0.01 and 0.15 ± 0.01, respectively, being
around twice the capacity of that determined for INST. Beyond these increased memory capac-
ity values, networks trained under FILT or CHRON were capable of performance levels very
close to 100% when classifying a relatively small number of patterns; by contrast, the maximum
performance level attainable under INST was just over 95%, and was subject to a relatively
large variance of around 5%. Finally, it is evident from this figure that both FILT and CHRON
shared roughly the same performance levels over the entire range of input patterns and net-
work structures considered. In terms of the time taken to train the network, both FILT and
CHRON were equally fast, while INST was typically slower than the other rules by a factor of
between three and four. This difference in the training time became more pronounced as both
the number of input patterns and presynaptic neurons were increased.

Memory capacity. We now explore in more detail the memory capacity αm supported
under each learning rule, specifically with respect to its dependence on the output spike timing
precision Δt used to identify input patterns. In determining the memory capacity as a function
of the timing precision, we used the same experimental setup as considered previously for
Δt = 1 ms, but extended to also consider values of Δt between 0.2 and 5ms (equally spaced in
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increments of 0.2ms). As before, we assumed the maximum number of patterns memorisable
by the network as those that were classified with a corresponding averaged classification per-
formance hPci of at least 90% within 500 epochs.

From Fig 9 it can be seen that the memory capacity provided by each learning rule increased
with the size of the timing precision, which eventually levelled off for values Δt> 3 ms. It is
also clear that the trend for the FILT rule is consistent with that for CHRON over the entire
range of timing precision values considered, while the INST rule gave rise to the lowest mem-
ory capacities. For values Δt< 2 ms the difference in memory capacity between INST and

Fig 8. The classification performance of each learning rule as a function of the number of input patterns
when learning to classify p patterns into five separate classes. Each input class was identified using a
single, unique target output spike timing, which a single postsynaptic neuron had to learn to match to within
1ms. Left: The averaged classification performance hPci for a network containing ni = 200, 400 and 600
presynaptic neurons. Right: The corresponding number of epochs taken by the network to reach a performance
level of 90%. More than 500 epochs was considered a failure by the network to learn all the patterns at the
required performance level. Results were averaged over 20 independent runs, and error bars show the
standard deviation.

doi:10.1371/journal.pone.0161335.g008
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FILT was most pronounced, to the extent that INST was incapable of memorising any input
patterns for Δt< 0.8 ms. By contrast, FILT still maintained a memory capacity close to 0.07
when classifying patterns based on ultra-precise output spike timings of within 0.2ms. As a val-
idation of our method, we note that our measured memory capacity for CHRON at a timing
precision of 1ms is in close agreement with that determined originally in Fig 9A of [11]: with a
value close to 0.15 after 500 epochs of network training.

Multiple target output spikes. Finally, we examine the performance of the learning rules
when input patterns are identified by the timings ofmultiple postsynaptic spikes. In this case,
the network contained 200 presynaptic neurons and a single postsynaptic neuron, and was
trained to classify a total of 10 input patterns into five separate classes, with two patterns
belonging to each class. Both patterns belonging to a class were identified by the same target
output spike train; hence, a correct pattern classification was considered when the number of
actual output spikes fired by the postsynaptic neuron matched the number of target output
spikes, and every actual spike fell within Δt of its respective target. For each input class, target
output spikes were randomly generated according to a uniform distribution bound between 40
and 200ms, as used previously. A minimum inter-spike interval of 10ms was enforced to mini-
mise interactions between output spikes. To ensure input classes were uniquely represented,
generated target output spike trains were distanced from one another by a vRD of at least ns/2,
where ns was the number of spikes contained in a target train.

Shown in Fig 10 is the performance of the network trained under each learning rule when
classifying input patterns based on the precise timings of between one and five target output
spikes, with a timing precision Δt = 1 ms. Because the learning rate was inversely proportional
to the number of target spikes, we extended the maximum number of epochs to 1000 to ensure
the convergence of each rule. As can be seen in this figure, the performance dropped as the
number of output spikes increased, and most noticeably for the INST rule which returned a
minimum performance value approaching 0% when patterns were identified using five output
spikes. By comparison, the CHRON rule gave rise to the highest performance levels over the
entire range of output spikes tested, closely followed by the FILT rule. If we count the maxi-
mum number of output spikes learnable by the network above a 90% performance level, we
obtain one, three and four output spikes for INST, FILT and CHRON, respectively, where the

Fig 9. Thememory capacity αm of each learning rule as a function of the required output spike timing
precision. The network contained a single postsynaptic neuron, and was trained to classify input patterns
into five separate classes within 500 epochs. Memory capacity values were determined based on networks
containing ni = 200, 400 and 600 presynaptic neurons. Results were averaged over 20 independent runs.

doi:10.1371/journal.pone.0161335.g009
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associated number of training epochs in each instance is plotted in the right panel of the figure.
From this, it is observed that CHRON was fastest in training the network to learn multi-spike
based pattern classifications, closely followed by FILT and finally INST.

Summary. Taken together, the experimental results of this section demonstrate a similar-
ity in the performance between the FILT and CHRON rules under most circumstances, except
when applied to learning multiple target output spikes for which the CHRON rule was best
suited. The INST rule, however, performed worst in all cases, and in particular displayed diffi-
culties when classifying input patterns with increasingly fine temporal precision. This disparity
between INST and the other two rules is explained by its unstable behaviour, since it essentially
fails to account for the temporal proximity of neighbouring target and actual postsynaptic
spikes. As was predicted in our earlier analysis, this instability gave rise to fluctuating postsyn-
aptic spikes close to their target timings (see Fig 5). Hence, it is evident that exponentially filter-
ing postsynaptic spikes in order to drive more gradual synaptic weight modifications confers a
strong advantage when temporally precise encoding of input patterns is desired.

From the experiment concerning pattern classifications based on multiple output spike tim-
ings, it was found for each of the learning rules that the performance decreased with the num-
ber of target output spikes. This is not surprising given that the network needed to match every
one of its targets with the same level of temporal precision, effectively increasing the synaptic
load of the network during learning. Qualitatively, these results are consistent with those found
in [11] for the E-learning CHRON rule.

Discussion
We have studied the conditions under which supervised synaptic plasticity can most effectively
be applied to training SNN to learn precise temporal encoding of input patterns. For this pur-
pose, we have derived two supervised learning rules, termed INST and FILT, and analysed the
validity of their solutions on several, generic, input-output spike timing association tasks. We
have also tested the proposed rules’ performance in terms of the maximum number of spatio-
temporal input patterns that a trained network can memorise per synapse, with patterns identi-
fied based on the precise timing of an output spike emitted by a postsynaptic neuron; this

Fig 10. The classification performance of each learning rule as a function of the number of target output
spikes used to identify input patterns. The network was tasked when classifying 10 input patterns into 5
separate classes. Correct classifications were considered when the number of actual output spikes fired by a
single postsynaptic neuron matched that of its target, and each actual spike fell within 1ms of its corresponding
target timing. In this case, a network containing 200 presynaptic neurons was trained over an extended 1000
epochs to allow for decreased learning speed, and results were averaged over 20 independent runs.

doi:10.1371/journal.pone.0161335.g010
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experiment was designed to reflect the experimental observations of biological neurons which
utilise the relative timing of their output spike for stimulus encoding [2, 3]. In order to bench-
mark the performance of our proposed rules, we also implemented the previously established
E-learning CHRON rule. From our simulations, we found FILT approached the high perfor-
mance level of CHRON: relating to its ability to smoothly converge towards stable, desired
solutions by account of its exponential filtering of postsynaptic spike trains. By contrast, INST
consistently returned the lowest performance, which was underpinned by its tendency to result
in fluctuations of emitted postsynaptic spikes near their target timings.

Essentially, weight changes driven by the INST and FILT rules depend on a combination of
two activity variables: a postsynaptic error term to signal appropriate output responses, and a
presynaptic eligibility term to capture the coincidence of input spikes with the output error.
INST and FILT differ, however, with respect to their postsynaptic error term: while INST relies
on the instantaneous difference between target and actual output spike trains, FILT instead
relies on the smoothed difference between exponentially filtered target and actual output spike
trains. Despite this, both rules share the same presynaptic eligibility term, that is the PSP
evoked due to an input spike. In our analysis, the PSP was determined as a suitable presynaptic
factor, whereas the structurally similar SPAN and PSD rules instead rely on an arbitrarily
defined presynaptic kernel that is typically related to the neuron’s postsynaptic current [9, 10].
Interestingly, in the authors’ analysis of the SPAN rule an α-shaped kernel was indicated as
providing the best performance during learning, which closely resembles the shape of a PSP
curve as used here.

In our analysis of single synapse dynamics (see Results section), we predicted the FILT rule
to provide convergence towards a stable and desired synaptic weight solution, offering an
explanation for its high performance as tested through subsequent simulations in large net-
work sizes. The key advantage of the FILT rule is its ability to signal not just the timings of
desired or erroneous postsynaptic spikes, but also their temporal proximity with other postsyn-
aptic spikes as measured via their convolution with an exponential kernel; in this way, the FILT
rule is able to smoothly align emitted postsynaptic spikes with their respective targets by avoid-
ing unstable synaptic weight changes. This operation is roughly analogous to one used by the
E-learning CHRON rule, which includes a distinct mechanism for carefully shifting actual
postsynaptic spikes towards their neighbouring targets, making it a highly efficient spike-based
neural classifier [11]. The FILT and CHRON rules differ, however, in terms of their implemen-
tation: while FILT can potentially be implemented as an online-based learning method for bio-
logical realism, CHRON is restricted to offline learning, given that it depends on discrete
summations over cost functions that are non-local in time as derived from the VPD measure.
Comparatively, the INST rule was predicted to provide imperfect and unstable convergence
during learning, which we attributed to its inability to effectively account for neighbouring tar-
get and actual postsynaptic spikes.

Computer simulations were run to test the performance of the INST and FILT rules in
terms of their temporal encoding precision in large network sizes, including the E-learning
CHRON rule for comparison purposes. We found FILT and CHRON were consistent with
each other performance-wise, and largely outperformed INST. It is worth pointing out, how-
ever, that FILT is more straightforward to implement than CHRON, since it avoids the added
complexity of having to establish whether target and actual postsynaptic spikes are indepen-
dent of each other or not based on the VPD measure [11]. By comparison, INST is the simplest
rule to implement, but comes at the cost of significantly decreased spike timing precision.

On all these learning tasks neurons were trained to classify input patterns using the precise
timings of output spikes; an alternative and more practical method for classifying patterns
might instead take the minimum distance between target and actual output spike trains in
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order to discriminate between different input classes, which would more effectively counteract
misclassifications in the case of input noise [17]. In this work, however, we adopted a classifica-
tion method based on the precise timings of output spikes for the sake of consistency with
more directly related previous studies [9–11], and to more thoroughly compare the relative
performance of each learning rule with respect to the precision of their temporal encoding.

Related Work
In our approach, we started by taking gradient ascent on an objective function for maximising
the likelihood of generating desired output spike trains, based on the statistical method of [14];
this method is well suited to our analysis, especially since it has been shown to have a unique
global maximum that is obtainable using a standard gradient ascent procedure [23]. Next, we
substituted the stochastic spiking neuron model used during the derivation with a determin-
istic LIF neuron model, such that output spikes were instead restricted to being generated upon
crossing a fixed firing threshold. In this way, the resulting INST and FILT rules have a reason-
ably strong theoretical basis, rely on intrinsic neuronal dynamics, and further still allow for the
efficient learning of desired sequences of precisely-timed output spikes. By comparison, most
previous approaches to formulating supervised learning rules for SNN have relied on heuristic
approximations, such as adapting the Widrow-Hoff rule for use with spiking neuron models
[9, 10, 27], or mapping from Perceptron to spike-based learning [24, 28]. Moreover, although
the well known (ReSuMe) [27] can more rigorously be reinterpreted as a gradient descent
learning procedure [29], assumptions are still made regarding the functional dependence of
weight changes on the relative timing differences between spikes, for the purposes of mimick-
ing a Hebbian-like STDP rule [21].

According to the study of [13], the upper limit on the number of input-output pattern trans-
formations a spiking neuron can learn to memorise falls between 0.1 and 0.3 per synapse,
based on single target output spikes. In establishing this maximal capacity estimate, the authors
of this study applied an idealised HTP learning method, such that the firing times of the trained
neuron were enforced at its target timings. From Fig 9, we determined the FILT and CHRON
rules to approximately share the same memory capacity, with measured values between 0.15
and 0.2 for required timing precisions larger than 1ms; hence, the capacities afforded by these
two rules can be regarded as approaching maximal values. By contrast, the INST rule only
remained competitive with FILT and CHRON for relatively large values of the required timing
precision, with values of at least*3 ms. It is noted that our capacity measurements here do
not reflect upper estimates; in our approach, networks were trained over a maximum of 500
epochs to also test the rapidity of learning, whereas previous studies have trained networks, for
instance using E-learning CHRON, over up to two orders of magnitude increased duration
[11, 30].

The authors of [13] also presented an FP learning rule that more realistically depends on
intrinsic neuronal dynamics, unlike their HTP method. As discussed previously, the FP rule is
essentially an INST-like method, in the sense that weight updates depend on an instan-
taneously communicated error signal. However, FP differs by just taking into account the first
error during learning in each trial. The FP rule has been shown to provide a high memory
capacity that is comparable with HTP, as well as having been proven to converge towards a sta-
ble solution in finite time. By comparison, our results have demonstrated reduced performance
for INST, and in particular for small values of the required timing precision, Δt. Despite this,
our INST has the potential for being implemented as a fully online method in simulations,
unlike FP which must be immediately shut down upon encountering the first error during a
trial. It would be interesting to explore an online implementation of FP learning for increased
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biological plausibility, while maintaining its high performance by minimising nonlinear inter-
actions between output error signals. Realistically, this might be realised by introducing a
refractory effect in the neuron’s error signals [13].

It is highlighted that the INST and FILT rules are capable of learningmultiple target output
spikes; this is an important feature of any spike-based learning rule, and makes them more bio-
logically relevant considering that precise spike timings represent a more fundamental unit of
computation in the nervous system than that of lengthier firing rates [1]. Multi-spike learning
rules are a natural progression from single-spike rules, such as from the original SpikeProp
algorithm which is restricted to learning single-spike target outputs [31], and the Tempotron
which is only capable of learning to either fire or not-fire an output spike [26].

Biological Plausibility
Out of the rules studied here, we believe FILT matches most criteria to be considered of biologi-
cal relevance: first, weight updates depend on pre- and postsynaptic activity variables that are
locally available at each synapse. Second, its postsynaptic error term is communicated by a
smoothly decaying signal that is based on the difference between filtered target and actual out-
put spikes, which might arise from the concentration of a synaptic neuromodulator influenced
by backpropagated action potentials [32]. Finally, it is implementable as an online learning
method, which is important when considering how information is most likely processed con-
tinuously by the nervous system.

As with most existing learning rules for SNN, the proposed rules depend on the presence of
a supervisory signal to guide synaptic weight modifications. A possible explanation for super-
vised learning might come from so termed ‘referent activity templates’, or spike patterns gener-
ated by neural circuits existing elsewhere in the brain, which are to be mimicked by circuits of
interest during learning [33, 34]. A detailed model of supervised learning in SNN has recently
been proposed by [35], providing a strong mechanistic explanation for how such referent activ-
ity templates might be used to drive the learning of desired postsynaptic activity patterns. Spe-
cifically, this method has utilised a compartmental model, simulating the somatic and
dendritic dynamics of a stochastic spiking neuron, such that the neuron’s firing activity is
determined by integrating its direct input from somatic synapses with its network input via
dendritic synapses. In this way, the neuron’s firing activity can be directly ‘nudged’ towards
some desired pattern via its somatic input (or template pattern), while plasticity at its dendritic
synapses takes care of forming associations of this target activity pattern with input patterns
that are simultaneously presented to the network. The INST and FILT synaptic plasticity rules
here can in principle be implemented based on this compartmental model for increased biolog-
ical realism.

A more recent study [30] has also drawn inspiration from such an associative learning para-
digm, culminating in a synaptic plasticity rule that works to maintain a neuron’s membrane
potential below its firing threshold during learning, termed MPDP. Essentially, MPDP is an
unsupervised learning rule, and by itself is used to train a neuron to remain quiescent in
response to input activity. However, if MPDP is also combined with strong synaptic input,
delivered from an external source, that is briefly injected into a trained neuron at its desired fir-
ing timings, then the rule instead functions as a supervised one. Similarly to the study by [35],
MPDP demonstrates how the supervised learning of precisely timed spikes in an SNN can arise
in a biologically meaningful way.

A final possibility, and one that is gaining increasing interest, is that supervised signalling
might actually reflect a form of reinforcement-based learning, but operating on a shorter time-
scale. Several, biologically meaningful learning rules have been proposed based on reward-
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modulated synaptic plasticity [16, 36, 37], including a reimplementation of Elman backpropa-
gation [38], and in our previous work we have successfully demonstrated how reinforcement
learning can be applied to learning multiple, and precisely timed, output spikes [20].

Conclusions
In this paper, we have addressed the scarcity of existing learning rules for networks of spiking
neurons that have a theoretical basis, and which allow for the learning ofmultiple and pre-
cisely-timed output spikes. In particular, we have shown our proposed FILT rule, which is
based on exponentially filtered output spike trains, to be a highly efficient, spike-based neural
classifier. Classifiers based on a temporal code are of interest since they are theoretically more
capable than those using a rate-based code when processing information on rapid time-scales.

In our analysis, we have restricted our attention to relatively small network sizes when test-
ing the performance of the proposed learning rules. Our main intention, though, was to explore
their potential for driving accurate synaptic weight modifications, rather than the scaling of
their performance with an increasing number of input synapses. However, it would be of
increased biological significance to test the performance of a learning method as applied to a
much larger network size: containing on the order of 104 synapses per neuron as is typical in
the nervous system. Practically, this could well be achieved via implementation in neuro-
morphic hardware, such as the massively-parallel computing architecture of SpiNNaker [39].
As a starting point, the simplistic INST rule could be implemented in SpiNNaker, representing
an achievable, and exciting, aim for future work [40].

Supporting Information
S1 Text. We demonstrate convergence of the gradient ascent procedure of Eq (12) when
based instead on intrinsic neuronal dynamics, under certain conditions.
(PDF)
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