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Abstract: Leucine-rich-repeats (LRRs) belong to an archaic procaryal protein architecture that is widely
involved in protein–protein interactions. In eukaryotes, LRR domains developed into key recognition
modules in many innate immune receptor classes. Due to the high sequence variability imposed
by recognition specificity, precise repeat delineation is often difficult especially in plant NOD-like
Receptors (NLRs) notorious for showing far larger irregularities. To address this problem, we
introduce here LRRpredictor, a method based on an ensemble of estimators designed to better identify
LRR motifs in general but particularly adapted for handling more irregular LRR environments, thus
allowing to compensate for the scarcity of structural data on NLR proteins. The extrapolation capacity
tested on a set of annotated LRR domains from six immune receptor classes shows the ability of
LRRpredictor to recover all previously defined specific motif consensuses and to extend the LRR motif
coverage over annotated LRR domains. This analysis confirms the increased variability of LRR motifs
in plant and vertebrate NLRs when compared to extracellular receptors, consistent with previous
studies. Hence, LRRpredictor is able to provide novel insights into the diversification of LRR domains
and a robust support for structure-informed analyses of LRRs in immune receptor functioning.

Keywords: leucine-rich repeat prediction; supervised learning; LRR motif; LRR structure; NOD-like
receptors; R proteins

1. Introduction

The leucine-rich-repeat (LRR) domains are present in all of the tree of life branches. As they are
involved in protein–protein interactions, LRR domains are found in receptors having a vast number of
functions such as pathogen detection, immune response propagation, hormone perception, enzyme
inhibition, or cell adhesion [1]. In both plants and mammals, a number of studies have detailed
adverse effects associated with mutations in the LRR domains such as that reported for various
immune-related receptors, resulting in compromised functions and enhanced disease progression [2].
For example, mutating a single residue in the LRR domain of the rice Pita receptor results in
complete loss of recognition against the fungus Magnaporthe grisea [3] while mutations in the metazoan
NLRC4-LRR contributes to autoinflammatory disease phenotypes [4]. Additionally, mutations in the
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LRRK2 kinase enzyme, lead to Parkinson’s disease and other associated inflammatory diseases [5,6],
whereas mutations in leucine-rich proteoglycans have been previously shown to be involved in
osteoarthritis [7], and last but not least PRELP mutations might have a role in Hutchinson–Gilford,
an accelerated progeroid syndrome characterized by premature aging [8]. Hence, understanding the
structural aspects of binding properties and specificities of LRR domains opens wide possibilities for
receptor engineering with vast implications not only for improved crop resistance to plant diseases,
but also for a wide range of medical applications.

In innate immunity, LRR modules are found in various domain organizations in many receptor
classes such as plant receptor-like kinases (RLK), receptor-like proteins (RLP), NOD-like receptors
(NLR), or metazoan NLR and Toll-like receptors (TLR). In plant basal immunity, LRR N-terminal
domains face the extracellular environment and are found in either receptor-like kinases (RLK) or
receptor-like proteins (RLPs) depending on the presence or absence of a C-terminal kinase domain on
the cytosolic side of the receptor. By contrast, LRRs constitute the C-terminal domains of intracellular
NOD-like receptors (NLR), also known as resistance (R) proteins, and face the cytosolic environment to
mediate resistance against specific pathogens. Depending on their N-terminal domain, which is either a
coiled-coil (CC) or a toll-like receptor domain (TIR), R proteins fall into two main NLR classes: the CNL
and TNL receptors, respectively [9]. Both these classes contain however a central nucleotide binding
domain (NBS) which acts as a ‘switch’ that changes its conformation upon ADP/ATP binding [9,10].
Metazoan NLRs show a similar organization with plant NLRs. They encode a variety of N-terminal
‘sensors’ (caspase activation and recruitment domains—CARD, baculovirus inhibitor of apoptosis
repeat—BIR, etc.), the central ‘switch’ STAND domain (signal transduction ATPases with numerous
domains) - NBS/NACHT domain (NAIP (neuronal apoptosis inhibitory protein), CIITA (MHC class
II transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1
(telomerase-associated protein)) and the LRR domain at the C-terminal end. Last but not least, we
mention here the metazoan toll-like receptors (TLRs) that have an extracellular LRR sensor domain as
seen in the RLK/RLP case and a TIR domain on the cytosolic side involved in signal transduction [11].

From a structural point of view LRR domains have a solenoidal ‘horseshoe’ like 3D architecture
composed of a variable number of repeats varying each from ≈15 to ≈30 amino acids in length. Repeats
are held together through a network of hydrogen bonds which forms a beta sheet located on the ventral
side of the ‘horseshoe’. This is generated by a conserved sequence pattern named the LRR motif that
in its minimal form is of the type ‘LxxLxL’ where L is generally leucine and to a lesser degree other
hydrophobic amino acids [12]. Comprehensive sequence analysis of LRR immune receptors resulted in
several classifications of LRR domains showing preferred amino acid conservation outside the minimal
motif such as the two type classification proposed by Matsushima et al. [13] for TLR receptors or the
seven type classification proposed by Kobe and Kajava [14] for all known LRR domains across all
Kingdoms. However, exceptions to such rules are frequent as revealed by the Hidden Markov Model
approach carried out by Ng et al. [15]. This highlighted the fact that most of the analyzed classes
of human proteins containing LRR domains also display many irregular motifs alongside repeats
showing the well-defined class specific motif [15].

While the above mentioned receptor classes were shown to present LRR irregularities [15],
studies on plant NLR proteins such as Lr10 and Pm3 from wheat, Rx1 and Gpa2 from potato, or ZAR1
from Arabidopsis show that their LRR domains have a far more variable and irregular structure than
their extracellular counterparts [16–22]. These factors combined contribute to the challenge for the
accurate prediction of LRR motifs in plant NLRs.

A proper annotation of each LRR motif in a given LRR domain is instrumental in generating
an accurate 3D model [12,23] and by this in properly defining the domain surface and identifying
potential protein–protein interaction interfaces. An illustrative example is the conservation mapping
performed by Helft et al. in 2011, which was used to identify new interaction partners of plant RLPs
and RLKs by studying conserved 3D relationships among amino acids inferred from annotation of
LRR repeats [24].
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Based on our previous work, identifying the individual true motifs in a LRR domain is hindered
by the following: (a) in its minimal form, a ‘LxxLxL’ pattern is trivial and frequently occurs randomly
in any protein; (b) in many cases several ‘LxxLxL’ patterns do overlap in less than 15 aa range in
NLR-LRRs making the precise delineation difficult; (c) the number of 3D experimental structures
from which to learn is low; and (d) this small 3D learning set is class and phyla biased—as around
half of the structures are of mammalian origin while plant NLRs only have one recently documented
structure [21,22].

Thus, given the above described indeterminacies the precise LRR motif identification becomes the
most problematic step in the correct repeat delineation within a LRR domain. This also explains why
LRR domains and their individual repeats are poorly annotated in genomes or protein databases in
contrast to the better annotated, relatively more conserved NBS domain, which has therefore been
used in phylogenetic analyses [10,25]. Hence, these major limitations hamper the study of NLRs at
various levels such as in the context of plant innate immunity. To address these challenges, in this
paper we propose a new LRR motif detection method: LRRpredictor, designed to be more sensitive
to motif irregularities than the existing methods like LRRfinder [26] or LRRsearch [27] and to detect
irregular and short LRR signatures as are often found in plant NLRs, but not limited to this class.

We assessed how LRRpredictor behaves within different classes of immune-related receptors that
contain LRR domains, such as plant NLRs, RLPs, and RLKs and vertebrate NLRs and TLRs with the
aim to provide novel insights into the diversification of LRR domains and their role in the functioning
of immune receptors.

2. Materials and Methods

2.1. Assembly and Analysis of the LRR Structural Dataset

Various protein domain databases, such as CATH [28], Pfam [29], and Interpro collection [30] were
used to obtain a dataset of 611 structure files of proteins annotated to contain LRR domains. These files
were processed and filtered out to extract a clean set of LRR chains sharing less than 90% sequence
identity using Pisces server [31]. This set containing 178 LRR chains were visually inspected and
subjected to LRR repeat delineation based on the distinctive LRR ventral beta-sheet secondary structure
pattern. Annotated LRR domains consisting in less than five LRR repeats, as well as incomplete repeats
not covering at least five amino acids upstream and downstream of the “LxxLxL” minimal motif were
further eliminated.

Using this procedure, we generated the 90% identity data set, ID90, consisting of 172 N-ter LRR
‘entry’ repeats (N), 1792 LRR ‘core’ repeats (L), and 154 C-ter LRR ‘exit’ repeats (C) (File S1). To avoid
redundancy in the training data the level of identity has to be further significantly reduced. However,
given the small size of ID90 (<180 chains), a trade-off between increase in entropy and loss of data had
to be reached. As seen from Figure A1a, a proper inflection point shapes up at around 50% identity
and was considered the best compromise in generating a nonredundant set of repeats. In practical
terms, the nonredundant ID50 set was generated from ID90 by selecting repeats showing less than
eight identical amino acids on a 16 amino acid window centered on the ‘LxxLxL’ minimal LRR motif,
i.e., the window comprising five amino acids upstream and downstream ‘LxxLxL’. This nonredundant
ID50 set was comprised of 106 N-ter ‘entry’ repeats (N), 659 ‘core’ repeats (L), and 88 C-ter ‘exit’ repeats
(C), i.e., ≈40% of the 90ID set (Figure 1, File S1).

Jensen–Shannon divergence (JSD) scores (Figure 1e) were computed using Capra et al.
implementation [32], using the BLOSUM62 matrix for background probabilities and a window
parameter 0. The phyla distribution shown in Figure 1c was computed using the Environment for Tree
Exploration (ETE3) library v3.1.1 [33].
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2.2. Training and Testing Datasets Construction

In order to provide a representative collection of non-LRR examples, we selected a representative
example of each CATH [28] domains’ topology (except LRR) from a nonredundant dataset provided
by CATH where all proteins share less than 20% identity or have a less than 60% overlap
(cath-dataset-nonredundant-S20 set-09.12.2019). Given potential synchronization problems between
various databases used to build the overall learning set comprising (a) the nonredundant 50ID LRRs,
containing the ‘entry’-, ‘core’-, ‘exit’-repeats and the flanking nonLRR domains when present and (b)
the CATH nonLRR domains—the data was subjected to a third redundancy filter performed with a
similar CATH methodology, aimed at eliminating sequences that fail one of the below bounds:

• the length of the alignment is over 100 and the identity is over 20%.
• length of the alignment is between 40 and 100 with an identity over 20% and the overlap with

respect to both sequences is more than 60%.
• LRR repeats with alignments lengths ≥16 aa and ≥50% identical (equivalent of at most 8/16 aa

constraint imposed initially on the motifs).

The final dataset built as above and used herein for training and testing classifiers, contains
648 LRR core repeats, 100 N-ter entry, and 67 C-ter exit nonredundant repeats (including the LRR
domain flanking regions) and 875 non-LRR domains from CATH.

From this set, 1/5th was used to generate the test dataset, while the remaining 4/5 were used to
build the training datasets, preserving the class ratio between the sets. The test dataset contains 40,241
amino acid samples of which only 150, i.e., less than 0.4%, are initiating LRR motifs. Similarly, over the
training set less than 0.5% of the samples are LRR initiators. The training set was further split into four
cross-validation sets that were used for parameter optimization. All these sets are provided in File S2.

2.3. Feature Selection and Data Pre-Processing

In developing LRRpredictor we tested sequence-based (SeqB) features: solely or combined with
structural based (StrB) features. The SeqB features comprise position-specific scoring matrices PSSM
over the above discussed 16 amino acids interval summing up to 320 features corresponding to 20
amino acid types over the 16 positions. The StrB features comprise: (a) the three state (H—helix,
E—extended, C—coil) secondary structure probabilities, (b) the three class (B—buried, M—medium
and E—exposed) residue relative solvent accessibility, RSA probabilities and (c) intrinsic disorder
probability—summing up to seven extra structural features per residue, resulting in a total of 432
features per 16 aa window. The structural based predictions were performed with RaptorX-Property
software [34–37]. Sequence PSSMs were computed on Uniprot20 protein sequence database, using
HHblits [38,39] that is based on HMM-HMM alignments shown to improve accuracy of alignments at
low sequence homology levels.

In the pre-processing stage, feature variables were normalized, centered, and rescaled, as standard
procedure involves. Data whitening using principal component analysis (PCA) decomposition was
not used as it did not provide better performance on the tested classifiers.

2.4. Machine Learning Model Selection

Several classifiers such as support vector classification (SVC) [40], multi-layer perceptron
(MLP) [41,42], and AdaBoost [43] as well as several oversampling techniques such as Adasyn [44] and
SMOTE-based varieties [45–47], or over- and under-sampling combined approaches SmoteTomek [48]
and SmoteEEN [49], were tested and parameter optimized via cross-validation using Scikit-learn
library v.0.22.1 [50]. Multiclass estimators for N-entry (N), core (L), and C-exit (C) motif types that use
either one-vs.-one or one-vs.-rest approaches were also investigated, but they performed worse than
when treating all LRR motifs as a single class.

The best performing classifiers with tuned parameters were further studied in the context of a
soft voter (that averages predicted probabilities of the ensemble constituents), and a final predictor,
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further referred to as LRRpredictor, was chosen based on its out-of-sample performance on test set and
overfitting behavior on the training data. LRRpredictor is composed of a set of eight classifiers (C1–C8)
that use different strategies and consider all N, L, C motif types as a single class, aggregated within an
ensemble based on the soft voting scheme, as shown in Figure 2d.

Classifiers C1–C4 use solely sequence-based features while C5–C8 use both sequence and
structural-based features. Classifiers C1 and C5 use the support vector classification (SVC)
algorithm [40], with a radial basis function (RBF) kernel, one-vs.-rest (‘ovr’) decision function.
The margin penalty and the RBF scale (gamma) parameters were optimized through grid search to 1
and 0.01 for C1 and 1 and 0.001 for C4, respectively. Class imbalance was treated by adjusting the SVM
weights inversely proportional to class frequency and class probabilities were inferred using sigmoid
probability calibration.

Classifiers C2, C3, C6, C7 use multi-layer perceptron (MLP) [41,42]. A depth of three hidden layers
was sufficient to describe the system, as adding additional hidden layers provided little to no difference
in out-of-sample performance. The number of hidden nodes for each hidden layer was selected via
grid search as follows: C2 (300-250-100), C3 (250-150-100), C5 (250-150-100), C6 (125-100-10). Classifiers
C2, C3, C7 use the Limited-Memory BFGS [51] solver, while C6 uses Adam [52] optimizer for stochastic
gradient descent [53] with early-stopping over a validation fraction of 0.2. All four classifiers use
rectified linear unit (ReLU) activation function [54].

Classifiers C3 and C7 approach the imbalance problem through synthetic resampling using the
combined over- and under-sampling method SMOTETomek [48], as implemented in imbalanced-learn
library v 0.6.1 [55].

Classifiers C4 and C8 use a ensemble boosting approach—AdaBoost [43]—using tree classifiers
of depth 1, as base estimators, SAMME.R real boosting algorithm, and sigmoid probability
calibration. A maximum number of 50 base estimators was selected to maximize performance
while avoiding overfitting.

2.5. Assembly of Protein Family Sets Containing LRR Domains

In order to investigate LRRpredictor behavior on previously annotated LRR domains from various
functional protein groups, we generated a collection of randomly selected 500 representatives from
Uniprot50 database (i.e., below 50% identity between themselves at a given minimum overlap—version
available at 20.11.2019-release-2019_10) which were annotated by Interpro to contain a LRR domain
(IPR032675 and Interpro v77.0 protein2ipr database).

A total of six groups were generated: four groups of sequences of CNLs, TNLs, RLKs, and RLPs
protein classes from flowering plants and two groups of TLRs and NLRs from vertebrates. Given the
high conservation of vertebrate TLRs this set gathered only ≈350 sequences (File S3).

Within the CNL group, there were included only proteins annotated by Interpro to contain a single
coiled-coil (CC) domain, a single NBS domain, and a LRR domain in this order, and sequences that
contained a different domain organization, such as two annotated NBS domains or a different domain
order were not included in the analysis. Similarly, for the TNL group we selected only sequences that
contain a TIR-NBS-LRR domain organization. The RLK group was built with sequences displaying a
“LRR-TM predicted region-kinase” domain organization, while the RLP group contained sequences
with “LRR-TM” organization and did not contain other annotated domains by Interpro. In generating
the vertebrate NLR group we included any annotated NACHT or NBS domains followed by a LRR
domain annotation without discriminating on the N-terminal domain, as animal NLRs can have
upstream of the NACHT/NBS domain a multitude of N-terminal domain types, while vertebrate TLRs
group contains sequences with a “LRR-TM-TIR” configuration. Transmembrane predictions were
performed using Phobius [56].

In analyzing the length of the LRR domains covered by individual repeat annotations, we used
all Interpro annotation codes associated with LRR repeat types. We considered as having the status
of ‘annotated as domain‘ LRRs with the IPR032675 label and ‘annotated as repeats’ any amino acids
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that had attached by at least one predictor part of Interpro collection one of the following tags:
leucine-rich repeat (IPR001611), leucine-rich repeat, typical subtype (IPR003591), leucine-rich repeat,
cysteine-containing subtype (IPR006553), leucine-rich repeat 2 (IPR013101), leucine-rich repeat 3
(IPR011713), leucine rich repeat 4 (IPR025875), BspA type leucine rich repeat region (IPR026906), CD180
leucine-rich repeat (IPR041281), DUF4458 domain-containing protein, leucine-rich repeat (IPR041403).
Annotations referring to the N-ter cap of the LRR domain (IPR000372, IPR041302) were not considered
as these are not LRR repeats.

2.6. Assessment of LRR Motif Conservation Across Protein Groups

Intra- and inter-group sequence variability was also analyzed using a subset of 1000 predicted 16
aa extended motifs from each group. In order to avoid a potential bias induced by false ‘entry’ (N) or
‘exit’ (C) repeats, only ‘core’ (L) repeats were used in this analysis. The similarity measure used here is
the distance mapping defined by Halperin et al. [57]. This consists of the inner product of BLOSUM
scores between each pair of amino acids summed up over the motif span, as this function can be used
as a metric distance for several BLOSUM matrices. Considering d to be the distance between a pair of
amino acids i and j, that have the s (i, j) BLOSUM score:

d(i, j) = s(i, i) + s( j, j) − 2·s(i, j) (1)

The distance between two sequences a and b of equal length l, would be the sum of distances of
each pair of amino acids ai and bi across the length of the sequence:

Da,b =
∑l

i=0
d(ai, bi), (2)

This definition of distance is expected to reflect amino acids compatibilities, as BLOSUM scores
are inferred from amino acid mutation probabilities observed on large datasets. As a BLOSUM matrix
we selected an updated version of the original BLOSUM matrix, which was recently recalculated on a
large dataset and satisfies the triangle inequality. (RBLOSUM59_14.3) [58,59].

Starting from the above described distance function, we calculated Silhouette coefficients [60]
between each pair of groups, and precomputed distances were used for manifold learning using metric
multi-dimensional scaling (MDS) [61] as implemented in Scikit-learn library [50].

Sequences logos were generated using Weblogo [62], figures showing protein structures were
obtained using PyMol [63], while other plots were generated in Microsoft Office or by using Matplotlib
library [64].

3. Results

3.1. Available LRR Domains in Structural Data

A collection of 611 PDB structures previously annotated by several protein domain databases,
such as CATH [28], Pfam [29], and Interpro-collection [30] to contain LRR horseshoe architectures
was obtained. This collection was used to derive a clean set, ID90, of 178 LRR chains displaying 90%
identity that was structurally analyzed in order to structurally delineate the LRR repeats based on the
beta-sheet network. By this, a dataset of ≈2100 LRR motifs was obtained, as shown in Figure 1a. It is
interesting to note here that less than 20% of these are annotated as LRR motifs in Pfam even though
the 178 sequences were derived from known 3D structures.

The LRR motif annotation of each repeat was performed starting with the first position (L0) of the
minimal motif ‘L0XXL3XL5’, position that marks the beginning of the ventral side of the horseshoe
domain (Figure 1b). Superposition of the 2100 repeats indicates that the structural similarity extends in
most of the cases over five positions upstream and downstream of the minimal motif defining a 16
positions region which is referred herein as the ‘extended’ motif (Figure A1d). Due to this, the structural
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LRR diversity concentrates mainly onto the dorsal side of the horseshoe which imposes onto the
curvature and the overall geometry of the domain (Figure 1b).

As duplications of highly similar LRR repeats within the same LRR domain is abundant in the
ID90 set, we opted to perform a second redundancy filter at the level of LRR repeats as described
(M&M). This results in the ID50 nonredundant set consisting of ≈850 LRR repeats, that approximates
well the ID90 distribution of lengths (Figure A1c), phyla (Figure 1c), and the ratio between marginal
N-terminal (N) and C-terminal (C) versus interior motifs (L) (Figure A1b).

The ‘entry’ N-ter LRR motifs are less regular than the ‘core’ motifs, especially at the first
hydrophobic position (L0) that is often found solvent exposed, as this position marks the end of
the inter-domain linker and the beginning of the LRR domain. By contrast, the ‘exit’ C-ter LRR
motifs better resemble the ‘core’ motifs (L) amino acid composition and the conventional LRR motif
‘L0xxL3xL5xx(N/C)8xL10’ (Figure 1d). Interestingly, the stringency for leucine occurrence sequentially
decreases from L0 to L3 and L5 in core repeats, allowing other amino acids to be present in L3 and
L5 more frequently (Figure 1d). This structurally correlates with a larger accessible space of the
protein core structure around L3 and L5 positions, as can be seen from Figures 1b and A1d. It is also
worth noting that the third L-3 position upstream of LxxLxL has a significant hydrophobic propensity
presumably allowing the solenoid to form (Figure 1d).

Another important facet that has to be carefully pondered is the high phyla bias of the structural
data when compared to the baseline phyla distribution of the UniRef50 database. As can be seen from
Figure 1c, around 50% of the repeats in ID50 are of mammalian origin while the UniRef50 baseline is of
less than 3% in both annotated LRR proteins or any protein. Moreover, the ≈20% plant LRR motifs
present in ID50 originate overwhelmingly from RLP and RLK proteins while plant NLRs are poorly
represented in this set, with only a single 3D structure recently reported for the ZAR1 NLR protein
from Arabidopsis thaliana [21,22].
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Figure 1. Available leucine-rich-repeat (LRR) domains in structural data. (a) LRR structural dataset
construction. (b) LRR domain horseshoe architecture illustrated on the only plant NLR cryo-EM
structure available—ZAR1—from Arabidopsis thaliana (left) and zoom-in view of a LRR repeat (right)
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(PDB: 6J5W). The hydrophobic positions in the minimal ‘L0xxL3xL5’ motif are shown in orange.
The first N-entry repeat (blue) and the last C-exit repeat (red) are also mapped on the structure.
(c) Phyla distribution of the initial LRR motif set ID90, the 50% identity trimmed LRR motifs set (ID50),
annotated LRR proteins and all proteins from the UniRef50 database (from left to right). Percent values
corresponding to the mammals group are shown in red. (d) Frequency plot of amino acid composition
of the N-entry, core and C-exit motifs on the 50% identity trimmed set. Amino acids are colored
according to their properties as follows: hydrophobic (yellow), acidic (red), basic (blue), asparagine
and glutamine (purple), proline and glycine (green), others (black). (e) Jensen–Shannon divergence
(JSD) score for each position of the LRR motif at different identity thresholds. Higher values show
increased conservation.

3.2. Development of the LRRpredictor Method

In order to train a machine learning (ML) estimator for detecting LRR motifs we used an overall
dataset comprising the filtered LRR ID50 dataset and a collection of 875 non-LRR domains composed
of one representative of each CATH topology (Figure 2a).

As discussed in Section 1, the sequence patterns corresponding to the ≈850 actual true structural
LRR motifs identified in ID50 are quite common in any protein. We will name here such sequence
patterns as potential motifs. As expected, Table 1 shows that potential motifs occur with more or less
equal probability in both the LRR and non-LRR domains of the overall dataset. Moreover, even when
taking into account only LRR domains the number of potential motifs is larger than the number of true
structural LRR motifs (Table 1). This allows the ML estimators to learn to detect true motifs from the
far larger set of potential motifs by taking into account the larger 16 amino acid sequence context in
which the true motifs are embedded. In this way the method developed herein can be used not only to
delineate repeats in a given LRR domain but also to discriminate between protein products that do not
have LRR domains from those hosting such domains.

Table 1. Occurrence of LRR sequence patterns in the overall dataset used to train the machine learning
(ML) estimators.

Full Training & Testing Dataset (CV 1-4 and Test Sets)

NonLRR Proteins LRR Proteins

LRR-Like Pattern Total Number False Motifs True Motifs False Motifs True Motifs

L
ˆ

xxL
ˆ

xL
ˆ

(3L
ˆ

) 296 114 0 27 155
L
ˆ

xxL
ˆ

xŁ/L
ˆ

xxŁxL
ˆ
/ŁxxL

ˆ
xL

ˆ
(2L

ˆ
) 1,060 773 0 147 140

L
ˆ

xxŁxŁ/ŁxxŁxŁ/ŁxxŁxL
ˆ

(1L
ˆ

) 7,239 5,875 0 1,192 172
LxxLxL 12,247 10,149 0 1,417 681
LxxLxLxxN 811 438 0 76 297
LxxLxLxxC 273 163 0 41 69
LxxLxLxx(N/C)xL 618 269 0 39 310

Number of predicted positions (16 aa sliding windows): 148,540 25,658
815 LRR motifs

L
ˆ

—strictly leucine; Ł—hydrophobic without leucine (I, V, M, F, W, Y, C, A); L—hydrophobic (L, I, V, M, F, W, Y, C,
A); x—any amino acid.

In developing LRRpredictor we tested ‘sequence-based’ features based on position-specific scoring
matrices-PSSMs either solely or combined with ‘structural-based’ features as described in Section 2
(Figure 2c). PSSM profiles are expected to provide context information on the overall sequence,
to highlight the key amino acids position that are conserved, as the amino acids scores are derived
from amino acid substitution probabilities conditioned by the homologues family they belong to.
Therefore, it is expected that irregular LRR motifs would be more detectable when using sequence
profiles, rather than amino acid sequence alone.
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(b) schematic representation of the training and testing procedure, (c) selected features, and (d) selected
classifiers aggregated into LRRpredictor.

The dataset was split into five parts: one part was initially separated as test set and the other
four were used as a training set in parameter tuning using a four-fold cross-validation (CV) approach,
where models were iteratively trained on three of the CV sets and tested on the remaining fourth
(Figure 2b). A pool of estimators (representing algorithms for classification) that used either (1)
sequence-based or (2) both sequence and structural features and (3) various imbalance class treatments
were optimized via cross-validation. Finally, best performing estimators were studied in the context
of an ensemble estimator. The selected ensemble classifier, further referred to as LRRpredictor is a
soft voter aggregating eight classifiers C1–C8 (Figure 2d) which were trained to detect the LRR motif
starting position—i.e., L0 position from the minimalistic LRR motif ‘L0xxL3xL5’.

Finally, LRRpredictor was trained on the entire training set (all four CV sets) and tested on the
test set which had been set aside.

3.3. Assessment of LRRpredictor Performance

The precision of LRRpredictor given by the fraction of true-positives (TP) predicted results over
the sum of true-positives (TP) and false-positives (FP) varies between 89% and 97% on the test set
and within cross-validation sets (Figure 3a). Similarly, the recall (also known as sensitivity), given
by the fraction of TP over TP + false-negatives (FN) varies between 85% and 93%, while the F1-score
(representing the harmonic mean between precision and recall) varies between 87% and 95% on the
test set and cross-validation sets (Figure 3a,b).



Genes 2020, 11, 286 10 of 26

Genes 2019, 10, x FOR PEER REVIEW 10 of 24 

 

 
Figure 3. LRRpredictor performance analysis: (a) LRRpredictor performance across datasets: 
precision, recall, and F1 scores are shown either considering all the LRR motif types (N-entry, core, 
and C-exit types), either solely core motifs (L); also shown are the true negative (TN), false positive 
(FP), false negative (FN) and true positive (TP) counts. (b) F1 scores of LRRpredictor and its individual 
classifiers. (c) Comparison between LRRpredictor and other LRR motif predictors: LRRfinder [26] and 
LRRsearch [27] (computed on their webservers using default parameters). 

As seen in Figure 4a, repeat lengths are rarely found outside the 19–35aa range, cases in which 
prediction becomes ambiguous. Too short repeats are improbable due to structural constraints and 
might indicate false positive predictions. Similarly, too long repeats—over 40 amino acids—could 
indicate either the presence of undetected repeats (false negatives) or cases in which an insertion or 
'island' shapes up protruding the horseshoe structure (Figure 4a). Very large gaps between LRR 
motifs (more than 100 aa) were not included in computing the length distribution as these are rather 
indicating the presence of an inserted domain flanked by two LRR domains. 

We further analyzed the percent of the annotated LRR domain span that is covered by 
LRRpredictor and compared the predicted LRR motifs to LRRfinder [26] and LRRsearch [27] 
predictions and to the existing motif annotations from Interpro collection. In doing so we defined as 
predicted repeats motifs separated by 15–35 amino acids. Predicted motifs that superpose or cluster 
within 15 amino acids were counted only once, while when the distance between two motifs was 
higher than 35, the repeat was considered to be a potential terminal repeat or contain a domain break 
and the first 24 aa of such a stretch was assigned as a predicted repeat, given that this is the most 
frequent repeat length over the structural data.  

Figure 3. LRRpredictor performance analysis: (a) LRRpredictor performance across datasets: precision,
recall, and F1 scores are shown either considering all the LRR motif types (N-entry, core, and C-exit types),
either solely core motifs (L); also shown are the true negative (TN), false positive (FP), false negative (FN)
and true positive (TP) counts. (b) F1 scores of LRRpredictor and its individual classifiers. (c) Comparison
between LRRpredictor and other LRR motif predictors: LRRfinder [26] and LRRsearch [27] (computed
on their webservers using default parameters).

3.4. LRRpredictor Behavior on Protein Families Containing LRR Domains

As the available structural data is scarce, we further evaluated the extrapolation capabilities
of LRRpredictor on a set of LRR domains annotated in Interpro collection. Groups of the most
representative protein functional classes containing LRR domains were generated as follows: four
groups from flowering plants—resistance proteins (CNLplants and TNLplants) and extracellular receptors
(RLKplants and RLPplants) and two groups from vertebrates—NLRvert and TLRvert as described in
Section 2.

Selected sequences from each group were subjected to LRRpredictor motif detection. The repeat
length distribution of the predicted LRR repeats (Figure 4a), is consistent with previously reported
lengths within all protein groups of the seven type Kobe–Kajava (KK) classification [14,65]. The repeat
length distribution of extracellular LRR domains (RLKplants, RLPplants, and TLRvert) show a sharp peak
at 24 amino acids, in agreement with the most frequent repeat length within plant-specific (PS) from
KK classification [14,65]. As they often contain large helices over the dorsal side of the LRR horseshoe,
vertebrate NLRs repeats have longer lengths (25–30 aa) as previously shown by the same classification,
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while plant NLRs (CNLplants and TNLplants ) have a larger distribution with a lower peak shaping up
toward lower value side (20–24 aa) of repeat lengths range.
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Figure 4. LRRpredictor behavior on Interpro annotated LRR domains from different classes. (a) Length
distribution of the predicted repeats using LRRpredictor within each protein group. C-terminal motifs
were not used in computing the distribution. Repeat lengths size prone to ambiguity—i.e., either too
short (potential FP) or too long (potential FN)—are shaded in red. (b) Distributions of the Interpro
annotated LRR domain length that is covered by Interpro LRR repeat annotations (grey) or by predicted
repeats using LRRpredictor (blue), LRRfinder (green), and LRRsearch (purple). Coverage percent
distributions are shown within each protein group.

As seen in Figure 4a, repeat lengths are rarely found outside the 19–35aa range, cases in which
prediction becomes ambiguous. Too short repeats are improbable due to structural constraints and
might indicate false positive predictions. Similarly, too long repeats—over 40 amino acids—could
indicate either the presence of undetected repeats (false negatives) or cases in which an insertion or
‘island’ shapes up protruding the horseshoe structure (Figure 4a). Very large gaps between LRR motifs
(more than 100 aa) were not included in computing the length distribution as these are rather indicating
the presence of an inserted domain flanked by two LRR domains.

We further analyzed the percent of the annotated LRR domain span that is covered by LRRpredictor
and compared the predicted LRR motifs to LRRfinder [26] and LRRsearch [27] predictions and to the
existing motif annotations from Interpro collection. In doing so we defined as predicted repeats motifs
separated by 15–35 amino acids. Predicted motifs that superpose or cluster within 15 amino acids were
counted only once, while when the distance between two motifs was higher than 35, the repeat was
considered to be a potential terminal repeat or contain a domain break and the first 24 aa of such a
stretch was assigned as a predicted repeat, given that this is the most frequent repeat length over the
structural data.

The repeat coverage of analyzed LRR domains predicted by LRRpredictor, LRRfinder and
LRRsearch were compared to the extent Interpro repeat annotations using a coverage percentage (CP)
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defined as the ratio between the sum of predicted/annotated repeat length vs the overall LRR domain
length (Figure 4b).

Plant NLRs from flowering plants show the lowest level of repeat annotation as 75% and 50%
of CNL and TNL LRRs in Interpro lack any repeat annotation resulting in CP = 0% (Figure 4b).
In comparison, repeats in vertebrate NLRs are better annotated in a CP ranging within 20–60% of
the LRR domain. Even higher Interpro repeat annotations are shown by the extracellular plant and
vertebrate receptors with CP ranging most frequently between 30% and 80% of the LRR domain
size (Figure 4b). For all six receptor classes analyzed herein, both LRRfinder and LRRsearch slightly
increase the LRR coverage as compared to Interpro annotations especially in the case of extracellular
receptors, with LRRsearch surpassing LRRfinder in the case of plant NLRs (Figure 4b).

As also can be seen from Figure 4b, in comparison to Interpro and the two predictors mentioned
above, LRRpredictor covers far larger regions of LRR domains with coverage percentages (CP)
exceeding 60% and almost complete coverage in over 50% in all six groups (Figure 4b). It is interesting
to note that Interpro annotation of extracellular LRR domains also include the N-terminal cap region,
that is not formally a LRR repeat. This results in the fact that LRRpredictor covers in most cases only
≈90% of this domain, instead of 100% as in NLR groups (Figure 4b).

3.5. Predicted Repeats Consensus in Each Class

Further, the amino acid composition of the predicted LRR motifs was investigated solely on the
‘core’ predicted LRR repeats, i.e., repeats that are flanked by other predicted repeats within a 15–35
aa range. In short, the results presented below clearly indicate that LRRpredictor is able to detect
and reproduce all the consensus motifs previously defined for well-studied classes of RLKs, NLRs,
and TLRs (Figure 5).

This is especially the case for vertebrate NLRs. The consensus follows the ribosomal inhibitor (RI)
type - ‘x-3xxL0xxL3xL5xx(N/C)8xL10xxxgoxxLxxoLxx’ [14,65], with position ‘-3’ being less relevant for
this class of repeats. Additionally, the vertebrate TLRs predicted motif consensus matches the

“T” type motif: L-3xxL0xxL3xL5xxN8xL10xxL13xxxx(F/L)18xxL21xx
defined in Matushima et al. classification [13] rather than the less encountered
“S” type motif: L-3xxL0xxL3xL5xxN8xL10xxL13Px(x)LPxx.
In the case of plant extracellular receptors, the predicted motifs from RLKplant and RLPplant groups

show a prolonged pattern that is in perfect agreement with the plant-specific (PS) type from Kobe and
Kajava classification [14,65]—L-3xxL0xxL3xL5xxN8xL10(S/T)11GxIPxxLxxLGx. Interestingly, the kinase
containing receptors (RLK) have a more prominent consensus (Figure 5).

On the other hand, the predicted motifs in plant NLRs comprising the CNLplant and TNLplant

groups display a remote similarity with the cysteine-containing (CC) type as defined by Kobe and
Kajava classification [14,65]:

“(C/L)-3xxL0xxL3xL5xxC8xxITDxxOxxL(A/G) xx”—where O is any nonpolar residue.
While the extended motif is satisfied (16 aa), a difference worth noting is that in both CNL and

TNL groups cysteine is rare in position ‘-3’ and outside this region any similarity with CC-type ends.
Both plant NLR groups mainly confine their consensus to only the minimal L0xxL3xL5 motif, with TNL
extending it a little bit with C8 position. By contrast, in plant extracellular receptors the consensus
expands beyond the 16 amino acids of the ‘extended’ region covering all the four sides of the LRR
solenoid. Despite being analogous in composition, the TNLplant group consensus is more pronounced,
especially at positions C8 and L11 (Figure 5).

In all six classes L0, L3, and L5 of minimal motif are as expected overwhelmingly hydrophobic,
with all three positions occupied by leucine in around 50% of the cases, except CNLs where leucine
occurrence seems less stringent (Figure 6). When compared to the Kobe and Kajava classification,
the majority of the motifs fall under the expected class and very few cross terms are seen between
them (Figure 6).
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Figure 5. Consensuses of the LRR motifs predicted by LRRpredictor across different classes.
Logo heights correspond to amino acid relative entropy (in bits), higher heights implying higher
conservation. A consensus for each class is displayed bellow each logo, highly conserved positions
being shown in black boxes, while less conserved in gray. Minimal motif ‘L0xxL3xL5’ (green line) and
the extended motif (black line) are indicated below each logo. Amino acids are colored according to
their properties as in Figure 1d.
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Figure 6. Distribution of LRR motif types defined by Kobe and Kajava (KK) [14] predicted with
LRRpredictor across the six receptor classes. As the motif consensuses from KK classification were very
strict, we adapted these consensuses to different sequences windows (W6, W11, W16, or more) centered
around the minimal motif as shown in the table. Percentages of the predicted motifs compatible with
each consensus are shown with grey bars.

CNLs and TNLs seem more dispersed even on a shorter 11 amino acid window consensus (W11),
while the extracellular receptors obey in over 60% of the cases the corresponding W11 pattern that is
shared simultaneous by all three classes (Figure 6).
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3.6. LRR Motifs Variability Across Classes

Sequence variability is of critical importance for LRR domain function and in contrast to their
common structural pattern, a wide spread in the sequence space is expected. To assess this, we analyzed
the extended motifs, predicted by LRRpredictor, both the intra- and inter- group sequence similarity.
This was performed over subsets of randomly selected 1000 examples of ‘core’ (L) motifs from each
group. We selected as similarity measure a metric distance function [57] derived from BLOSUM scores
which reflect the structural compatibility between amino acids, as described in Section 2. Using this
metric, we calculated the distance between each predicted LRR motif from all groups and analyzed
how these distances behave intra- and inter-groups.

Intra-group all-vs.-all distances distribution shows that the extracellular groups RLK, RLP from
plants and TLRs from vertebrates form a denser group in terms of conservation, than plant and
vertebrate NLRs (Figure 7a left). Figure 7b shows the silhouette coefficients. These scores show how
separated two given clusters are, based on the distance between samples from each group, the maximal
value of 1 corresponding to perfectly separated clusters, value 0 corresponds to clusters that coincide,
while negative values with a minimum of -1 correspond to the case where samples from one group
actually cluster better with the opposite group that is being compared. Silhouette coefficient of all
versus all analyzed groups indicate that the NLR groups form a rather overlapping cluster, that has an
increased variability among its sample motifs (i.e., expanded cluster) (Figure 7b left). Extracellular
plant receptors RLK and RLP clusters are overlapping and have a more reduced span in terms of
variability (i.e., more conserved motifs), while vertebrate TLR overlap plant RLK and RLP receptors
have a slightly increased variability (Figure 7a,b left). Interestingly, within the minimal LRR motif
region ‘L0XXL3XL5’ there are no significant differences between groups (Figure 7a,b right).
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Figure 7. LRR motifs variability in different protein classes. (a) Intra-group all-vs.-all distances on the
extended (left) and minimal (right) motif (b) Silhouette coefficients inter-groups extended (left) and
minimal (right) motif. (c) Histogram of a 2D embedding approximating the true distances between
points for the extended (left) and minimal (right) motif. Histograms were computed using a 20 ×
20 bins grid. Extended and minimal motif histograms cannot be compared as they refer to different
sequence spaces.
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To have an overall view on the sequence dispersion in each protein class containing LRR domains
Figure 7c shows the 2D embedding of the high dimensional sequence space of both the extended
and minimal motifs of each class. Nonetheless such a reduction gives only a rough representation of
distance relations between clusters in the original space as the normalized stress parameter (stress-1) of
this 2D embedding is 0.25 and 0.21 for the extended and minimal motif space, respectively [66].

3.7. LRRpredictor Specificity Tested on Solenoid Architectures

From a structural point of view the LRR protein architecture belongs to the larger class of solenoidal
architectures which are defined by specific repeated structural patterns. Given the repetitiveness
of such structures we asked if LRRpredictor is able to discriminate between LRR motifs and other
repetitive sequence patterns. The main candidates considered for possible misclassifications are two
classes of beta sheet repeat proteins—which are the closest structural relatives of LRR domains: pectate
lyases (PeLs) and trimeric LpxA architectures and two helical repetitive classes: armadillo and ankiryin
architecture (Figure A2b). To this end, 50 sequences from each of the above four classes annotated as
such by Interpro were randomly selected from UniRef50. Figure A2a shows the probabilities returned
by LRRpredictor that the potential motifs occurring in the 200 sequences are true LRR structural
motifs. As can be seen in all four classes taken into account, the vast majority of potential motifs have a
probability lower than 10% to be true motifs. Only 0.1% of such sites show a probability between 10%
and 20% to be true motifs and none of these sites reaches a threshold of 40% for being a true LRR motif
(Figure A2a). From a technical point of view this result shows that LRRpredictor is highly specific for
LRR domains. On the other hand this result is even more interesting from a structural and biological
point of view indicating that even if LRRs and PeLs were considered to be members of the same LRR
superfamily [67] the structural principles upon which they are built are different and presumably the
two classes have diverged very early in evolution.

4. Discussion

Given the high number of indeterminacies generated by sequence variability, a proper annotation
of LRR motifs and the correct delineation of repeats is critical in identifying potential protein–protein
interaction sites of LRR domains.

Here, we show that LRRpredictor is able to address this problem and by this, can be of use as
a new tool in the analysis of especially plant NLR sequences that display a larger variability and
irregularity as compared to other LRR domains [9,68]. This often results in the superposition or
presence in less than a minimal repeat distance of potential alternative LRR motifs, as can be seen from
Figure 8 illustrating such indeterminacies found on a 150 amino acid stretch from the potato CNL
Gpa2 LRR domain.
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motifs that follow the minimal ‘LxxLxL’ pattern (where L is any hydrophobic amino acid) are illustrated
above the sequence with black bars and yellow highlight, while LRRpredictor results are shown above
with blue bars.

Given the scarcity of structural learning data consisting of less than 180 LRR structures with
lower than 90% identity and only ≈850 motifs at hand in ID50 (<50% identity), in order to maximize
LRRpredictor extrapolation abilities, the method was set to rely on aggregating a collection of eight
classifiers based on different strategies, two of them designed to perform a massive oversampling of
the real data (Figure 2).
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In this context, LRRpredictor shows to perform well, with overall precision, recall, and F1 scores
ranging between 85% and 97% on both test and cross validation sets (Figure 3a). In addition,
LRRpredictor increases its performances when taking into account only the ‘core’ repeats (L), as the
main prediction problems relate only to the N-‘entry’ repeats (N)—i.e., the first repeat of the LRR
domain (Figure 3a, Table A1). This can be explained in part by the increased irregularity of the sequence
in this region, but also by the small sample size of the N-‘entry’ (N) motifs when compared to the ‘core’
(L) motifs.

It is also important to note here the fact that false positives are almost never found in nonLRR
domains but always in proteins containing LRR domains (Table A1). Here, such false positives shape
up in close vicinity to the marginal repeats—where the LRR motif characteristics are more diffuse, or in
linkers or different domains neighboring the LRR, but found in a ‘one repeat range’ to the N-entry motif.

Other false predictions are caused by alignment artefacts. These yield to an offset of 1–3 amino
acids in the predicted LRR motif starting position. Alignment artefacts are also frequently seen in
regions with high beta structure propensity of insertion loops or ‘islands’ protruding from the LRR
domain structures. This is mainly due to the fact that the multiple alignment on which PSSM relies
forces the protruding loop in the queried sequence to align to regular repeats in the template LRRs of
the database.

Unfortunately, the number of such insertion loops or ‘islands’ is so small in ID90/ID50 that
estimators cannot learn from the existing data to discriminate such false positives. Thus, only careful
structural analysis performed in later modelling stages can handle such cases.

Results on both cross-validation and test sets show that estimators using structural features in
addition to the sequence based features (C5–C8) perform on average only slightly better compared
to those sequence based only (C1–C4), with some interesting improvements on F1 scores (Figure 3b).
This only marginal improvement may indicate that RaptorX-Property [34] training on the overall
structural database that might have marginally overlapped with our testing dataset did not affect the
results. Nevertheless, C5–C8 are expected to be better extrapolators (Table A1), while the structural
predictions on which (C5–C8) are based, and that are present in the output file can prove instrumental
in further dealing with ambiguous cases where two LRR motif signatures partially superpose or are
within the limit of a repeat.

Figures 3c and 4b compare predictions of three existing engines. LRRpredictor outperforms
LRRsearch [27] and LRRfinder [26]. This is expected as the two previous methods were designed to
focus mainly on specific LRR classes such as vertebrate TLRs or NLRs, respectively, while LRRpredictor
relies on a newer larger dataset and was designed to identify LRR motifs in general. However, despite
focusing on specific protein classes, both LRRsearch and LRRfinder show comparable efficiency in
covering annotated LRR domains in plant extracellular receptors but decreased capabilities on plant
NLRs (CNLs and TNLs) (Figure 4b). Furthermore, both LRRsearch and LRRfinder were intended for
fast computation and they use a predefined PSSM matrix computed on a curated collection of LRR
domains, instead of performing case by case basis sequence profiles as our method does.

However, the increased performance of LRRpredictor comes with an attached computational cost
and is not easily scalable for scanning large protein sequences databases such UniprotKB. The main
reason for this is that generating case by case sequence profiles and performing predictions for
each estimator aggregated in LRRpredictor is more computationally demanding than LRRfinder and
LRRsearch workflow.

Another matter of concern was related to the phyla bias of the database on which LRRpredictor
relies, as ≈50% of ID90 have mammalian origin while the share of mammalian—from total—annotated
LRRs in UniRef50 is only 2% (Figure 1c). Moreover, groups such as plant NLRs are extremely poorly
represented, as only very recently the first plant NLR structure was reported [21,22].

In this context, in order to investigate the extrapolation capabilities of LRRpredictor we used
a set of LRR domains annotated in Interpro collection from the six most representative immune
receptor classes: R-proteins and extracellular receptors from flowering plants (CNLplants, TNLplants,
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RLKplants, RLPplants) and their vertebrate counterparts (NLRvert, TLRvert). The LRR motifs predicted
by LRRpredictor show a good coverage of the LRR domains annotated by Interpro and follow the
expected repeat length distribution for all these six classes [14,65] (Figure 4a,b). Moreover, the predicted
motifs reproduce the expected LRR motif consensus of each protein class (Figure 5) from Kobe and
Kajava classification [14,65]. Combined, these indicate that LRRpredictor is able to extrapolate well in
different LRR motif classes which is especially important for plant NLRs.

Analysis of LRRpredictor detected motifs showed clear differences between the six classes within
the extended 16 aa motif. Whether variation in these extended motifs directly relate to the functional
diversification of the different receptor classes still remains to be addressed. By contrast, within the
minimal 6 aa LRR motif region—L0XXL3XL5—there are no significant differences between the six
groups (Figure 7). This might suggest a common root of minimal structural criteria imposed by the
solenoidal architecture from which the six classes have diverged to fulfil specific tasks in specific
environments. For receptor function, such a solenoidal domain organization in which only three
positions over a ≈25 repeat length are loosely conserved has two-fold evolutionary advantages: first
the solenoid architecture ensures a large solvent exposed surface area [10] and second a high sequence
variability can be achieved without disturbing the tertiary structure.

The increased conservation seen at the level of the extended motif among all three extracellular LRR
classes—plant RLK, RLP and vertebrate TLRs—when compared to plant and vertebrate NLRs could
be related to N-glycosylation and the constraints imposed by the extracellular environment. On the
one hand, plant NLRs recognize directly or indirectly a suite of pathogen effectors or (perturbations)
of their host targets conferring host specific immunity. Single amino acid changes in the effector can
already be detected or are sufficient to evade recognition by a NLR, resulting in a co-evolutionary
arms race between pathogen effectors and host immune receptor [69,70]. In contrast, extracellular
LRRs recognize often conserved microbial patterns to confer basal immunity thus lacking such a
strong driver for diversification [71]. Vertebrate NLRs act more like basal immune receptors in innate
immunity, recognizing conserved microbe-associated molecular patterns (MAMPs). The greater
diversifying selection imposed by fast-evolving effectors may therefore account for the co-evolution of
structurally highly variable LRR motifs in plant NLRs. In the future, it will be interesting to relate our
LRR structural annotations to specific functional NLR sub-classes. This is relevant, for instance, as
some plant NLRs-types are described to have a downstream ‘helper’ function rather than a role as a
canonical ‘sensor’.

Another aspect is that LRR domains in plant NLRs have a dual role. They not only contribute to
pathogen recognition, but also negatively regulate the switch function [72]. Hence, it will be interesting
to link LRR structural annotations to specific intramolecular domain interactions between LRRs and
other NLR subdomains to better understand the co-evolution of protein domains in NLRs. It is shown
that subtle mutations in the interface between LRR and NB-ARC can have a major effect on NLR
functioning, often resulting in constitutive immune activation or a complete loss-of-function [17,72].
This shows the tight link between structural and functional constraints underlying the shaping of NLRs
in plants. Additionally, the link between LRR structural annotations and complex formation with other
host proteins will be interesting to assess. LRR domains are known to interact with other components
like chaperones (e.g., SGT1) which are required for proper NLR folding and functioning [73], or kinases
(e.g., ZED1, RKS1) [21,22,74] but also NLR hetero- and homodimers are often formed [9,75,76] which
could impose additional structural constraints on the shape and irregularity of LRR domains in
plant NLRs.

5. Conclusions

The results presented herein indicate that LRRpredictor shows a good performance on the available
3D data and good extrapolation capabilities on plant NLRs (CNL/TNL), which are poorly represented
in the training dataset. Predicted LRR repeats using LRRpredictor significantly increase the coverage
of Interpro annotated LRR domains from main immune receptors groups. In addition, these predicted
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repeats are consistent with previously defined motif consensuses from all studied groups and also
follow the repeat length range specific to each class. In conclusion, LRRpredictor is a tool worth
using in research topics related to understanding immune receptors functions and structure-informed
strategies for pathogen control technologies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/3/286/s1,
File S1: LRR structural datasets, File S2: LRRpredictor cross-validation and testing raw data, File S3: Predicted
LRR motifs within each protein class.

Availability: LRRpredictor webserver can be accessed at https://lrrpredictor.biochim.ro and on GitHub repository
at https://github.com/eliza-m/LRRpredictor_v1 alongside with installation and usage documentation.
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Figure A1. Available LRR domains structural data. (a) Identity cut-off versus loss of data: plots of the
loss of samples (left) and increase in entropy (right) at different identity thresholds. Displayed is the
Shannon entropy averaged over the 16 amino acid extended motif. (b) Composition of LRR motif types:
N-entry (N), core (L), and C-exit (C) LRR motifs in the initial set (ID90) and in the 50% identity trimmed
dataset (ID50). (c) LRR repeat length distribution at different identity thresholds. C-exit motifs were
not used. (d) Structural superposition of the LRR repeats from a plant NLR, vertebrate NLR, plant RLK
and vertebrate TLR structures [22,77–79] (from left to right). Hydrophobic positions of the minimal
‘L0xxL3xL5’ motif are shown in orange and position N8 in purple.
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Figure A2. (a) LRRpredictor behavior on other solenoidal architectures. Shown are occurrence counts
of LRR-like patterns versus LRRpredictor probabilities counts histogram. (b) Overall 3D structure of
the four examined classes of solenoidal proteins [80–83].
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Table A1. Detailed performance analysis on LRRpredictor and its classifiers. Precision recall and F1 scores are shown for in-sample (i.e., training data) and
out-of-sample data (i.e., test data that was not used in training), for both cross-validation and test phase. In the cross-validation stage, classifiers were trained on three
of the cross-validation (CV) sets and tested on the fourth set in an iterative manner, while in testing stage, classifiers were trained on all four CV sets and evaluated on
the test set left aside from the beginning. The counts for true-negatives (TN), false-positives (FP), false-negative (FN), and true-positive (TP) within each set are
also shown. As marginal repeats (N-entry and C-exit types) have a lower detection rate, also included is the recall calculated only with respect to ‘core’ repeats (L),
indicated with blue font. Performance scores shading is according to a value based colormap from yellow (0.75) to blue (1.00).

Dataset Classifier

In-Sample Out-Of Sample

Precision Recall F1-Score Precision Recall F1-Score
TN FP FN TP

Recall on Core(L) Only
- Non-LRR

Proteins
LRR

Proteins
N-Entry

(N)
Core
(L)

C-Exit
(C)

N-Entry
(N)

Core
(L)

C-Exit
(C)

Cross
validation

CV 1

C1 0.897 0.998 0.945 0.930 0.930 0.930 33004 0 10 7 2 1 12 110 11 0.982
C2 0.938 0.904 0.921 0.936 0.923 0.930 33005 0 9 8 2 1 11 110 11 0.982
C3 0.877 0.887 0.882 0.904 0.923 0.914 33000 3 11 8 2 1 11 110 11 0.982
C4 0.942 0.866 0.902 0.956 0.902 0.928 33008 0 6 9 3 2 10 109 10 0.973
C5 0.894 0.925 0.910 0.924 0.937 0.931 33003 1 10 6 2 1 13 110 11 0.982
C6 0.919 0.912 0.915 0.943 0.930 0.937 33006 0 8 7 2 1 12 110 11 0.982
C7 0.976 1.000 0.988 0.938 0.951 0.944 33005 0 9 2 4 1 17 108 11 0.964
C8 0.943 0.853 0.895 0.970 0.888 0.927 33010 0 4 10 3 3 9 109 9 0.973

LRRpredictor 0.930 0.918 0.924 0.950 0.923 0.936 33007 0 7 8 2 1 11 110 11 0.982

CV 2

C1 0.904 1.000 0.950 0.874 0.909 0.891 35819 0 23 9 4 3 12 135 12 0.971
C2 0.930 0.900 0.915 0.903 0.909 0.906 35825 0 17 8 5 3 13 134 12 0.964
C3 0.901 0.890 0.895 0.892 0.897 0.895 35823 0 19 10 5 3 11 134 12 0.964
C4 0.954 0.855 0.902 0.937 0.851 0.892 35832 0 10 13 8 5 8 131 10 0.942
C5 0.904 0.937 0.920 0.914 0.914 0.914 35827 1 14 8 4 3 13 135 12 0.971
C6 0.947 0.904 0.925 0.925 0.914 0.920 35829 0 13 8 4 3 13 135 12 0.971
C7 0.974 1.000 0.987 0.898 0.909 0.903 35824 2 16 7 4 5 14 135 10 0.971
C8 0.953 0.878 0.914 0.944 0.869 0.905 35833 0 9 10 9 4 11 130 11 0.935

LRRpredictor 0.941 0.908 0.924 0.924 0.897 0.910 35829 0 13 9 6 3 12 133 12 0.957

CV 3

C1 0.925 0.998 0.960 0.881 0.847 0.864 36028 0 18 7 10 7 12 115 6 0.920
C2 0.949 0.943 0.946 0.903 0.828 0.864 36032 0 14 8 12 7 11 113 6 0.904
C3 0.922 0.904 0.913 0.879 0.834 0.856 36028 0 18 7 11 8 12 114 5 0.912
C4 0.972 0.898 0.934 0.899 0.790 0.841 36032 0 14 7 18 8 12 107 5 0.856
C5 0.932 0.945 0.938 0.887 0.847 0.866 36029 0 17 8 9 7 11 116 6 0.928
C6 0.944 0.931 0.938 0.891 0.834 0.862 36030 0 16 9 10 7 10 115 6 0.920
C7 0.979 1.000 0.989 0.861 0.866 0.864 36024 2 20 6 8 7 13 117 6 0.936
C8 0.968 0.906 0.936 0.883 0.771 0.823 36030 0 16 10 18 8 9 107 5 0.856

LRRpredictor 0.950 0.939 0.945 0.893 0.854 0.873 36030 0 16 7 9 7 12 116 6 0.928

CV 4

C1 0.885 1.000 0.939 0.936 0.916 0.926 33343 0 12 8 6 2 14 147 13 0.961
C2 0.923 0.884 0.903 0.961 0.900 0.929 33348 0 7 9 7 3 13 146 12 0.954
C3 0.818 0.901 0.858 0.851 0.932 0.890 33324 2 29 7 4 2 15 149 13 0.974
C4 0.931 0.848 0.888 0.971 0.868 0.917 33350 0 5 12 10 3 10 143 12 0.935
C5 0.907 0.920 0.913 0.906 0.916 0.911 33337 0 18 8 5 3 14 148 12 0.967
C6 0.921 0.907 0.914 0.951 0.926 0.939 33346 0 9 7 5 2 15 148 13 0.967
C7 0.983 1.000 0.992 0.922 0.926 0.924 33340 4 11 7 5 2 15 148 13 0.967
C8 0.944 0.846 0.892 0.970 0.858 0.911 33350 0 5 15 9 3 7 144 12 0.941

LRRpredictor 0.923 0.912 0.917 0.967 0.916 0.941 33349 0 6 8 6 2 14 147 13 0.961
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Table A1. Cont.

Dataset Classifier

In-Sample Out-Of Sample

Precision Recall F1-Score Precision Recall F1-Score
TN FP FN TP

Recall on Core(L) Only
- Non-LRR

Proteins
LRR

Proteins
N-Entry

(N)
Core
(L)

C-Exit
(C)

N-Entry
(N)

Core
(L)

C-Exit
(C)

Test

C1 0.900 0.997 0.946 0.874 0.880 0.877 35107 0 19 6 10 2 13 109 10 0.916
C2 0.962 0.956 0.959 0.941 0.847 0.891 35118 0 8 8 12 3 11 107 9 0.899
C3 0.882 0.896 0.889 0.852 0.847 0.850 35104 1 21 8 13 2 11 106 10 0.891
C4 0.940 0.874 0.906 0.907 0.840 0.872 35113 1 12 8 14 2 11 105 10 0.882
C5 0.895 0.934 0.914 0.862 0.873 0.868 35105 1 20 7 10 2 12 109 10 0.916
C6 0.940 0.901 0.920 0.928 0.860 0.893 35116 0 10 7 12 2 12 107 10 0.899
C7 0.990 1.000 0.995 0.827 0.827 0.827 35100 4 22 7 16 3 12 103 9 0.866
C8 0.942 0.874 0.906 0.920 0.840 0.878 35115 0 11 9 13 2 10 106 10 0.891

LRRpredictor 0.943 0.928 0.936 0.928 0.860 0.893 35116 0 10 7 12 2 12 107 10 0.899
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