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Connecting shear localization with the long-range
correlated polarized stress fields in granular
materials
Yinqiao Wang 1, Yujie Wang1 & Jie Zhang 1,2,3✉

One long-lasting puzzle in amorphous solids is shear localization, where local plastic defor-

mation involves cooperative particle rearrangements in small regions of a few inter-particle

distances, self-organizing into shear bands and eventually leading to the material failure.

Understanding the connection between the structure and dynamics of amorphous solids is

essential in physics, material sciences, geotechnical and civil engineering, and geophysics.

Here we show a deep connection between shear localization and the intrinsic structures of

internal stresses in an isotropically jammed granular material subject to shear. Specifically,

we find strong (anti)correlations between the micro shear bands and two polarized stress

fields along two directions of maximal shear. By exploring the tensorial characteristics and the

rotational symmetry of force network, we reveal that such profound connection is a result of

symmetry breaking by shear. Finally, we provide the solid experimental evidence of long-

range correlated inherent shear stress in an isotropically jammed granular system.
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Shear localization, in which local particle rearrangements
appear in narrow regions of a few inter-particle distances, is
a fascinating feature that not only appears in granular

materials1–4 but also is shared by many other amorphous solids5,
such as molecular glass6, metallic glass7, colloids8–10, emulsions11,
and foams12. It is not only crucial to material research but also
vital to the catastrophic failure of soils in geotechnical and civil
engineering13, and the control of geo-hazards14. Shear localiza-
tion in amorphous solids remains under intense debate due to the
disordered nature of materials; its ubiquity requires a general
explanation. One important issue is regarding the initial shear
localization when a homogeneous and isotropic amorphous solid
is subject to shear. In particular, experiments on sand2 and two-
dimensional (2D) granular materials4 show that when a strain
much smaller than the yield strain is applied, it appears imme-
diately, showing self-organized spatial structures. The nature of
cooperation remains elusive.

The cooperative particle rearrangement implies long-range
correlations, which are incorporated in microscopic theories15–18

in two different means. Both theories assume that local plastic
particle rearrangements act like Eshelby inclusions19, causing
anisotropic and long-range effects to their surrounding elastic
media. The first theory is formulated on a dynamical basis: an
avalanche of Eshelby inclusions leads to the shear-band
formation15–17. However, the recent granular experiment4

shows no compelling evidence of the correlation between local
stress drop and particle rearrangement, raising concerns of the
relevance of the theory to granular materials, especially at the
beginning of shear. The second theory is a mean-field theory
based on an energy-minimization principle18. However, it is
unclear how the force chains and dissipation in granular materials
would corporate with the theory. On the other hand, numerical
works20–22 observe that despite that the correlation of pressure is
short range, the spatial correlation of inherent shear stress has an
intrinsic quadrupolar anisotropy and a long-range power-law
decay ∝ r−d in d dimensions, which is explained by a scaling
argument assuming mechanical equilibrium and isotropy of
amorphous solids23. Moreover, this observation is explained
using field theories24–26. However, experimental evidence is still
missing. Besides, it is equally missing which role and to what
extent the long-range stress correlation may play in the shear
dynamics. Considering that the spatial correlation of stresses
provides a quantification of force network in granular materi-
als27,28, it is natural to conjecture the missing role played by force
network in the shear dynamics of isotropically jammed granular
materials.

In this article, we address experimentally the connection
between the shear localization and long-range correlated
pseudo stress-chains at the beginning of shear. To this purpose,
we study isotropically jammed granular materials, consisting of
bi-disperse photoelastic disks, subject to pure shear. We
observe that micro shear bands occur right at the start of shear,
generating those self-organized cooperative particle rearran-
gements. We find that there is a strong connection between the
particle rearrangements and the pseudo stress-chains, as can be
quantified by the correlation between the particle-rotation field
and the polarized stress field τ1(α) along the directions of
shear, α= ±45°. Further analysis on τ1(α) for arbitrary angles α
verify the infinite degeneracy of these long-range correlated
polarized stress, showing a continuous rotational symmetry.
Hence, we understand the deep connection between the
dynamics of shear localization and the structure of pseudo
stress-chains as symmetry breaking by shear. Moreover, we
observe that the chain-like characteristics of the polarized
stress τ1 is quantitatively captured in the scaling anisotropy of

its autocorrelation hCτ1
ðr; θÞi, which shows a power law decay

slower than r−2 along the chain direction and faster than r−2

perpendicular to the chain direction. Surprisingly, the azi-
muthal averaged harmonic projection of the autocorrelation
function

h�Cτ1
ðrÞi ¼ π�1

Z 2π

0
dθ cosð2θÞhCτ1

ðr; θÞi ð1Þ

decays as a power law of r−2, which is still consistent with the
continuum description of the stress chains in the theories23–26.
Finally, we verify that the autocorrelations of inherent shear
stress τ2 show a quadrupole-like pattern with a power law
decay of r−2, providing the experimental evidence of the the-
oretical predictions23–26.

Results
Initial shear localization. We first prepare an isotropic jammed
packing using a biaxial apparatus shown in Fig. 1a, then apply
pure shear quasi-statically in steps by compressing along x axis
and expanding along y axis while keeping the area fixed. More
experimental details can be seen in “Methods”. Surprisingly, shear
localization appear at a strain γ= 0.75% much smaller than the
yield strain γy ~ 3%, as shown in Fig. 1g. Here we use particle
rotations to characterize shear localization, whose pattern is
similar with local shear strain and D2

min
29, as shown in the Sup-

plementary Fig. 1. Local shear strain describes the affine defor-
mation of the nearest neighbors of a particle, and D2

min quantifies
the degree of the nonaffine displacement of the particle relative to
its nearest neighbors by subtracting its affine displacement. Par-
ticles rotating clockwise tend to align cooperatively in bands
along the 45° direction, whereas those rotating counterclockwise
tend to align in bands along the −45° direction, which leads to a
quadrupole-like long-range correlator of local strain, as shown in
the Supplementary Fig. 2, consistent with previous experiments of
colloids8–10 and 3D granular materials2.

In contrast, spatial distributions of local stress changes are
rather homogeneous without obvious correlation with particle
rearrangements, as shown in Supplementary Fig. 1. As discussed
in detail in the introduction, microscopic theories15–18 can not
fully explain the emergent behaviors of shear localization seen in
Fig. 1g, which shows organized spatial structures of particle
rotation with long-range correlation. It is a great challenge to
understand the emergence of those self-organized, cooperative
particle rearrangements in the seemingly disordered granular
material. Recall that recent simulations and theories show the
exhibition of long-range correlated shear stress of inherent
structures in amorphous solids, including granular materials23–26,
though no experimental evidence has been found yet, in
particular, not in granular materials. If it does exist, such as in
the force-chain network shown in Fig.1b, it is urgent to unravel
the possible connection between the force network structure
and the particle dynamics.

Polarized stress fields. To reveal this connection, we first define
the Cauchy stress tensor of an individual particle in the initial
state,

σ i �
σ i;xx σ i;xy
σ i;yx σ i;yy

" #
� 1

Si

X
j

rij � f ij ð2Þ

here rij is the position vector from the center of disk i to the
contact point between disks i and j, fij is the contact-force vector
between disks i and j, Si is the area of the Voronoi cell of disk i,
the operator ’ ⊗ ’ represents the dyadic product of two vectors,
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and the index j runs over all disks j in contact with disk i. In an
arbitrary Cartesian axes ðx0; y0Þ, of an angle α with respect to the
laboratory axes (x, y), the stress tensor is given by,

σ 0
i ¼

cos α sin α

� sin α cos α

� �
σ i

cos α � sin α

sin α cos α

� �
: ð3Þ

Correlation between structure and dynamics. Remarkably, we
found strong correlations between the micro-bands and the
spatial distributions of normal stress along ±45°, as shown in
Fig. 2a. We denote the normal stress along α direction as the
polarized stress τ1;iðαÞ ¼ σ i;x0x0 , showing chain-like structures,
which we call pseudo stress-chains. We denote the field of τ1,i(α)
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Fig. 1 Schematic of the experimental setup and different types of images recorded. a Experimental setup. b A snapshot of force chains in an isotropically
jammed state (an initial state before shear). A yellow rectangle draws a region that is amplified in c. d A corresponding computer reconstructed image
using the measured vector contact forces. e A corresponding normal image of particle configuration. f A corresponding UV image for tracking particle
rotations. g Spatial distribution of particle rotations, measured from the initial sate γ= 0 in b to γ= 0.75%. The sizes of red/blue circles are proportional to
the magnitudes of counterclockwise/clockwise rotations. Scale bar= 10d, where d= 1 cm, is the diameter of a small particle.
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Fig. 2 Anti-correlation between particle rotations and polarized stress fields. a A superposition of the polarized stress fields τ1(α) with α= ±45° and the
counterclockwise(red circles)/clockwise(blue circles) particle rotations, the same as in Fig. 1g. In background, the Voronoi cells of disks are painted
according to the gray scales of τ1,i(α) of each disk i. Scale bar= 10d. b The correlations C(τ1,i(α), R±) between particle rotations (R+: counterclockwise, R−:
clockwise) and τ1,i(α) versus angle α. The bands indicate standard errors of six independent runs.
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of all disks i as τ1(α). The micro bands, i.e. those cooperative
particle motions, just locate within the inter-spaces of pseudo
stress-chains in the two polarized stress fields τ1(α) with angles
α= ±45° along directions of maximal shear. At the same time,
other quantities, including free volume, contact number and
deviatoric shear stress, show weak correlations with the micro-
bands, as shown in Supplementary Fig. 3. To quantify the cor-
relations, we compute the correlation function C(τ1,i(α), R±)

following ref. 30. We choose the particles of top 10% (counter-
clockwise R+ and clockwise R−) rotations, then the median value

τm;R±
1 ðαÞ of the polarized stress of these particles and the
cumulative distribution functions (CDF) of τ1,i(α) give the cor-

relation as Cðτ1;iðαÞ;R± Þ ¼ 1� 2 � CDFðτm;R ±
1 ðαÞÞ. The results

are shown in Fig. 2b, where the peak values are around α= ±45°,
as expected. In the above calculation of the correlation functions,
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Fig. 3 Spatial distributions of polarized stress fields and their autocorrelation functions. a Spatial distributions of six polarized stress fields τ1(α). Scale
bar= 10d. b Spatial autocorrelation map hCτ1

ðr; θÞi of coarse-grained polarized stress τ1(α), 〈 ⋯ 〉 denotes ensemble average over 100 configurations and
different polarized angles α. Here, 〈C〉 denotes correlation functions. c Cuts of hCτ1

ðr; θÞi along θ= 0, π/2 and autocorrelation function of coarse-grained
pressure h�CpðrÞi, the over bar denotes average over θ. d Log-log plots of hCτ1

ðr; θ ¼ 0Þi and �hCτ1
ðr; θ ¼ π=2Þi. The solid line ∝ r−2 is guide to the eye.

e The azimuthal averaged autocorrelation function of τ1, h�Cτ1
ðrÞi. The error bars represent the standard errors. The black dashed line indicates a power law

fit of h�Cτ1
ðrÞi for r > 3d.
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changing the cutoff (top 10%) of the particle rotation has little
influence on the results, as shown in Supplementary Fig. 4.

Symmetry and long-range characteristics of stress fields. From
the symmetry perspective, the two polarized stress fields of
τ1(α) along α= ±45° are by no means special owing to the
rotational symmetry of the isotropically jammed packing as
shown in Fig. 1b. Six more polarized stresses τ1(α) of
α= 0°, 30°, 60°, 90°, 120°, 150° are shown in Fig. 3a, showing
filamentary, pseudo stress-chains preferentially aligned along
the orientation of polarized angle α. This long-range character
is quantified using an autocorrelation function Cτ1

ðr; θÞ of
coarse-grained polarized stress21,31, showing a dipolar sig-
nature in Fig. 3b, similar with the pressure or force magnitude
autocorrelations in shear-jammed granular systems27,32.
Compared to the short-range correlation of local pressure, as
shown in Fig. 3c, Cτ1

ðr; θÞ decays much slower along a cut in
the dipolar direction. One prominent feature of the correlator
of polarized stress is the anisotropy of the scaling property, as
shown in the log-log plot in Fig. 3d: the correlation function
decays slower than r−2 along the direction of the stress chains,
i.e. θ= 0; it decays much faster than r−2 along the direction
perpendicular to the direction of stress chains, i.e. θ= π/2.
Nonetheless, a power-law r−n fit of h�Cτ1

ðrÞi, yields an exponent
n= 1.98 ± 0.03 as shown in Fig. 3e, which indicates that an
azimuthally averaged harmonic projection of the correlation
function does show the scaling consistent with the field theo-
retical predictions of n= 2 in 2D systems for the description of
stress chains in the continuum limit23–26. A finite-size analysis
of h�Cτ1

ðrÞi is given in the Supplementary Fig. 5a. By definition,

hτ1;iðαÞi ¼ ðPiτ1;iðαÞSiÞ � ð
P

iSiÞ�1 ¼ p for an isotropically
jammed packing, where Si is the Voronoi area of disks i. Here
p is the pressure of whole system. Owing to the continuous
rotational symmetry, there is an infinite degeneracy of such
long-range correlated polarized stress fields τ1(α). Thus, the
emergence of shear localization, i.e. micro bands along ±45°,
can be understood as the breaking of the continuous rotational
symmetry by shear.

Compared to the polarized stress τ1,i(α), in literature23–26,
much attention has been paid to the quantity τ2,i(α), the so-called
inherent shear stress, due to the anisotropy and long-range
characteristics in its spatial autocorrelation despite that no
experimental evidence has been reported thus far23–26. First note
that the τ2,i(α) is directly related to the polarized stress τ1,i(α) at

individual particles by τ2,i(α)= τ1,i(α)− τ1,i(α+ (π/2)). Next, we
present the spatial autocorrelation map of shear stress τ2,i(α),
which indeed supports the theories23–26. The autocorrelation map
clearly shows a quadrupole-like pattern with cosð4θÞ symmetry,
as shown in Fig. 4a, consistent with theories23–26. To verify the
power-law decay of the correlation function, cuts along the
θ= 0, π/4 lobes and an appropriate spherical harmonics
projection

h�Cτ2
ðrÞi ¼ π�1

Z 2π

0
dθ cosð4θÞhCτ2

ðr; θÞi ð4Þ

are shown in Fig. 4b. A power-law r−n fit of h�Cτ2
ðrÞi give the

exponent n= 1.97 ± 0.08, consistent with the theoretical predic-
tion n = 2 in 2D system23–26. A finite-size analysis of h�Cτ2

ðrÞi is
given in Supplementary Fig. 5b. The deviation within r ≈ 6d,
corresponds to the breakdown of continuum medium33,34.

Discussion
To conclude, we find the collective particle rearrangements of the
emergent behavior of shear localization in an isotropically jam-
med granular material are closely related to the pseudo stress-
chains in the polarized stress fields τ1(α) for α along the directions
of shear. The emergence of shear localization is associated with
the breaking of the continuous rotational symmetry by shear.
This mechanism is based on symmetry and the long-range
character of internal stress without invoking the Eshelby
mechanisms, which could also be applied to other amorphous
solids. Statistically, the long-range characteristic of the internal
stress are revealed from either the spatial correlations of polarized
stress τ1 or the inherent shear stress τ2, which provides the direct
experimental evidence of theoretical predictions23–26. The present
work serves as a starting point to understand more complicated
dynamical processes of the evolution of shear localization. As
strain increases, especially near the yielding, we suspect that
Eshelby processes may contribute to the evolutions of shear
localization and the development of global shear bands, which
will be an important subject in future studies.

Methods
Experimental details. In this experiment, we use a biaxial apparatus to apply
isotropic compression or pure shear on a two-dimensional granular system. The
apparatus mainly consists of a rectangular frame mounted on top of a powder-
lubricated glass plate with four walls that can move symmetrically with a motion
precision of 0.1 mm while keeping the center of mass fixed. The basal friction
coefficient is around 0.3. We estimate that the force magnitude of the basal friction
is ~36 times smaller compared to the typical contact-force magnitude. Hence the
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basal friction is negligible. The rectangular area is filled with a random mixture of
2680 bi-disperse photoelastic disks (Vishay PSM-4) of with diameters of 1.4 cm
and 1.0 cm and a number ratio of 1:1 to create various unjammed random initial
configurations. The four narrow bands between these photoelastic disks and mobile
walls are padded using a set of 300 small and 300 large bi-disperse Teflon-taped
metal disks of the same sizes of the photoelastic disks. The friction coefficient is
<0.1 between the Teflon-taped metal disks and the Teflon-taped mobile walls,
which eliminates substantially the collective rotational motion of individual disks
near the boundaries. Next, we apply isotropic compression to achieve packing at
particular pressure levels. To minimize the potential inhomogeneity of force chains
in the jammed packing, we constantly apply mechanical vibrations in random
directions of the horizontal plane before the packing fraction ϕ (the ratio between
the area of disks and that of the system) exceeds the jamming point ϕJ ≈ 84.0% of
frictionless particles35. At the top, an array of 2 times 2 high-resolution (100 pixel
per cm) cameras are aligned and synchronized. Fig. 1b shows one merged image of
force-chain network of an isotropic jammed packing based on the pre-calibration
of four cameras. The packing in Fig. 1b is confined in a square domain of 67.2 cm
times 67.2 cm. Here, ϕ ≈ 84.4%, the mean coordination number is around 4.1, and
the pressure is around 11 Nm−1.

We then apply pure shear quasi-statically in steps by compressing along x axis
and expanding along y axis while keeping the area fixed. The step size is 0.5 mm,
resulting in the ~0.15% change of the strain. At each step, three different images
are recorded as shown in Fig. 1. Disk positions are obtained using the normal
image. Hough transformation is used to detect the particle position with a sub-pixel
resolution. A UV image is taken for tracking individual particle rotation during
shear, whose uncertainty is less than 0.02 rad. Contact forces are analyzed from the
force-chain image using force-inverse algorithm, which generates a computed
force-chain image based on an initial guess of contact forces, and then iterate
contact forces to minimize the difference between experimental and computed
force-chain image27,36,37. The relative error of contact force measurement is
around 3–4% for the typical force magnitude, and the accuracy of contact forces is
checked by plotting a computed image for comparison as shown in Fig. 1d.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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