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Prognostic value of texture analysis 
from cardiac magnetic resonance 
imaging in patients with Takotsubo 
syndrome: a machine learning 
based proof‑of‑principle approach
Manoj Mannil1,7, Ken Kato2,7, Robert Manka1,2,3, Jochen von Spiczak1, Benjamin Peters1, 
Victoria L. Cammann2, Christoph Kaiser4, Stefan Osswald4, Thanh Ha Nguyen5, 
John D. Horowitz5, Hugo A. Katus6, Frank Ruschitzka2, Jelena R. Ghadri2, Hatem Alkadhi1,7 & 
Christian Templin2,7*

Cardiac magnetic resonance (CMR) imaging has become an important technique for non-invasive 
diagnosis of takotsubo syndrome (TTS). The long-term prognostic value of CMR imaging in TTS 
has not been fully elucidated yet. This study sought to evaluate the prognostic value of texture 
analysis (TA) based on CMR images in patients with TTS using machine learning. In this multicenter 
study (InterTAK Registry), we investigated CMR imaging data of 58 patients (56 women, mean age 
68 ± 12 years) with TTS. CMR imaging was performed in the acute to subacute phase (median time 
after symptom onset 4 days) of TTS. TA of the left ventricle was performed using free-hand regions-
of-interest in short axis late gadolinium-enhanced and on T2-weighted (T2w) images. A total of 608 
TA features adding the parameters age, gender, and body mass index were included. Dimension 
reduction was performed removing TA features with poor intra-class correlation coefficients (ICC ≤ 0.6) 
and those being redundant (correlation matrix with Pearson correlation coefficient r > 0.8). Five 
common machine-learning classifiers (artificial neural network Multilayer Perceptron, decision tree 
J48, NaïveBayes, RandomForest, and Sequential Minimal Optimization) with tenfold cross-validation 
were applied to assess 5-year outcome including major adverse cardiac and cerebrovascular events 
(MACCE). Dimension reduction yielded 10 TA features carrying prognostic information, which were all 
based on T2w images. The NaïveBayes machine learning classifier showed overall best performance 
with a sensitivity of 82.9% (confidence interval (CI) 80–86.2), specificity of 83.7% (CI 75.7–92), and an 
area-under-the receiver operating characteristics curve of 0.88 (CI 0.83–0.92). This proof-of-principle 
study is the first to identify unique T2w-derived TA features that predict long-term outcome in patients 
with TTS. These features might serve as imaging prognostic biomarkers in TTS patients.
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CI	� Confidence interval
ECG	� Electrocardiogram
ICC	� Intraclass correlation coefficients
InterTAK	� International Takotsubo
IQR	� Interquartile ranges
GLCM	� Grey-level co-occurrence matrix
LGE	� Late gadolinium enhancement
LV	� Left ventricle
MACCE	� Major adverse cardiac and cerebrovascular events
MI	� Myocardial infarction
PRC	� Precision recall curve
RLM	� Run-length matrix
ROC	� Receiver operating characteristics
ROI	� Regions-of-interest
SMO	� Sequential minimal optimization
T2w	� T2-weighted images
TA	� Texture analysis
TTS	� Takotsubo syndrome

Takotsubo syndrome (TTS) or “broken heart” syndrome is an acute heart failure condition1,2. Although TTS 
has been classically recognized as a relatively benign condition, patients with TTS experience a wide range of 
outcomes from benign to life-threatening3,4. Recent studies demonstrated that TTS patients may have outcomes 
comparable to patients with acute coronary syndrome (ACS)4,5.

Cardiac magnetic resonance (CMR) imaging has gained an emerging role in non-invasive TTS diagnostics6, 
and it is regarded as the gold standard for differentiation of TTS from acute myocardial infarction7. Cine imaging 
allows for visualization of regional wall motion abnormalities that are characteristic for the disease1. T2-weighted 
(T2w) studies are able to detect myocardial oedema, which is a feature in the acute phase of TTS representing 
reversible myocardial injury and which matches the distribution of left ventricular (LV) dysfunction6,8. Myo-
cardial oedema has been reported to be associated with repolarization abnormalities represented as electrocar-
diographic (ECG) T-wave inversion in patients with TTS9. Beyond T2w images, T1-weighted images 10–15 min 
after the administration of gadolinium are acquired for assessment of late gadolinium enhancement (LGE). Still, 
it remains controversial whether and to which extent LGE is present in patients with TTS1,8. However, if present, 
LGE in TTS has been described as being less intense than in patients with myocardial infarction (MI)6,10. It was 
discussed that LGE in the sub-acute phase of TTS may be associated with severity and prolonged recovery from 
the disease11.

Radiomics represents an emerging field of imaging research being characterized by conversion of imaging data 
into a highly dimensional mineable feature space generated by automatic data characterization algorithms12. In 
this context, texture analysis (TA) refers to an objective and quantitative set of metrics quantifying the texture of 
images13. These metrics can be used for diagnosing abnormalities in images that may not be seen by the human 
eye14,15. Because handling of such large amounts of data requires new, non-conventional statistical approaches, 
machine learning algorithms need to be applied. They facilitate mining of large amounts of data for identification 
of meaningful patterns and relationships between variables, potentially giving rise to novel imaging biomarkers13.

While CMR imaging in TTS is accurate in making the diagnosis through assessment of regional and global 
LV dysfunction16, to the best of our knowledge, no TA study so far has evaluated the prognostic value of CMR 
imaging in patients with TTS. Given that the risk of adverse events in TTS has been associated with the extent 
and severity of LV dysfunction5,17, we hypothesized that TA of the LV myocardium in patients with TTS might 
disclose abnormalities being predictive of future events. Thus, the aim of the present study was to evaluate the 
prognostic value of TA in CMR imaging in patients with TTS by using machine learning.

Methods
Patients and inclusion criteria.  Patients with TTS were enrolled from the International Takotsubo 
(InterTAK) Registry, which is an observational, prospective and retrospective registry established in 2011 at 
the University Hospital Zurich, as previously described5,18. TTS was defined based on the InterTAK Diagnos-
tic Criteria2. We included 106 patients from the InterTAK Registry who underwent CMR imaging. Twenty-
four of these 106 patients (23%) were excluded because CMR imaging was not performed during the acute or 
subacute phase of TTS (≤ 14 days after symptom onset). Nineteen (18%) patients were excluded because CMR 
did not include all required sequences (T2w, T1Gd), and 5 (5%) patients were excluded because T2w and/or 
T1Gd images were of non-diagnostic image quality. When eligibility for study inclusion was unclear, cases were 
reviewed by core members at the University Hospital Zurich in order to reach a consensus.

Finally, a total of 58 patients with a diagnostic CMR imaging examination including both T2w and LGE 
images performed within 14 days after disease onset were included from four different centers (Zurich, Switzer-
land; Basel, Switzerland; Heidelberg, Germany; and Adelaide, Australia). Clinical data including demographics, 
vital signs, cardiovascular risk factors, comorbidities, laboratory values, and results from ECG were collected 
from hospital databases. Morphological patterns of LV wall motion abnormality in TTS were classified as typi-
cal (apical ballooning) or atypical type (midventricular, basal, or focal ballooning)5,19,20. Follow-up information 
was obtained through either telephone interviews, clinical visits, or medical records. The study protocol was 
reviewed by the respective local ethics committees (Ethikkommission Zürich) or investigational review boards 
at each collaboration site. All methods were carried out in accordance with relevant guidelines and regulations. 
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All experimental protocols were approved by the Ethikkommission Zürich. At all sites where informed consent 
was required, formal written consent was obtained from each patient.

Study outcome.  Clinical outcome measure included the occurrence of major adverse cardiac and cerebro-
vascular events (MACCE). MACCE was defined as a composite of death from any cause, myocardial infarction, 
stroke or transient ischemic attack, or recurrence of TTS. All included patients were evaluated for the presence 
of MACCE over a 5-year follow-up period after the TTS index event. The outcome was noted in binary form and 
was used as outcome measure for machine learning classification.

Cardiac MR imaging protocol.  CMR imaging was performed on both 1.5 (Intera/Achieva, Philips Health-
care, Best, The Netherlands; Avanto, Siemens Healthineers, Forchheim, Germany) and 3.0 T (Skyra, Siemens 
Healthineers) scanners. The standard protocol included: (1) ECG-gated balanced steady-state free precession 
(SSFP) cine images in four standard geometries (i.e., short axis, 2-chamber, 3-chamber, and 4-chamber view); 
(2) T2w triple short-tau inversion recovery images in short axis geometry; (3) LGE imaging 10–15 min after 
intravenous administration of a bolus of gadolinium-based contrast agent; 0.2 mmol/kg.

Image postprocessing.  All images were anonymized and stored in digital imaging and communications 
in medicine (DICOM) file format for further processing. Gray level normalization was performed between the 
mean and three standard deviations (“± 3σ” method) helping to correct for small technical variations21. Certain 
TA features require identical spatial resolution and pixel size to be comparable15. Thus, all images were rescaled 
to a uniform in-plane resolution of 0.390625 × 0.390625 mm2 applying a custom MATLAB script (MathWorks, 
Natick, USA). This resolution was chosen equal to a standard native resolution with a field-of-view of 200 × 200 
mm2 and matrix size of 512 × 512, which was chosen in consistency with former studies in this field15,22.

Texture analysis.  TA was performed using a freely available software package (MaZda, version 4.6, Insti-
tute of Electronics, Technical University of Lodz, Lodz, Poland)23.

Short-axis cine images showing the largest extent of LV dysfunction were identified for each patient. For TA, 
corresponding T2w and LGE images were used. On these images, polygonal regions-of-interest (ROIs) includ-
ing the entire LV were drawn by MM and KK (blinded for review) for determining the inter-reader agreement 
of TA. One reader (MM) repeated ROI segmentation after two weeks for determining intra-reader agreement. 
An illustration of TA in TTS is provided in Fig. 1.

Overall, 608 (two times 304) TA features were computed per ROI originating from six main categories: (1) 
histogram (mean, variance, skewness, kurtosis), (2) grey-level co-occurrence matrix (GLCM) at five interpixel 
distances (angular second moment, contrast, correlation, entropy, sum entropy, sum of squares, sum average, 
sum variance, inverse different moment, difference entropy, difference variance), (3) run-length matrix (RLM) at 
four angles: horizontal, vertical, at 45° and at 135° (run-length non-uniformity, grey-level non-uniformity, long 
run emphasis, short run emphasis, fraction of image in runs), (4) absolute gradient (gradient mean, variance, 
skewness, kurtosis, non-zeros), (5) autoregressive model (teta 1 to 4, sigma), and (6) wavelet transform (Energy 
of wavelet coefficients in low-frequency sub-bands, horizontal high-frequency sub-bands, vertical high-frequency 
sub-bands, diagonal high-frequency sub-bands) (Table 1)23.

Texture analysis feature selection.  Feature selection was performed using the 608 TA features and add-
ing the three non-TA features age, gender, and body mass index (BMI). All features showing a poor intra- and 
inter-reader agreement were removed from the present analysis. Intraclass correlation coefficients (ICC) were 
calculated for each pair of variables. According to Landis and Koch, ICCs of 0.61–0.8 were interpreted as sub-
stantial and 0.81–1.00 as excellent agreement24. TA features with ICC ≤ 0.6 were excluded from further analy-
ses. Additionally, we used a correlation matrix discarding those TA features, which showed a high correlation 
defined by a Pearson correlation coefficient r > 0.8.

Statistical analysis.  Continuous variables were expressed as means ± standard deviations or medians with 
interquartile ranges (IQR), as appropriate. Categorical variables were provided as frequencies or percentages.

After feature selection, five commonly applied machine learning classifiers were used: Artificial Neural Net-
work (ANN), decision tree classifier J48 (C4.5), NaïveBayes, RandomForest, and Sequential Minimal Optimiza-
tion (SMO).

In detail, the ANN used is based on Multilayer Perceptron, a classifier that uses backpropagation to classify 
instances with n = (number of attributes + classs)/2 hidden layers, a default learning rate of 0.3, and a momentum 
of 0.2. NaïveBayes represents a probabilistic classifier based on Bayes’ theorem. RandomForest represents a meta-
estimator that fits multiple decision tree classifiers on various sub-samples of the dataset and uses averaging to 
improve its predictive accuracy. J48 is based on C4.5 and generates a pruned decision tree. SMO implements 
sequential minimal optimization for training a support vector classifier.

In order to account for overfitting, we used tenfold cross validation splitting the dataset into ten parts ran-
domly. During the course of ten iterations each part was once used for testing, while the remaining nine parts 
were used for algorithm training. Final results represented the averaged findings of all ten calculations. Machine 
learning classifier performance was compared by means of sensitivity, specificity, precision, recall, F-Measure, 
receiver operating characteristics (ROC) analysis with calculation of the area-under-the-curve (AUC), and pre-
cision recall curve (PRC).
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Figure 1.   Cardiac Magnetic Resonance Imaging and Texture Analysis. (A) Schematic depiction of acute 
takotsubo syndrome with characteristic ballooning of the left ventricle in two-chamber longitudinal view (top 
left image). The dotted line in green marks the plane for short axis cardiac magnetic resonance image acquisition 
(top right) at the point of maximal ventricular wall abnormality. After placement of a region-of-interest within 
the myocardium, a matrix of contained pixel intensities is generated (bottom left). Derived from inter-pixel 
relationships, various texture analysis features can be computed. Grey-Level co-occurrence matrices (GLCM) for 
0° (bottom center) and 45° (bottom right) are shown. Exemplarily, the combination of two consecutive pixels with 
value ‘1’ is found twice in the signal intensity matrix and therefore marked as ‘2’ in the GLCM (0°) matrix at 
position row = 1 and colums = 1 (red box). Similarly, two consecutive pixels with value ‘1’ and ‘3’ are found once 
and therefore marked as ‘1’ in the GLCM (0°) matrix at position row = 1 and column = 3 (blue box). The diagonal 
runs of values ‘5’ and ‘2’ are found twice in the signal intensity matrix and therefore marked as ‘2’ in the GLCM 
(45°) matrix at position row = 5 and column = 2 (green box). (B) 76-year old female patient with acute onset of 
takotsubo syndrome with basal oedema (arrow) in a fat saturated T2w short axis dark-blood image of the left 
ventricle. Image on the right depicts the corresponding map of the GLCM S(4,-4)DifVarnc feature.
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Differences among single TA features between TTS patients with and without MACCE were compared using 
a Mann–Whitney U Test. Differences in AUC were compared according to Hanley and McNeil25,26. A two-tailed 
p value below 0.05 was considered to indicate statistical significance.

Data mining and machine learning algorithms were performed using open-source software (WEKA, Univer-
sity of Waikato, Waikato, New Zealand). All remaining statistical analyses were conducted using commercially 
available software (SPSS 23.0, IBM, Armonk, New York).

Results
Study population.  Fifty-eight patients with the diagnosis of TTS and with CMR examination with diag-
nostic image quality were included in the present study. In this cohort, 56 (96.6%) were women and the mean 
age was 68.4 ± 11.8 years. Other baseline characteristics of these patients are summarized in Table 2. CMR imag-
ing was performed within a median of 4 days (IQR, 2–6 days) after index TTS event. Five-year follow-up was 
obtained in all 58 patients. Long-term MACCE rate after 5-year follow-up was 10.3%.

Dimension reduction.  464 of the 611 (76%) texture features were removed because of low ICCs. Use of the 
correlation matrix to avoid redundancy led to a further dimension reduction to 10 TA features. These remaining 
features were exclusively derived from T2w images, while all T1Gd-derived features as well as all non-texture 
features were discarded due to poor reliability and/or redundancy. The ten selected TA features showed a sub-
stantial inter-reader (ICC 0.75 ± 0.1, range 0.7–0.99) and excellent intra-reader agreement (ICC 0.88 ± 0.1, range 
0.7–0.99).

5‑year MACCE classification results.  After ten-fold cross validation, the machine learning classifier 
NaïveBayes showed a predictive ability of 5-year MACCE with a sensitivity of 82.9% (confidence interval (CI) 
80–86.2), specificity of 83.7% (CI 75.7–92) and AUC of 0.88 (CI 0.83–0.92). While all four remaining classifiers 
showed higher sensitivities, both the specificity and the AUC were highest for the NaïveBayes classifier. Obtained 
precision was 0.88 (CI 0.83–0.92) and PRC area was 0.98 (CI 0.97–0.99). Detailed results are listed in Table 3.

Comparison of the AUC according to Hanley and McNeil26 showed significantly higher AUC values for the 
NaïveBayes classifier (0.88, 0.83–0.92) as compared to the RandomForest classifier showing the second highest 
AUC (0.8, 0.74–0.86])(p < 0.05). A graphical depiction of the ROC curves is provided in Fig. 2.

The Mann–Whitney U test showed significant differences (p < 0.01) between the ten aforementioned TA fea-
tures in TTS patients with positive and negative 5-year MACCE. Box-whisker plots of the selected TA features 
are shown in Fig. 3.

Discussion
The present multicenter study identified for the first time TA features derived from T2w CMR images that pre-
dict long-term outcome in patients with TTS. A total of 304 texture features per CMR image and 3 non-texture 
features were analyzed, giving rise to a total of 35′438 ((2 × 304) + 3) × 58) values in the 58 TTS patients for clas-
sification of 5-year MACCE. We assessed the reproducibility as well as the redundancy of TA features by means 
of ICCs and a correlation matrix, respectively. After dimension reduction we identified 10 TA features carrying 
potential prognostic information in TTS.

While the exact underlying mechanism of TTS is unknown, it is suggested that TTS has a multifactorial etiol-
ogy, involving the vascular, endocrine, and central nervous system6. Furthermore, it has been hypothesized that 
high intraventricular pressure may precipitate perfusion abnormalities and even regional myocardial ischemia6. 
Myocardial oedema has been shown to be a marker of abnormal systolic function and tissue damage in patients 
with TTS6. It can be detected by use of T2w CMR image sequences27 and the extent thereof is known to correlate 
with disease severity in terms of regional contractile disturbances as well as release of catecholamines and NT-
proBNP in TTS28. In line with this, our study findings suggest a prognostic value of T2w-derived TA features in 
patients with TTS indicating a link between initial LV myocardial dysfunction and long-term outcome. These 
T2-related changes possibly reflect an inflammatory component and/ or increased vascular permeability29,30.

Table 1.   Summary of all computed texture analysis categories with corresponding features.

Texture category Texture feature

Histogram Mean, variance, skewness, kurtosis

Grey-level co-occurrence matrix (GLCM)
(computed for four directions [(a,0), (0,a), (a,a), (0,-a)] at five inter-
pixel distances a = 1–5; 6 bits/pixel)

Angular second moment, contrast, correlation, entropy, sum entropy, 
sum of squares, sum average, sum variance, inverse different moment, 
difference entropy, difference variance

Run-length matrix (RLM)
(computed for four angles [vertical, horizontal, 0°, and 135°]; 6 bits/
pixel)

Run-length non-uniformity, grey-level non-uniformity, long run 
emphasis, short run emphasis, fraction of image in runs

Absolute gradient
(4 bits/pixel) Gradient mean, variance, skewness, kurtosis, and non-zeros

Autoregressive model Teta 1–4, sigma

Wavelet transform
(calculated for seven subsampling factors n = 1–7)

Energy of wavelet coefficients in low-frequency sub-bands, horizontal 
high-frequency sub-bands, vertical high-frequency sub-bands, diago-
nal high-frequency sub-bands
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As mentioned above, the presence and extent of LGE in patients with TTS is still discussed 
controversially1,6,8,10,11, which is why we also included LGE images into our analyses. Interestingly, the dimension 
reduction approach discarded all TA features derived from LGE images—a finding contrary to studies discussing 
the presence and severity of LGE as a marker for poor prognosis.

As there is a known sex and age preference in TTS towards females between the ages of 62 and 76 years31 and 
evidence has accumulated that certain features including age, sex, and BMI are related to delayed TTS recovery32, 
we included also these three non-TA parameters to our analysis. However, our proof-of-principle analysis showed 
that these parameters did not carry prognostic information regarding the occurrence of 5-years MACCE. In our 
multicenter cohort, the predictive model was exclusively based on imaging. The ten TA features that enabled the 

Table 2.   Baseline characteristics of patients with takotsubo syndrome. Data are presented as number 
(percentage) of patients unless otherwise indicated. BMI body mass index, ECG electrocardiogram, IQR 
interquartile range, SD standard deviation, ULN upper limit of the normal range.

Characteristics N = 58

Demographics

Female sex 56 (96.6)

Age, mean (SD), y 68.4 (11.8)

BMI, mean (SD), kg/m2 24.4 (4.3), n = 29

Triggers

Physical trigger 20 (34.5)

Emotional trigger 24 (41.4)

Both emotional and physical trigger 3 (5.2)

No evident trigger 11 (19.0)

Takotsubo type

Apical type 30 (51.7)

Cardiac biomarkers on admission, median (IQR)

Troponin, fold ULN 8.0 (3.7–16.3), n = 53

Creatine kinase, fold ULN 1.20 (1.0–1.5), n = 40

ECG on admission

ST-segment elevation 13 of 39 (33.3%)

Vital signs, mean (SD)

Heart rate, beats/min 85.0 (19.7), n = 28

Systolic blood pressure, mmHg 131.1 (38.3), n = 24

Diastolic blood pressure, mmHg 80.2 (18.4), n = 21

Hemodynamics, mean (SD)

Left ventricular ejection fraction, % 40.2 (10.2), n = 41

Cardiovascular risk factors

Arterial hypertension 31 (53.4)

Current smoking 6 (10.3)

Diabetes mellitus 10 (17.2)

Hypercholesterolemia 21 (36.2)

Table 3.   Detailed results of machine learning-based classification of 5-year major adverse cardiovascular and 
cerebral events [95% confidence interval]. ANN Artificial neural network (multilayer perceptron), AUC​ area-
under-the-curve, PRC precision recall curve, ROC receiver operator characteristics, SMO sequential minimal 
optimization.

Machine learning classifier Sensitivity % Specificity % Precision Recall F-Measure AUC from ROC curve analysis PRC Area

ANN 85.2 [82.9–87.6] 17.4 [15–20] 0.94 [0.9–0.97] 0.85 [0.83–0.88] 0.9 [0.86–0.94] 0.79 [0.74–0.84] 0.94 [0.93–0.96]

J48 (C4.5) 85.1 [82.5–87.6] 17.3 [15–20] 0.94 [0.9–0.98] 0.85 [0.82–0.88] 0.9 [0.85–0.94] 0.51 [0.48–0.53] 0.84 [0.81–0.86]

NaïveBayes 82.9 [80–86.2] 83.7 [75.7–92] 0.88 [0.83–0.92] 0.83 [0.8–0.86] 0.89 [0.86–0.91] 0.88 [0.83–0.92] 0.98 [0.97–0.99]

RandomForest 89.4 [87.4–91] 31.7 [23.3–40] 0.98 [0.96–1] 0.89 [0.87–0.91] 0.96 [0.94–0.98] 0.8 [0.74–0.86] 0.94 [0.92–0.96]

SMO 90 [88.4–91.6] 16.7 [16.7–16.7] 1 [1–1] 0.9 [0.88–0.92] 1 [1–1] 0.5 [0.5–0.5] 0.83 [0.81–0.86]
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machine learning based prediction of MACCE were all derived from higher level TA features of the grey-level 
co-occurrence matrix and the autoregressive model, whose characteristics are invisible to the human eye15.

Study limitations.  The following study limitations must be acknowledged. First, this was a retrospective 
analysis of prospectively acquired data from a multicenter trial. Due to the use of multiple scanners, image post-
processing with regard to pixel spacing was performed. Larger datasets are likely to improve the performance of 
supervised classifiers, decrease overfitting of the used algorithms and allow for implementation of deep learn-
ing, in which manual 2D image segmentation is no longer required. Second, the degree of myocardial edema 
detected by T2W images might change over time. Thus, our results need to be confirmed by future prospective 
studies. Finally, our study does not provide the causal link between abnormal LV texture and long-term out-
come. Thus, prognostic implications based on our study results must be considered as hypothesis-generating. 
Prognostic implications of abnormal myocardial texture in TTS patients should be confirmed in future–ideally 
prospective–studies.

Conclusions
In the present proof-of-principle study, we demonstrated that selected TA features, exclusively derived from T2w 
CMR images and identified through machine learning, have potential prognostic long-term value in patients 
with TTS. Thus, they may serve as novel imaging biomarkers for risk stratification in patients with TTS (Fig. 4).

Figure 2.   Receiver operator characteristics for texture analysis on T2-weighted cardiac magnetic resonance 
images with five different machine learning classifiers of 5-year major adverse cardiovascular and cerebral events 
in patients with takotsubo syndrome. Of note, the NaïveBayes classifier shows the highest area-under-the-curve 
(0.88).

Figure 3.   Box-Whisker plots of the ten selected texture analysis features. Dimension reduction yielded 10 
TA features carrying prognostic information, which were all based on T2w images. Red: positive 5-year major 
adverse cardiovascular and cerebral events (MACCE), blue: negative 5-year MACCE. ** = p < .01.
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