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Abstract

Renin producing cells of the juxtaglomerulus, herein called cells of renin lineage (CoRL),

have garnered recent interest for their propensity to act as a progenitor source for various

kidney cell types including podocytes. Despite recent advances, the process of transdiffer-

entiation of CoRL to podocytes is poorly understood. In this study, we employed a trans-

genic reporter mouse line which permanently labels CoRL with ZsGreen fluorescent protein,

allowing for isolation by fluorescence-activated cell sorting. At 5 days following induction of

abrupt podocyte ablation via anti-podocyte sheep IgG, mice were sacrificed and CoRL were

isolated by FACS. RNA was subsequently analyzed by microarray. Gene set enrichment

analysis (GSEA) was performed and revealed that CoRL display a distinct phenotype follow-

ing podocyte ablation, primarily consisting of downregulation of metabolic processes and

upregulation of immuno-modulatory processes. Additionally, RNA-biology and cell cycle-

related processes were also upregulated. Changes in gene expression or activity of a core

set of transcription factors including HNF1 and E2F were identified through changes in

enrichment of their respective target genes. However, integration of results from transcrip-

tion factor and canonical pathway analysis indicated that ERR1 and PU-box family members

may be the major contributors to the post-podocyte ablation phenotype of CoRL. Finally, top

ranking genes were selected from the microarray-based analysis and confirmed by qPCR.

Collectively, our results provide valuable insights into the transcriptional regulation of CoRL

following abrupt podocyte ablation.

Introduction

The kidney is a highly specialized and structurally complex organ comprised of several unique

cell types, each of which serve distinct roles in metabolite reclamation and urine concentration

[1–4]. Additionally, the kidney is pivotal in systemic blood pressure regulation through its

near exclusive production of renin, the rate limiting enzyme in the renin-angiotensin system.

Kidney renin secretion is mediated by a small population of cells that associate with the
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afferent glomerular arteriole, which in conjunction with the arteriole endothelial cells and

smooth muscle cells comprise the juxtaglomerular apparatus [5]. This structure forms an inte-

gral link between upstream and downstream sections of the nephron via the macula densa in

the distal proximal tubule resulting in so-called tubulo-glomerular feedback [6].

Recently, these renin secreting juxtaglomerular cells, herein called cells of renin lineage

(CoRL), have been demonstrated to act as a progenitor reservoir for various cells within the

glomerulus for both epithelial and mesenchymal lineages [7, 8]. In particular, lineage tracing

experiments has shown that following podocyte loss in experimental disease, a subset of CoRL

migrate from the afferent arteriole into the glomerular tuft, where they de novo express several

podocyte markers, and a subset exhibit ultrastructural features of podocytes [9]. Importantly,

translocation and differentiation of CoRL on the tuft occurs concomitantly with stabilization

or in some cases, decreases in albumin secretion, along with increase in podocyte density.

Administration of ACE-inhibitors and angiotensin receptor blockers augment this reparative

phenotype thereby supporting this novel paradigm of de novo post-natal podocyte regenera-

tion [10].

This emergent field has important clinical implications especially in the various nephropa-

thies typified by podocyte depletion such as diabetic kidney disease, membranous nephropathy

and many forms of FSGS [11]. However, the molecular pathways activated and suppressed

in CoRL under disease states remain poorly understood. Using CoRL reporter mice which

enabled FACS sorting of labeled CoRL, we employed an experimental model of FSGS to deter-

mine the transcriptional consequences of abrupt podocyte loss in this cell population.

Materials and methods

Study animals

Ren1cCre×Rs-ZsGreen-R reporter mouse labels the Ren1c expressing cells with ZsGreen.

These are derived from Ren1cCre mice which contain Cre recombinase under control of the

renin regulatory region [12] and the B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J which contain

a loxP-flanked STOP cassette controlling CAG-driven expression of ZsGreen (Jackson Labs

Stock # 007906) [13]. Thus, progeny containing the Ren1cCre transgene in addition to the

loxP-controlled ZsGreen cassette, constitutively and permanently label any cells which express,

or have expressed renin.

Isolation of ZsGreen labeled CoRL

Fresh mouse kidneys were removed, and the capsules and fat were dissected away under asep-

tic conditions. Kidney cortex was removed from the rest of the kidney with a sterile scalpel

and minced. Tissue was digested in 0.2mg/ml Liberase TL (Sigma-Aldrich, St. Louis, MO), 100

U/ml DNAse I (Sigma-Aldrich, St. Louis, MO) in RPMI 1640 medium, without L-glutamine

or phenol red (GE Healthcare Bio-Sciences, Pittsburgh, PA) by shaking in a 37˚C water bath

for 30 minutes. The digest was passed through a 22G needle (Becton Dickenson, Franklin

Lakes, NJ) 10 times to further dissociate the tissue, then inactivated by combining with 5ml of

in media consisting of RPMI 1640 medium, without L-glutamine or phenol red (GE Health-

care Bio-Sciences, Pittsburgh, PA) supplemented with 1mM sodium pyruvate (ThermoFisher

Scientific, Waltham, MA), 9% Nu-Serum™ IV Growth Medium Supplement (Corning Incor-

porated—Life Sciences, Durham, NC) and 100U/ml Penicillin-Streptomycin (ThermoFisher

Scientific, Waltham, MA). The suspension was passed through a 100μm, then a 40 μm cell

strainer (BD Biosciences, San Jose, CA), to clear multicellular debris, then pelleted by centrifu-

gation at 200G at 4˚C for 5 minutes. The cells were re-suspended in the media described

above, counted and isolated using multicolor fluorescence-activated cell sorting (FACS) on a
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BD FACS Aria II (BD Biosciences, San Jose, CA) housed within a BSL1/2 approved biosafety

cabinet. Sorted cells were pelleted by centrifugation and snap frozen in liquid nitrogen until

isolation of RNA. The entire procedure took 6-7h per animal.

Experimental FSGS

Experimental FSGS was induced in Ren1cCre×Rs-ZsGreen-R mice with a cytotoxic anti-

glomerular antibody, as we have previously reported [14]. Briefly, two doses of sheep anti-

glomerular antibody at 12 mg/20g of body weight via intraperitoneal injection, 24 hours apart,

induced abrupt podocyte depletion. Mice were euthanized 5 days following the second dose of

sheep anti-glomerular antibody (n = 4). Age matched mice which did not receive sheep anti-

glomerular antibody were used as baseline controls (n = 4).

Mice were bred and housed in the animal care facility at the University of Washington

under specific pathogen-free conditions and provided ad libitum food and water. Animals

euthanized for studies were given a ketamine-xylazine cocktail overdose, prior to cardiac per-

fusion and tissue harvest. All studies were reviewed and approved by the University of Wash-

ington under IACUC protocol (2968–04).

Microarray pipeline

RNA from FACS isolated ZsGreen CoRL was isolated using Qiagen RNeasy Plus Mini Kit

according to the manufacturers protocol. Extracted RNA yield and purity were determined

using a NanoDrop ND-1000. RNA integrity was determined using an Agilent 2100 Bioanaly-

zer, samples with RIN� 8 were considered to be of sufficient quality for microarray analysis.

Due to low sample yield, samples were amplified prior to cDNA synthesis and labeling using

Ovation Pico WTA System V2 Kit (Nugen, San Carlos, CA). Sample labeling and hybridiza-

tion was performed using the MouseRef-8 (v2.0) Expression BeadChip Kit (Illumina, San

Diego, CA). Microarray image processing and data acquisition was performed using the Illu-

mina iScan system at Fred Hutchinson Cancer Research Center’s Genomics Shared Resource.

Detailed microarray experiment description, meeting Minimum Information About a

Microarray Experiment (MIAME) requirements, has been deposited at Gene Expression

Omnibus (www.ncbi.nlm.nih.gov/geo, GSE104416).

Microarray data analysis

Microarray data was assessed for quality and underwent quantile normalization using the Bio-

conductor package “lumi” [15]. Multidimensional scaling using Principal Component Analysis

(PCA) was performed based on the entire transcriptional profile of all samples. Differentially

expressed genes between baseline control (n = 4) and experimental FSGS samples (n = 4) was

determined using a Bayesian implementation of the t-test (CyberT, http://cybert.ics.uci.edu/)

on log2-transformed intensities [16]. Multiple hypothesis testing was addressed using Benja-

mini-Hochberg’s FDR procedure [17]. Functional enrichment of differentially expressed genes

(defined as those with FDR� 0.01) was performed using Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID, v6.8) based on Gene Ontology annotations. We used

an FDR� 0.01 to designate significant enrichment for a given GO category.

Gene set enrichment analysis

Following normalization and statistical analysis of the microarray data, probes aligning to the

same genomic transcript were collapsed by averaging their data, thereby reducing the number

of probe identifiers from 25,698 to 18,138 unique transcripts. The unique gene expression
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dataset was analyzed using GSEA with 1000 gene set permutations and FDR threshold� 0.01

used for determining significance [18]. The following databases from MsigDB (v6.0) were

utilized: Hallmark (50 gene sets), Curated Gene Sets (CP set only, 1329 gene sets), Motif

Gene Sets (TFT set only, 615 gene sets) (http://software.broadinstitute.org/gsea/msigdb/

collections.jsp) via the javaGSEA desktop application. Relationships among enriched gene sets

(FDR� 0.01) were depicted based on the number of shared genes between pathways using a

network-based visualization method (www.baderlab.org/Software/EnrichmentMap/) within

the Cytoscape environment [19, 20]. Integration of transcription factor and canonical pathway

gene set enrichment analysis was performed using R statistical programming language [21]. R

packages utilized include colormap [22], gplots [23], openxlsx [24] and venneuler [25].

Circos plot

Circos plots were generated from command line using the tableviewer plugin. Following inte-

gration of the transcription factor and canonical pathway/hallmark test results data were con-

verted into a contingency table for use with Circos. Transcription factors which only have

targets in a single pathway were not plotted in both baseline and day 5 plots. In baseline sam-

ples, only genes, pathways and transcription factors which were significantly dysregulated at

FDR� 0.01 were considered. In day 5 samples, only genes, transcription factors and pathways

that were significantly dysregulated at FDR� 0.001 were considered. To further reduce plot

complexity from day 5 data, only transcription factor-pathway interactions containing at least

4 member genes were plotted.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 6. Statistical significance was deter-

mined with the use of unpaired Student’s t-test utilizing Welch’s correction. This accounts for

possible inequalities in sample variances between the test groups where appropriate. The sig-

nificance threshold was set at P-value� 0.05 and comparisons exceeding this were deemed

non-significant.

Results

Isolation of ZsGreen-CoRL RNA from mouse renal cortex

The present study utilized Ren1cCre×Rs-ZsGreen-R (ZsGreen) mice which possess a renin-

driven Cre locus. This construct mediates activation of Rosa26-promoted ZsGreen transgene

resulting in constitutive ZsGreen fluorescent protein expression as a result of Lox-Stop intron

excision. The above developmentally expressed transgene system resulted in consistent juxta-

glomerular expression of ZsGreen with negligible expression observed in pericytes (Fig 1a).

ZsGreen expressing cells constituted ~1.7% of all gated events, ~2200 ZsGreen+/+ cells per 1.27

x 105 events, during FACS analysis of renal tissue dissociates from ZsGreen mice (Fig 1b).

Total RNA recovered from these cells was of sufficient quality for microarray analysis as deter-

mined by digital electrophoresis with all samples having RNA integrity number (RIN)� 8

(Fig 1c).

Podocyte ablation perturbs global gene expression in CoRL

Principal component analysis (PCA) aims to reduce potentially correlated high dimensional

data to its linearly uncorrelated components in lower dimensional space and therefore

affords simple evaluation of group-group similarity. PCA indicated the majority of variance

in global gene expression between samples is captured by the first three components and that
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uninjured CoRL (Fig 2a, cyan spheres) segregated from day 5 post-disease induction CoRL

(Fig 2a, magenta spheres). This unbiased approach implied that the primary driver of gene

expression variability is significant inter-group transcriptional phenotypes and not intra-

group differences.

Inter-sample variance was appropriately controlled for via variance stabilization transfor-

mation followed by quantile normalization (S1 Fig). Furthermore, intra-group similarity and

inter-group variance, as indicated by PCA plot, is highlighted in heatmap representation of the

top 100 most significantly dysregulated genes (ranked by FDR) where the heatmap dendro-

gram represents sample-to-sample similarity (Fig 2b). At the global level, more genes were

observed to be downregulated than upregulated (9,966 vs 8,172 respectively) (S2 Fig).

Immune and metabolic-related genes were inversely dysregulated in

CoRL following podocyte ablation

To evaluate how podocyte ablation altered the functional state of CoRL, we performed Gene

Ontology (GO) analysis on differentially up and downregulated genes (FDR� 0.01) [26]. GO

terms enriched in downregulated genes predominately clustered into metabolism related cate-

gories such as mitochondrion, fatty acid metabolic process, oxidoreductase complex and cellular
respiration which may indicate decreased metabolic activity (Fig 3, S2 Table). Interestingly,

glutathione metabolic process was also enriched among downregulated genes indicating oxida-

tive stress may play a role in the response of CoRL to podocyte ablation.

Conversely, GO term enrichment among upregulated genes clustered into two broad classi-

fications, namely immune-related processes and remodeling/reparative processes (Fig 3, S3

Table). Examples of the former group included immune system process, cytokine production,

inflammatory response and adaptive immune response with examples of the latter including cell

Fig 1. Labeling and isolation of CoRL by FACS. (A) ZsGreen is expressed in juxtaglomerular apparati (arrows) with minimal

marking of interstitial pericytes (arrow heads). (B) Representative gating strategy for sorting and recovery of ZsGreen positive

cells from collagenase digested renal cortices. (C) Representative electropherogram from digital gel electrophoresis

demonstrating minimal sample degradation following extraction.

https://doi.org/10.1371/journal.pone.0189084.g001
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Fig 2. Podocyte ablation induces transcriptional changes in CoRL. (A) Principal component analysis of

the entire microarray data reveals considerable changes induced in the transcriptional landscape of CoRL in

response to podocyte ablation. The majority of global gene expression variability (~90%) was captured by the

first three orthogonal components as depicted. (B) Heatmap representation of the top 100 most significantly

dysregulated genes based on false discovery rate (FDR) analysis. Red color indicates upregulated and blue

color represents downregulated expression (based on z-scores). Gene list is available in S1 Table.

https://doi.org/10.1371/journal.pone.0189084.g002
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activation, cell migration, cell adhesion and cell proliferation. Additionally, clusters which may

indicate a transdifferentiation-like phenotype, such as regulation of developmental process and

regulation of cell differentiation, were also highly enriched in the upregulated genes. Collec-

tively, these data indicated that CoRL undergo profound transcriptional alterations in response

to abrupt podocyte ablation and that these changes may promote CoRL-mediated repair as

well as transdifferentiation/migration.

Podocyte ablation suppresses metabolic activity and activates immuno-

modulatory processes in CoRL

To gain a broader overview of pathways and processes differentially activated in CoRL follow-

ing podocyte ablation, we applied Gene Set Enrichment Analysis (GSEA) to the available

microarray dataset. Unlike GO, which is based on annotation of genes (and not biological

pathways), and is limited to the subset of differentially expressed genes, GSEA exploits the

Fig 3. Functional enrichment of GO annotations among differentially expressed genes reveals major

themes of immune, repair, and metabolism-related processes. Two dimensional hierarchical clustering of

differentially expressed genes (FDR� 0.01) identified two distinct expression patterns following podocyte

ablation. GO terms enriched in downregulated genes (upper section) predominately cluster into various

aspects of cellular metabolism. GO annotations enriched among upregulated genes (lower section) display a

range of functional categories covering immune response, cell migration and cell differentiation.

https://doi.org/10.1371/journal.pone.0189084.g003
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entire transcriptome to identify enriched pathways derived from curated and canonical knowl-

edge bases. We conducted GSEA by utilizing the combined Hallmark and Canonical Pathways
datasets from MsigDB (Broad Institute; http://software.broadinstitute.org/gsea/msigdb) [27].

These databases represent well-defined biological states and curated pathways from KEGG,

Reactome and Biocarta (amongst others), thereby providing a comprehensive and biologically

meaningful collection of cellular processes, and signaling cascades. We identified many

enriched pathways using GSEA, and applied network-based visualization to summarize the

results (Fig 4).

Similar to the functional annotation clustering of GO analysis, we found that metabolism-

related processes dominate the significantly downregulated gene sets (FDR� 0.01). These

pathways encompassed diverse metabolic processes including oxidative phosphorylation, TCA
cycle, fatty acid metabolism and various amino acid pathways in conjunction with pathways

that regulate reactive oxygen species such as glutathione metabolism. In contrast, GSEA

revealed a large, highly interconnected module comprised primarily of upregulated immune-

inflammatory pathways including interferon signaling, TNFα signaling via NF-κB, IL6-JAK-
STAT signaling as well as multiple chemokine signaling pathways. Furthermore, various cell

cycle, transcription, and translation pathways were also significantly upregulated in day 5

CoRL compared to baseline. Thematically, these pathways were not represented by annotation

clustering of the GO results however their presence here may be linked to the regulation of cell
differentiation, cell activation and cell proliferation GO categories. Regardless, CoRL display a

Fig 4. Visual summary of enriched pathways in CoRL following podocyte ablation. A gene set was considered

upregulated if the expression of most of its member genes increased after injury, whereas downregulated gene sets were

those with decreased gene expression. In the figure, each sphere designates an enriched pathway (red indicates

upregulation and blue indicates downregulation at FDR� 0.01). The size of each sphere (gene set) is proportional to the

number of its members. Since pathways share many common genes, connectivity lines have been used to link these

relationships and define the topology of the enrichment network. Note that gene sets with dense connections aggregate with

each other due to overlap among member genes, defining larger biological “modules”. Selected gene sets have been

labeled for these modules. Full list of enriched pathways is available in S4 and S5 Tables.

https://doi.org/10.1371/journal.pone.0189084.g004
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clear phenotype constituting suppression of metabolic and mitochondrial processes and wide-

spread activation of immune- and cell cycle-related pathways.

HNF1-, ETS- and IRF-family transcription factors may drive changes in

CoRL following podocyte loss

Transcription factors are a major control point for expression of any gene, and as such,

determination of enrichment in transcription factor-specific gene sets may highlight which

of these regulators play a major role in the observed phenotype. Applying GSEA using well-

curated transcription factor gene sets, we found that several HNF-family transcription fac-

tors were downregulated in day 5 CoRL compared to baseline CoRL, suggesting that HNF-

family transcription factors may play a role in the maintenance of the native CoRL pheno-

type (Table 1). Conversely, the CoRL phenotype induced by abrupt podocyte ablation may

be mediated by ETS-family transcription factors with a number of gene sets for specific fam-

ily members ranking in the 20 most significantly upregulated gene sets (Table 2, S6 Table).

IRF-family of transcription factors were also highly ranked indicating that both ETS- and

IRF-family transcription factors may mediate the phenotype observed in CoRL at 5 days post

podocyte ablation.

Biological significance of transcription factor gene set enrichment

The biological impact of a given transcription factor was determined through integration of

transcription factor and canonical pathways/hallmark gene sets. In this analysis, a search space

was generated for baseline and day 5 CoRL composed of transcription factor and canonical
pathways/hallmark which were significantly enriched according to GSEA testing (FDR� 0.01

for downregulated gene sets, FDR� 0.001 for upregulated gene sets). For each sample group,

transcription factor gene set member genes were searched for in each canonical pathway/hall-
mark gene set. Member genes contained within each transcription factor/pathway intersection

were filtered for significance (FDR� 0.01 for baseline gene sets, FDR� 0.001 for day 5 gene

sets) and also for the direction of dysregulation (downregulation for downregulated gene sets,

upregulation for upregulated gene sets). By utilizing only gene sets that were significantly

enriched and removing nonsignificantly dysregulated genes, the resultant dataset captured

biologically relevant interactions between genes, their host pathway and the putative transcrip-

tion factors targeting them.

Connectivity between transcription factor and canonical pathway/hallmark gene sets were

represented by Circos plots with the ribbon thickness representing the number of genes in

each intersection [28]. The contingency table used to generate the plot, in addition to the inter-

sectional gene lists for baseline intersections are available in the supplementary data (S7 and

Table 1. Transcription factor gene sets downregulated in CoRL at day 5 compared to baseline CoRL. NES: normalized enrichment score; FDR: false

discovery rate.

NAME NES FDR

ERR1_Q2 -1.883 0.008

HNF1_Q6 -1.848 0.006

SF1_Q6 -1.804 0.007

YNTTTNNNANGCARM_UNKNOWN -1.792 0.006

HNF1_01 -1.713 0.012

HNF4_DR1_Q3 -1.600 0.044

TTANTCA_UNKNOWN -1.591 0.043

https://doi.org/10.1371/journal.pone.0189084.t001
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S8 Tables respectively). In baseline CoRL, ERR1 (red ribbons) and HNF1 (green ribbons) pos-

sessed the greatest number of pathway connections and also targeted many of the same path-

ways (Fig 5a, S7 Table). The vast majority of pathways regulated by these transcription factors

are involved in ETC and TCA-related processes (Fig 5a, S8 Table). SF1 (purple ribbons) also

appears to contribute to the downregulation of metabolic processes with connections made

with a number of pathways involved in metabolite and amino acid turnover (Fig 5a, S8 Table).

Despite these clear associations, only ERR1 was found to be downregulated in day 5 CoRL

compared to baseline and therefore, based on this analysis, is the most likely candidate for the

downregulation of CoRL metabolic processes compared to either SF1 or HNF1 transcription

factors.

To reduce plot complexity, intersections between transcription factor and canonical path-
way/hallmark gene sets upregulated in day 5 CoRL were filtered for connections with at least

four member genes in addition to limiting gene sets and genes whose enrichment/dysregula-

tion was highly significant (FDR� 0.001). The contingency tables used to generate the plots,

in addition to the intersectional gene lists for baseline intersections are available in in the sup-

plementary data (S10 and S11 Tables respectively). Here, a poorly characterized transcription

factor with a YAATNANRNNNCAG recognition motif (purple ribbons) was the most con-

nected in regards to the number of pathways targeted and the number of member genes within

those connections (Fig 5b, S10 Table). Importantly, the pathways targeted by this transcription

factor are representative of the phenotype indicated by GO cluster analysis and pathway

GSEA, namely upregulation of various immune-related processes, cell cycle and RNA-biology

(Fig 5b, S11 Table). IRF (light green ribbons) also possessed a high degree of connectivity

among the represented pathways including IFNα/U pathways in addition to innate and adap-

tive immune system pathways (Fig 5b, S11 Table). Additionally, the PU-box transcription

Table 2. Top 20 transcription factor gene sets upregulated in CoRL at day 5 FSGS compared to baseline. NES: normalized enrichment score; FDR:

false discovery rate.

NAME NES FDR

ELF1_Q6 2.260 � 0.001

PEA3_Q6 2.109 � 0.001

ETS_Q4 2.089 � 0.001

IRF_Q6 2.059 � 0.001

YAATNANRNNNCAG_UNKNOWN 2.022 � 0.001

TTCYNRGAA_STAT5B_01 2.013 � 0.001

ELK1_01 1.992 � 0.001

ETS1_B 1.981 � 0.001

ETS2_B 1.966 � 0.001

PU1_Q6 1.914 5.41E-04

NERF_Q2 1.911 4.92E-04

GGARNTKYCCA_UNKNOWN 1.909 4.51E-04

YGTCCTTGR_UNKNOWN 1.905 4.16E-04

ISRE_01 1.878 4.63E-04

NFKAPPAB65_01 1.803 0.002

STAT3_01 1.786 0.002

NFKAPPAB_01 1.784 0.002

CREL_01 1.751 0.004

TEL2_Q6 1.744 0.005

NFKB_Q6 1.740 0.005

https://doi.org/10.1371/journal.pone.0189084.t002
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Fig 5. Circos plots representing interconnectivity between significantly enriched transcription factor

and canonical pathway/hallmark gene sets. (A) Connection between gene sets downregulated in day 5

CoRL. Only genes and gene sets significantly downregulated (FDR� 0.01) were considered. Transcription

factors targeting only one pathway are not depicted. (B) Circos plot representing interconnectivity between

upregulated gene sets in day 5 CoRL. Only genes and gene sets significantly upregulated (FDR� 0.001)

were considered. Gene set connections with fewer than four genes were discarded to afford plot

simplification. Transcription factors targeting only one pathway are not depicted. Ribbon thickness represents

the number of genes in the connection. The full result tables for baseline and day 5 CoRL may be found in S7

and S10 Tables respectively.

https://doi.org/10.1371/journal.pone.0189084.g005
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factor (pale blue ribbons) gene set had connections with a subset of pathways targeted by either

the YAATNANRNNNCAG motif transcription factor or IRF (Fig 5b, S10 and S11 Tables).

Both IRF1 and the PU-box family member SPIC are significantly upregulated in day 5 CoRL

compared to baseline CoRL and may therefore be major contributors to the upregulation of

immune-related processes.

Quantitative real-time polymerase chain reaction validation of microarray

analysis

From the integrated analysis of transcription factor and canonical pathway gene sets, the top

4 most upregulated genes were chosen for validation of the microarray data by qRT-PCR.

These genes, namely, Complement C1q A Chain (C1QA), Fc Fragment Of IgE Receptor Ig

(FCER1G) Vav Guanine Nucleotide Exchange Factor 1 (VAV1) and Wiskott-Aldrich Syn-

drome (WAS) were all confirmed to be significantly upregulated (Fig 6).

Discussion

Cells of renin lineage (CoRL) are unique kidney cells which are an essential part of the juxta-

glomerular apparatus and the renin-angiotensin system [29]. CoRL have recently garnered

much interest for their propensity to act as adult podocyte progenitors following podocyte loss

[8–10, 30, 31]. To better understand potential mechanisms and pathways, we present an unbi-

ased bioinformatics overview of the CoRL transcriptome following abrupt podocyte depletion.

By day 5 of experimentally-induced FSGS, widespread differential gene expression was

observed in FACS isolated CoRL. Functional and gene set enrichment analysis revealed that

up and downregulated CoRL genes mapped to highly distinct processes, indicating selective

activation and suppression of pathways in response of podocyte depletion. We confirmed the

upregulation of several genes by qPCR as a means to validate the microarray data. All validated

Fig 6. Confirmation of gene expression changes returned from integrated analysis. Expression levels

for the top 5 genes returned from the integrative analysis are, as in the microarray, significantly upregulated.

https://doi.org/10.1371/journal.pone.0189084.g006
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genes were targets of the ELF1 transcription factor whose gene set was the most significantly

upregulated in day 5 CoRL. Importantly, ELF1 gene set member genes associated with path-

ways regulating the actin cytoskeleton, chemokine signaling and focal adhesion; all of which

are important for cellular migration and transdifferentiation [32–35]. It is therefore tempting

to speculate that ELF1 may mediate CoRL-to-podocyte transdifferentiation through regulation

of a core set of genes targeting the aforementioned pathways.

Conversely, the most significantly downregulated genes of negatively enriched transcription
factor and canonical pathway gene sets were expectedly involved in some aspect of catabolic or

anabolic metabolism including a number of ATPase subunits. This is further supported by

association of ERR1 transcription factor with the top ranking genes as this transcription factor

has reported roles in various metabolic processes [36, 37]. Furthermore, pathways possessing

the greatest number of ERR1 targets were either mitochondria-specific or define pathologies

which are thought to be predominately mitochondrial in nature such as Parkinson’s and Alz-

heimer’s diseases [38]. Interestingly, peroxisome and glutathione pathways were also nega-

tively enriched (FDR� 0.05) and further indicate that, at least at day 5 post podocyte ablation,

CoRL no longer maintain normal metabolic functions [39–41]. GO analysis reflected this,

albeit in more general terms, with processes pertaining to carboxylic acid catabolism, organic

acid catabolism, cellular respiration, amino acid catabolism and ETC all occupying the top

ranked positions.

In addition to the aforementioned metabolic pathways various RNA-related pathways

including 3’ UTRmediated translational regulation, ribosome assembly pathway, translation
pathway and metabolism of RNA were also upregulated. Enrichment of these RNA-related

pathways may indicate increased protein synthesis—a critical requirement for the preparative

phases of cellular transdifferentiation [42]. The absence of these processes in the integrative

transcription factor/pathway analysis does not indicate they are false positives. Rather, it is

likely the result of a failure to locate significantly dysregulated genes in a given canonical path-
way that was also a member of a given transcription factor gene set. That is to say, no signifi-

cantly enriched transcription factor gene sets were found to be associated with significantly

dysregulated genes in any of the aforementioned RNA-related pathways.

Collectively, the phenotype of downregulated metabolic processes and upregulated inflam-

mation-, cell cycle- and RNA-related pathways supports the notion that following podocyte

loss, CoRL may serve as a podocyte progenitor sink. The triggering, maintenance and regula-

tion of CoRL transdifferentiation and migration likely parallels that of other cellular transdif-

ferentiation and migration events, such as occurs during epithelial wound healing [43]. One

notable difference is that the immune signaling triggered in CoRL by podocyte ablation does

not necessarily result in recruitment of macrophage and other leukocytes to clear wound

debris. At day 14 post podocyte ablation, we have previously shown that there is no change in

recruitment of macrophages, B cells, neutrophils or activated T cells to the tuft [14].

Furthermore, as CoRL reside in the juxtaglomerular apparatus anatomically upstream of

the glomerular tuft, it is unlikely that the inflammatory phenotype is a direct result of CoRL

insult. Rather, these changes may be triggered in a paracrine manner via the macula densa [44]

or as a retrograde signal transmitted from the microvascular endothelium [45] or the tuft

mesangium [46] and may serve to trigger the migration and transdifferentiation process.

Regardless, it is likely that the signal is either initiated by denuded microvasculature (in both

paracrine and retrograde signaling postulates) or by secretion of signaling molecules from

PTC in response to changes in urinary filtrate composition (which act in a paracrine manner

via the macula densa) [47].

Decreased metabolic activity may be linked to CoRL transdifferentiation potential as stem

cells are known to rely more upon glycolysis than oxidative phosphorylation for metabolic
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output with stemness decreasing as oxidative phosphorylation increasingly becomes the major

source of ATP [48]. However, glucose transport and gluconeogenesis pathways were downre-

gulated indicating the observed suppression of mitochondrial metabolic processes possibly

extend to those concerned with the utilization and generation of glucose respectively. Despite

this, mTOR, which is a major regulator of mitochondrial metabolism [49] is downregulated

by ~35%, which may influence transdifferentiation as is the case in ESCs [50]. In our model,

the expression of several members of the peroxisome proliferator-activated receptor (Ppar)

family—master regulators of metabolism—were significantly reduced, including Pparg
(FDR< 0.05), Ppargc1a (FDR< 0.001), and Ppara (FDR< 0.05). Singhal et. al. recently dem-

onstrated that Pparg expression is downregulated in podocytes from vitamin D receptor (Vdr)
null mice via a mechanism involving suppression of sirtuin 1 (Sirt1) [51]. While we did not

observe downregulation of Sirt1 in our model, Vdr was significantly suppressed in CoRL at

day 5 post-FSGS induction (FDR < 0.01). Taken together, these data suggest that dysregula-

tion of the Vdr-Pparg network may be important in the observed suppression of metabolic

pathways in CoRL following injury.

At present, there are no published methods for maintaining CoRL in vitro. This limits vali-

dation of the current in vivo findings using more targeted and mechanistic in vitro studies. We

acknowledge that further investigation of these data and their analysis is required to gain a bet-

ter understanding of the events that lead to, and mediate, the transdifferentiation and migra-

tion of CoRL following podocyte loss. We also acknowledge that this study might benefit from

additional time points, although our previous studies have demonstrated that podocyte deple-

tion with concordant microalbuminuria is well established at day 7 in this model with microal-

buminuria approaching baseline levels by day 14 [14]. Furthermore, we have previously shown

that migration of CoRL to the tuft occurs by day 7 post disease induction [9]. Here, day 5 may

be thought of as an ‘early response time point’ where the pathological features of the model are

still being established and CoRL are most active in their transcriptional response to abrupt

podocyte depletion. Finally, our unbiased approach, while being comprehensive, does not

identify which of the up- or down-regulated pathways play the predominant role in CoRL

response to injury. Future mechanistic experiments are needed to address this important

limitation.

Conclusions

In summary, the transcriptional profile of CoRL at day 5 post-podocyte ablation indicates

that these cells undergo widespread changes in cellular metabolic profile, inflammatory sig-

naling, cytoskeletal regulation and RNA-processing. Although our findings support the

model of CoRL-to-podocyte transdifferentiation, much work is still required to understand

the programs that maintain CoRL plasticity and the signals that trigger their migration and

differentiation.

Supporting information

S1 Fig. Sample variance boxplot and DGE summary venn diagrams. (A) Variance stabili-

zation transformation followed by quantile normalization appropriately controls for inter-

sample variance. (B) Venn diagram displaying the percentage of all genes that are either sig-

nificantly or non-significantly downregulated at FDR� 0.05. (C) Venn diagram displaying

the percentage of all genes that are either significantly or non-significantly upregulated at

FDR� 0.05.

(TIF)
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