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Abstract

Background: While traditionally surgery has dominated the clinical management of Buruli ulcer (BU), the introduction of the
combination chemotherapy with oral rifampicin and intramuscular streptomycin greatly improved treatment and reduced
recurrence rates. However management of the often extensive lesions after successful specific therapy has remained a
challenge, in particular in rural areas of the African countries which carry the highest burden of disease. For reasons not fully
understood, wound healing is delayed in a proportion of antibiotic treated BU patients. Therefore, we have performed
immunohistochemical investigations to identify markers which may be suitable to monitor wound healing progression.

Methodology/Principal findings: Tissue specimens from eight BU patients with plaque lesions collected before, during and
after chemotherapy were analyzed by immunohistochemistry for the presence of a set of markers associated with
connective tissue neo-formation, tissue remodeling and epidermal activation. Several target proteins turned out to be
suitable to monitor wound healing. While a-smooth muscle actin positive myofibroblasts were not found in untreated
lesions, they emerged during the healing process. These cells produced abundant extracellular matrix proteins, such as pro-
collagen 1 and tenascin and were found in fibronectin rich areas. After antibiotic treatment many cells, including
myofibroblasts, revealed an activated phenotype as they showed ribosomal protein S6 phosphorylation, a marker for
translation initiation. In addition, healing wounds revealed dermal tissue remodeling by apoptosis, and showed increased
cytokeratin 16 expression in the epidermis.

Conclusion/Significance: We have identified a set of markers that allow monitoring wound healing in antibiotic treated BU
lesions by immunohistochemistry. Studies with this marker panel may help to better understand disturbances responsible
for wound healing delays observed in some BU patients.
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Introduction

Buruli ulcer (BU) is a necrotizing skin disease caused by M.

ulcerans. It is primarily affecting the subcutaneous tissue and can, if

untreated, lead to extensive tissue destruction and ulceration. The

disease has been reported from more than 30 mainly tropical

countries [1] around the world with the highest incidence in West

Africa. The distribution of the disease is very focal and typically

associated with rural wetlands in close proximity to stagnant or slow

flowing water bodies [1,2]. The mode of transmission and the

environmental reservoir of M. ulcerans are still not fully characterized.

The disease can affect all age groups, but the highest incidence is

in children aged between 5 and 15 years and in the elderly [3,4].

Most of the lesions occur on the limbs, but all parts of the body can

be affected. The currently recommended treatment consists of daily

administration of oral rifampicin (10 mg/kg) and intramuscular

streptomycin (15 mg/kg) for 8 weeks under regular supervision.

BU presents with a variety of clinical forms including nodules,

plaques, edema and ulcers and in more severe cases multiple

lesions as well as osteomyelitis have been observed. The disease

often starts as a painless swelling or an area of induration which

eventually may develop the characteristic features of BU such as

large ulcers with undermined edges [5]. In particular in remote

areas of Africa, patients tend to report late to the treatment centers

and therefore often with very extensive and severe lesions. Long

recovery periods are common and in the case of large lesions skin

transplantation is required and permanent morbidities including

functional limitations may be observed [6]. While mycolactone

causes massive local immune suppression in active BU lesions,

vigorous local immune responses are observed during anti-

mycobacterial chemotherapy [7]. Paradoxical reactions including

the enlargement of ulcers, progression of non-ulcerated plaques

and edemas to ulcerative lesions, and the emergence of new lesions

are frequently observed during chemotherapy [8,9]. However,

PLOS Neglected Tropical Diseases | www.plosntds.org 1 April 2014 | Volume 8 | Issue 4 | e2809

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0002809&domain=pdf


neither ulceration of plaques [10] nor the appearance of

new lesions [11,12] is necessarily an indicator of a failure of

chemotherapy. While many BU lesions tend to heal fast after

completion of anti-mycobacterial treatment in some patients, the

healing process is severely delayed in others. Massive infiltration

of lesions and the development of atopic lymphoid tissue

are usually not interfering with wound healing. Vigorous local

immune responses are thus a good marker of the success of anti-

mycobacterial treatment [7], but not necessarily associated with

complications. In patients being treated for BU, it is therefore

difficult to differentiate between deterioration resulting from a

local immune reconstitution inflammatory syndrome [13]

and deterioration resulting from other causes, such as disturbed

orchestration of wound healing processes or secondary infections.

Wound healing is a complex process [14], consisting of a

sequence of four overlapping and integrated phases: rapid

homeostasis, inflammation, proliferation and tissue remodeling

[15,16] which are characterized by inter- and intra-cellular level

changes. Once the vascular constriction and the fibrin clot are in

place, inflammatory cells migrate into the wound bed and promote

the inflammatory phase characterized by the infiltration of

macrophages, lymphocytes and neutrophils which clean the

wound area, release cytokines to induce inflammation and to

stimulate fibroblasts, keratinocytes and other elements involved

in the subsequent phase of the wound healing process [17].

The inflammatory phase is in general followed, but partly also

overlapping, with the proliferative phase. The proliferative phase

is characterized by epithelial proliferation and migration through a

‘‘temporal’’ extracellular matrix (ECM) composed of several

proteins including fibronectin, tenascin and pro-collagen I. This

matrix acts as support for the fibroblast migration into the wound

bed. Fibroblasts and endothelial cells are abundant at this time

and they support capillary growth and formation of granulation

tissue. Myofibroblasts, which are specialized fibroblasts, are the

main producers of collagen in healing wounds. Initially type III

collagen is produced and then replaced by type I collagen [18–20].

Myofibroblasts can contract by using a smooth muscle type actin-

myosin complex, rich in a-smooth muscle actin (aSMA) and are

involved in the contraction and closure of wounds [21,22]. aSMA

is commonly used as a marker for the detection of myofibroblasts,

but it is also present in pericytes located at the wall of blood vessels.

After healing is complete, myofibroblasts are normally eliminated

by apoptosis and in healthy tissue they are present only sub-

epithelially in mucosal surfaces [15]. However, myofibroblasts

seem to persist in wound granulation tissue that fails to resolve

after healing, which is considered to be the cause of excessive

matrix deposition in hypertrophic scars [15,23]. The final

remodeling phase of wound healing is also characterized by a

reduction in the number of newly formed vessels and a slow return

to conditions similar to healthy skin tissue [15]. Here we have

analyzed markers of cell activation, myofibroblast formation and

matrix deposition in tissue biopsies from BU lesions before, during

and after treatment.

Materials and Methods

Ethics statement
Ethical approval (clearance Nu 011, 12/10/2010) for the

analysis of the clinical specimens was obtained from the

provisional national ethical review board of the Ministry of

Health Benin, registered under the Nu IRB00006860. Tissue

samples were taken for detailed immunohistological analysis, after

written informed consent has been given by the patients or their

guardians.

Study participants
Eight patients from a highly endemic region of Benin (Ze

commune in the Atlantique department) with laboratory con-

firmed BU plaque lesions which reported to the Centre de

Depistage et de Traitement de l’ulcere de Buruli d’Allada, between

April and August 2009 were included in the study. For all eight

patients, biopsies and material obtained during wound debride-

ment or excisions were available. Samples were taken at 3 different

time points: T1 before the start of antibiotic treatment (day-2 to 0),

T2 during antibiotic treatment (day 26–34) and T3 after the

completion of antibiotic treatment (day 56–72). The age of

patients ranged from five to 70 years and lesions were mostly (5/8)

present at the lower extremities (Table 1). Clinical diagnosis of

BU was reconfirmed at least with 2 of 3 laboratory tests applied

(ZN staining, IS 2404 PCR and histopathology). All patients

tested negative for HIV, completed the eight weeks of antibiotic

treatment as recommended by the WHO and lesions were closed

and healed for all patients by day 127 after completion of therapy

[10].

Tissue processing and staining
Punch biopsies and tissue samples removed during surgical

procedures were transferred to a 10% neutral buffered formalin

solution for 24 hours. Afterwards samples were stored and trans-

ported in 70% ethanol, embedded into paraffin and cut into 5 mm

sections with a microtome. Sections were recovered on glass slides

and after deparaffinization stained with Haematoxylin/Eosin (HE)

to obtain an overview of the tissue structure and with Ziehl-

Neelsen (ZN) to detect acid-fast bacilli.

For immunohistochemical and immunofluorescence analysis

tissue samples were stained with the antibodies and protocols listed

in Table 2. For immunohistochemical staining the ABC and the

NovaRED Kits from Vector laboratories were used and sections

were counterstained with Haematoxylin. Immunofluorescence

staining was performed by using secondary antibodies coupled

to Alexa fluor 488 or Alexa fluor 594 and sections were

counterstained with DAPI.

Author Summary

Coagulative tissue necrosis and local immunosuppression
caused by the M. ulcerans macrolide toxin mycolactone are
typical features of Buruli ulcer disease (BU). In particular in
BU endemic remote rural areas of West Africa, patients
often report with large ulcerated lesions. Despite the
availability of an effective dual antimycobacterial antibiotic
therapy, some ulcerative lesions may take long time to
healing and represent a major burden for the patients as
well as for the health system. Proper wound healing is a
well-orchestrated process involving numerous cellular and
acellular components. Here we have performed immuno-
histochemical studies with tissue from BU lesions collected
before, during and after antibiotic treatment. We identified
a set of markers which are appropriate to evaluate
formation of granulation tissue (alpha-smooth muscle
positive fibroblasts), matrix deposition (pro-collagen 1,
fibronectin and tenascin C), cell activation (phosphorylated
S6), hyper proliferation of the epidermis (cytokeratin 16)
and apoptosis (cleaved caspase 3) during wound healing.
These markers may become suitable for assessing pro-
gression of tissue repair and for investigating the
functional basis of impaired wound healing.

Wound Healing Markers in Buruli Ulcer
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Histopathological features of tissue biopsies
The tissue biopsies analyzed here for wound healing markers

have been analyzed previously for the development of inflamma-

tory infiltrates [10]. Shortly, before start of treatment (T1), the

plaque lesions presented with an intact epidermis and dermis with

relatively intact collagen and minor infiltration around glands and

vessels. The subcutis appeared necrotic and edematous with fat

cell ghosts. Samples taken four to five weeks after start of antibiotic

treatment (T2), showed some infiltration with CD20+ B-cells,

CD3+ T-cells and macrophages and early granuloma formation.

Large necrotic areas were still present at this stage. After

completion of antibiotic treatment (T3) large surgically excised

tissue specimens comprised areas with largely healthy appearance,

strongly infiltrated areas and completely necrotic areas without

infiltration [10].

Results

Emergence of aSMA-positive, phospoS6-activated
myofibroblasts in antibiotic treated BU lesions

Immunohistochemical staining for aSMA revealed staining of

blood vessel walls in the dermal tissue in all eight tissue samples

from BU plaque lesions collected prior to antibiotic treatment (T1)

(Fig. 1 A2, B2, C2). In contrast, no staining of blood vessel walls

was observed in the necrotic subcutaneous areas of 7/8 lesions

(Fig. 1: A3, B3). Only 1/8 lesions (Fig. 1 C3) showed also blood

vessel staining in the subcutaneous tissue before commencement of

therapy. During treatment (T2) no change of the aSMA staining

pattern was observed in 6/8 lesions, compared to T1. However, in

2/8 lesions, small numbers of myofibroblasts were already present

at this time point in the dermis and subcutis (data not shown).

After completion of antibiotic treatment (T3) an increase in aSMA

staining was observed in 7/8 patients. Extensive blood vessel

staining was now also found in the subcutaneous tissue, indicative

for the development of new blood vessels in the previously

damaged tissue areas. In addition, in 7/8 lesions aSMA-positive

myofibroblasts were found in the subcutaneous tissue in associa-

tion with other infiltrating cells (Fig. 1A6, B6, C6).

Notably, myofibroblast-rich subcutaneous areas contained

numerous cells, which showed phosphorylation of the S6

ribosomal protein (Fig. 2A, 2B), a well-established marker for

downstream effects of mTor signaling. This prompted us to

investigate whether S6 is activated in myofibroblasts of healing

BU lesions. Double staining with antibodies specific for aSMA

and the Serine235/236 phosphorylated version of the S6 protein

were performed on the seven myofibroblast-containing BU tissue

samples collected after completion of antibiotic treatment (T3).

aSMA-positive fibroblasts revealed Phospho-S6235/236 staining,

which indicates that the mTor pathway is activated in the

myofibroblasts emerging in antibiotic treated BU lesions (Fig. 2).

The ECM proteins tenascin, fibronectin and pro-collagen
1 are expressed in healing BU lesions

Besides aSMA also the expression and distribution of the ECM

proteins tenascin, fibronectin and pro-collagen 1 turned out to

reflect progression to wound healing (Fig. 3). In tissue samples

from untreated BU patients (T1), only weak cellular and/or

subcellular staining of fibronectin and tenascin was observed

primarily in the dermal region (Fig. 3 A2, A3). The amount of

these proteins increased after completion of therapy (T3) in all

Table 1. Patient cohort.

Patient Nr. Sex Age (years) Site of lesion Size of lesion
Days of R/S
treatment

Sample T1
(days)

Sample T2
(days)

Sample T3
(days)

1 F 13 upper leg 9 cm68 cm 56 22 27 65

2 F 20 foot 5 cm64 cm 56 22 27 65

3 M 15 elbow 5 cm65 cm 56 22 26 65

4 F 70 knee 8 cm65 cm 56 22 27 65

5 M 32 upper leg 15 cm64 cm 56 22 29 68

6 M 5 lower arm 12 cm610 cm 56 22 26 72

7 M 12 hand 12 cm613 cm 56 0 28 56

8 M 12 lower lag 10 cm68 cm 56 21 34 62

doi:10.1371/journal.pntd.0002809.t001

Table 2. Primary antibodies.

Name Company Monoclonal/Polyclonal Host Pre treatment Dilution

Cytokeratin 16 Novocastra Clone LL025 Mouse Citrate 1:100

Pro-Collagen I Millipore Clone M-58 Rat Citrate 1:500

aSMA Novocastra Clone a sm-1 Mouse Citrate 1:100

Tenascin Dako Clone TN2 Mouse Trypsin 1:1000

Fibronectin Novocastra Clone 568 Mouse Trypsin 1:500

Phospho-S6235/236 Cell Signalling polyclonal Rabbit Citrate 1:400

CC3 Cell Signalling polyclonal Rabbit Citrate 1:100

doi:10.1371/journal.pntd.0002809.t002

Wound Healing Markers in Buruli Ulcer
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eight patients, as shown in Fig. 3 for two typical patient samples

(B and C). The increase in these two proteins was most evident in

subcutaneous areas, where also the aSMA-positive myofibroblasts

emerged.

Before treatment (T1) only few cells, primarily located in the

dermal tissue layer, expressed pro-collagen 1 (Fig. 3 A4). After

treatment (T3) substantial numbers of pro-collagen 1-positive cells

were detected all over the tissue specimen (Fig. 3 B4, C4). These

were particularly abundant in areas where aSMA-positive

myofibroblasts were present (Fig. 3 B1, B2), suggesting that

myofibroblasts are a major source of newly synthesized pro-

collagen 1 in healing BU lesions.

Enhancement of cytokeratin 16 expression in
keratinocytes early after commencement of BU
treatment

Cytokeratin (CK16) expression in the epidermis is a marker for

keratinocyte hyper-proliferation [24], as found associated with

wound healing. It is not present in healthy epidermal skin (Fig. 4

A1). Epidermal hyper proliferation is a characteristic feature in BU

lesions, and in 4/8 lesions collected prior to treatment some CK16

staining of keratinocytes was observed (Fig. 4 A2). CK16 staining

increased in intensity and extension during (Fig. 4 A3) and in

particular after completion of antibiotic treatment (Fig. 4 A4).

Along with this, epidermal hyperplasia was also more pronounced

after therapy in 7/8 patients. Another characteristic observed for

CK16 was the heterogeneity of the intensity of staining within

individual specimen (Fig. 4B, Region1, Region 2), which may reflect

diversity in keratinocyte activation in different areas of BU lesions.

Emergence of apoptotic fat cells after therapy may
reflect tissue remodeling

Caspase 3 is a main effector caspase of the apoptotic cascade

and antibodies specific for neoantigens of cleaved caspase 3 (CC3)

are a useful tool to identify apoptotic cells in paraffin embedded

tissue. For all BU lesions we observed a decrease of CC3-positive

cells during treatment (T2) and an increase after therapy (T3)

(Fig. 5). Before commencement of antibiotic therapy CC3-positive

Figure 1. Emergence of aSMA-positive myofibroblasts in antibiotic treated BU lesions. Histological sections were stained with an anti-
aSMA antibody and counterstained with Haematoxylin. Typical results with tissue specimens of three BU patients (A, B and C) are shown. Specimens
were taken before or after completion of antibiotic therapy. A1, B1, C1: scans of the stained punch biopsies taken before commencement of
antibiotic therapy. A2, B2, C2: higher magnification showing that aSMA staining in the dermis before treatment is restricted to blood vessels. A3, B3,
C3: Higher magnification of the subcutaneous tissue showing blood vessel staining in only 1/8 patients (C3) and no specific staining in the other
patients (A3, B3). A4, B4, C4: scans of the tissue excised after completion of antibiotic treatment. A5, B5, C5: aSMA-positive blood vessels were found
in the dermis of all patients. A6, B6, C6: large numbers of aSMA positive myofibroblasts were found in strongly vascularized subcutaneous areas after
completion of therapy.
doi:10.1371/journal.pntd.0002809.g001

Wound Healing Markers in Buruli Ulcer
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Figure 2. aSMA-positive myofibroblasts in antibiotic treated BU lesions show phosphorylation of the S6 ribosomal protein.
Histological sections were stained either by immunohistochemistry and counterstained with Haematoxylin (A, B) or by immunofluorescence double
staining (C–G) and DAPI counterstaining of nuclei (C). aSMA staining (A) and Phospho-S6235/236 staining (B) were found in the same tissue areas.
Immunofluorescence staining for aSMA (D) and Phospho-S6235/236 (E) revealed co-staining of cells with fibroblast morphology (F, G), demonstrating
that the mTor pathway is activated in the myofibroblasts emerging in antibiotic treated BU lesions.
doi:10.1371/journal.pntd.0002809.g002

Wound Healing Markers in Buruli Ulcer
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cells were observed in very small numbers in infiltrated areas of

intact dermal tissue and around remaining blood vessels (Fig. 5A).

The necrotic areas were devoid of CC3-positive cells, but

contained abundant numbers of fat cell ghosts, which may have

already gone through apoptosis (Fig. 5B). During treatment CC3-

positive cells were only very rarely observed in the dermal and

subcutaneous layer (Fig. 5C, D). After completion of treatment

some of the infiltrating immune cells were CC3-positive (Fig. 5E),

which may reflect physiological elimination of inflammatory cells.

Notably, 6/8 patients revealed strong CC3 staining of fat cells

far away from the necrotic core (Fig. 5F), which suggests that

apoptosis of fat cells may be an element of tissue remodeling in

healing BU lesions.

Discussion

Specific treatment of BU is highly effective since the introduc-

tion of the R/S antibiotic combination therapy in 2004 and

recurrence rates could be reduced [8]. Beside this promising

development wound healing and wound management is still a

major problem in the remote rural BU endemic areas of Africa

where patients tend to present late to hospitals [25]. While

the mycobacteria may be efficiently eliminated by the specific

treatment, large open wounds may persist and often prolonged

wound care and skin grafting are necessary [26,27]. Why some BU

lesions heal very fast while others require a long time till complete

healing, is unclear and not related to the size or lesion type.

Paradoxical reactions may be caused by secondary bacterial

infections [28], immune reconstitution inflammatory syndrome

like mechanisms [11,13,29,30] or inappropriate cell activation

and disturbed transition from the inflammatory to the healing

phase. For future characterization of mechanisms causing wound

healing delays, we have studied here the emergence and spatial

distribution of wound healing markers in healing BU lesions.

Important key players during wound healing are aSMA-positive

myofibroblasts. While in healthy skin aSMA is typically present

only in cells located at the walls of blood vessels and in skin

adnexa, it is also produced in healing wounds by myofibroblasts,

a highly specialized cell type involved in granulation tissue

formation, production of ECM proteins, and wound contraction

[23]. After completion of antibiotic treatment we observed these

specialized fibroblasts in substantial numbers in regenerating BU

lesions. Minimal presence of myofibroblasts during the treatment

phase (T2) is probably related to the massive mycolactone

mediated tissue necrosis which delays granulation tissue formation.

Further analysis revealed that these myofibroblasts were

activated via the intracellular regulatory mTor pathway, which

mediates cellular events critical in cell proliferation, movement

and metabolism [31,32]. In mice PI3K-Akt activation promotes

cutaneous wound repair and an elevated mTor activity strongly

accelerates wound healing [33].

Therefore it is speculated that activation of this pathway in

humans might help to treat large, chronic and life threatening

wounds and accelerate wound healing [34]. Antibodies binding to

Figure 3. Increased expression of the ECM proteins tenascin, fibronectin and pro-collagen 1 in healing BU lesions. Serial histological
sections were stained with antibodies against aSMA and the ECM proteins tenascin, fibronectin and pro-collagen 1 and counterstained with
Haematoxylin. Panel A represents a typical lesion before commencement of antibiotic therapy (T1) and Panel B and C typical tissue specimens from
two patients after completion of therapy (T3). Whereas no or only weak staining for aSMA, tenascin, fibronectin and pro-collagen 1 was observed
before therapy (A1–A4), tissues turned strongly positive for all four markers after completion of treatment (B1–B4 and C1–C4). Staining of ECM
proteins was most prominent in areas containing many aSMA positive myofibroblasts.
doi:10.1371/journal.pntd.0002809.g003

Wound Healing Markers in Buruli Ulcer
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Figure 4. Increase of Cytokeratin 16 expression by keratinocytes during antibiotic therapy. Histological sections were stained by
immunohistochemistry with an anti-Cytokeratin 16 antibodies and were counterstained with Haematoxylin. While healthy skin was completely
devoid of Cytokeratin 16 staining (A1), some staining was observed (A2) in the epidermal layer of untreated BU lesions (T1). Staining intensity and
epidermal thickness increased in samples collected during (T2) and after completion (T3) of antibiotic therapy (A3, A4). After completion of therapy
(T3) heterogeneous staining (B, Overview), with some areas of the epidermal layer showing much weaker Cytokeratin 16 staining (Region 1) than
others (Region 2) was observed.
doi:10.1371/journal.pntd.0002809.g004

Figure 5. Emergence of apoptotic fat cells after completion of antibiotic therapy. Histological sections were stained by
immunohistochemistry with anti-CC3 antibodies and were counterstained with Haematoxylin. Infiltrated necrotic areas (A, C, E) and fat cell layers
(B, D, F) of the subcutaneous tissues are displayed. Before treatment some of the infiltrating cells showed CC3 staining (A). No staining was observed
in the subcutaneous layer (B). During treatment (C, D) only very few cells showed CC3 staining. After treatment substantial numbers of infiltrating
cells were CC3-positive (E) and in addition larger numbers of CC3-positive fat cells were found (F).
doi:10.1371/journal.pntd.0002809.g005

Wound Healing Markers in Buruli Ulcer
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the phosphorylated S6 protein can be used to determine whether

cells show an activation of the mTor pathway [32,35]. Here

we observed that, after treatment of BU lesions, many cells, most

notably aSMA-positive myofibroblasts, exhibited increased S6

phosphorylation, indicating enhanced protein synthesis and/or

proliferation. In contrast, phosphorylated S6 protein positive cells

are barely detectable in healthy skin [36].

Malnutrition or starvation is known to repress mTor activation

(most likely via Insulin/IGF deficiency) [35] and may contribute

to impaired wound healing in some BU patients. Based on these

results, we will investigate in a next step whether mTor pathway

activation can help to discriminate between healing and non-

healing wounds in BU.

Activated myofibroblasts are not only involved in wound

contraction but they also produce the ECM proteins fibronectin,

tenascin and different pro-collagens. Together with newly formed

blood vessels and inflammatory cells they built the granulation

tissue, which is a prerequisite for successful healing of dermal

injuries [15]. In healthy skin, fibronectin is found in blood vessels,

in dermal/epidermal junctions and in hair follicles [17,20]. In

contrast tenascin-C and pro-collagen 1, which is the zymogen of

collagen 1, are almost absent in the healthy skin but are abundant

in healing skin lesions [37–39]. The presence of activated

myofibroblasts and deposition of ECM proteins in response to

BU specific therapy is a strong indication for a successful ongoing

wound healing process. We observed the formation of granulation

tissue in all 8 patients after completion of therapy and in 2/8

patients already at time point T2 during chemotherapy. Indeed

all BU lesions analyzed in this study, showed a good clinical

outcome, no recurrences were observed and patients could be

discharged from the hospital 42 to 127 days after completion of

therapy [10].

Although, the epidermis and dermis of plaque lesions may stay

closed and intact for a long time [10], the expression of CK16

is a clear indication that also the epidermis is affected in BU

lesion. CK16 is a marker of epidermal hyper-proliferation and is

expressed by activated keratinocytes in wounded tissue [24]. In

antibiotic treated BU lesions we observed an increase of CK16

expression over time. Absence or only faint CK16 staining in

tissue taken before therapy, support the idea that the cytotoxic

and immunosuppressive effects of mycolactone, which arrests the

lesions in a chronic wound healing state and also suppresses

keratinocyte activation. Heterogeneous staining of the epidermal

layer in larger surgical excisions excised at time point T3 may

reflect disease activity in the underlying tissue. Augmented

epidermal CK16 expression is also characteristic for inflammatory

skin diseases with a hyper-proliferative epidermis, such as psoriasis,

and CK16 is used as marker to evaluate the efficacy of anti-

psoriatic treatments [40]. In addition, intra-dermal injection of the

pro-inflammatory cytokine interferon-gamma has been shown to

increase epidermal CK16 expression [41]. Therefore, enhanced

CK16 expression in BU lesions after treatment is likely the

consequence of increased dermal inflammation in response to

successful antibiotic treatment and mycolactone clearing.

Each phase of the complex wound healing process is

characterized by the presence of a specific population of cells

producing specific proteins and fulfilling specific tasks. Tissue

remodeling by controlled cell death (apoptosis) is as important as

proliferation. If cell death is wrongly regulated and certain cells

persist after their task is accomplished this may lead to wound

healing complications, like the development of hypertrophic scars

or keloids [23,42]. Additionally, infiltrating inflammatory cells

need to be removed after the wounded area has been cleaned.

Here we used CC3 as an established marker which is detectable

in a small time window in end-stage apoptotic cells. Its short

duration of expression explains the small number of positive cells

in our BU lesions. It is known that mycolactone induces apoptosis

in vitro and in vivo leaving behind only necrotic tissue devoid

of any surviving cells [43,44]. Accordingly, at time point T1,

subcutaneous tissue presented nearly devoid of any intact cell,

except for some remaining cells around blood vessels and CC3

positive cells were very rare. While a further decrease of CC3

staining was observed during antibiotic treatment (T2), after

treatment (T3) CC3 staining became prominent in the granulation

tissue and was even more pronounced in nearby fat tissue. At

this stage the wound healing process is in a state between the

inflammatory and the remodeling phase. The inflammatory phase

sets in shortly after the start of treatment and is characterized by a

strong mixed infiltration, presence of granulomas and giant cells as

well as B-cell cluster [30]. Apoptosis of inflammatory cells

observed in the temporary granulation tissue at time point T3 is

a necessary step in order to form healthy new tissue [15]. No

apoptotic myofibroblasts were detected, since they are still

needed at this stage of the wound healing process. The observed

emergence of apoptotic fat cells may also be a result of the ongoing

tissue remodeling process and reflect the removal of superfluous or

impaired fat tissue. In conclusion this study shows that markers like

aSMA, fibronectin, pro-collagen 1, tenascin-C and CK16, are

suitable to monitor healing of BU lesions. The present study also

suggests that the mTor pathway might play an important role

during wound healing in BU. Further investigations using the

presented marker set to compare healing and non-healing BU

lesions may help to clarify steps and aspects of this complex

process. Whether wound healing deficiencies are associated with

insufficient activation of the mTor pathway needs to be examined

in a larger cohort.
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