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The clinical practice of selective serotonin reuptake inhibitor (SSRI) augmentation relies 
heavily on trial-and-error. Unfortunately, the drug combinations prescribed today fail to 
provide relief for many depressed patients. In order to identify potentially more effective 
treatments, we developed a computational model of the monoaminergic neurotransmitter 
and stress-steroid systems that neuroadapts to chronic administration of combinations of 
antidepressant drugs and hormones by adjusting the strengths of its transmitter-system 
components (TSCs). We used the model to screen 60 chronically administered drug/
hormone pairs and triples, and identified as potentially therapeutic those combinations 
that raised the monoamines (serotonin, norepinephrine, and dopamine) but lowered 
cortisol following neuroadaptation in the model. We also evaluated the contributions 
of individual and pairs of TSCs to therapeutic neuroadaptation with chronic SSRI using 
sensitivity, correlation, and linear temporal-logic analyses. All three approaches revealed 
that therapeutic neuroadaptation to chronic SSRI is an overdetermined process that 
depends on multiple TSCs, providing a potential explanation for the clinical finding that no 
single antidepressant regimen alleviates depressive symptoms in all patients.

Keywords: depression, monoamine, cortisol, SSRI augmentation, polypharmacy, combination therapy, 
overdetermined system, systems biology

INTRODUCTION

Depression is a debilitating psychological disorder and a leading cause of physical disability 
worldwide (Cipriani et al., 2016; Friedrich, 2017). The current first-line treatment for depression is 
chronic administration of selective serotonin reuptake inhibitors (SSRIs), which provide complete 
relief from depressive symptomatology in only one-third of patients (Turner et  al., 2008). In 
SSRI non-responders, defined as patients who experience undetectable or minimal improvement 
on clinical standardized rating instruments (such as the Hamilton Depression Rating Scale), 
clinicians employ acute or chronic alternatives to SSRI monotherapy (El-Hage et al., 2013). Acute 
(rapid-acting) alternatives include electroconvulsive therapy (ECT) or, more recently, ketamine, 
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a glutamate N-methyl-D-aspartate receptor antagonist (Gideons 
et al., 2014). Both of these acute depression treatment approaches 
are promising, but current guidelines for unipolar depression 
treatment employ chronic antidepressant administration except 
in the cases of severe suicidality, and most depressed patients 
are still treated using chronic antidepressant administration 
(Davidson, 2010; Murrough et al., 2013).

Chronic alternatives include escalation of the dosage of the 
current SSRI, switching to a different SSRI, or augmentation 
with a non-SSRI antidepressant that targets the monoaminergic 
nervous system (Monteggia et al., 2014). Although these 
strategies increase the proportion of depressed patients who 
respond to pharmacotherapy, an effective chronic antidepressant 
combination unfortunately is not found in all SSRI non-
responders (Ananth, 1998; Barowsky and Schwartz, 2006). 

The focus of this analysis is on chronic administration 
of antidepressants and other substances, either alone or in 
combination. There is currently no well-defined procedure 
for choosing which among the possible combinations of 
antidepressants (or combinations of antidepressants and other 
substances) would be most effective for a given patient. We 
have developed a computational model that leverages current 
knowledge to make predictions concerning the potential efficacy 
of combinations of antidepressants and the hormones mediating 
the hypothalamic-pituitary-adrenal (HPA) axis. The model is 
based on the monoaminergic neurotransmitter system and its 
interactions with the stress hormone system as regulated by the 
HPA axis.

The current approach to designing chronic antidepressant 
pharmocotherapy is based on the monoamine hypothesis. 
Mood is largely determined by the three monoaminergic 
neurotransmitters: serotonin (5HT), secreted from the dorsal 
raphe (DR); norepinephrine (NE), secreted from the locus 
coeruleus (LC); and dopamine (DA), secreted from the ventral 
tegmental area (VTA). The monoamine hypothesis was developed 
in the 1960s, following on clinical observations that drugs that 
elevate brain levels of 5HT, NE, or DA had mood-elevating 
effects (Schildkraut, 1965). The low efficacy-rate of SSRIs and 
of current SSRI augmentation strategies has led the field to 
investigate pharmacological targets beyond the monoamines 
that could improve antidepressant response efficacy, especially 
the interactions between the monoaminergic neurotransmitter 
and other neurotransmitter and hormone systems.

The most commonly observed risk factors for depression are 
stressful life events. For that reason, our current model is focused 
on the interactions between the monoaminergic neurotransmitter 
systems and the neuroendocrine response to stress (Kendler et al., 
1999; Kendler and Gardner, 2016). Stress leads to activation of 
the HPA axis, resulting in elevated plasma levels of the stress-
steroid, cortisol (Kendler et al., 1999). Briefly, HPA axis activation 
begins with corticotropin releasing factor (CRF) secretion from 
the paraventricular nucleus (PVN) of the hypothalamus in 
response to stress. Activation of pituitary gland CRF receptors 
by CRF results in adrenocorticotropic hormone (ACTH) release 
from the pituitary gland. Binding of ACTH to its receptors on 
the adrenal gland promotes cortisol release from the adrenal 
cortex (Pariante and Lightman, 2008; Morris et al., 2012). In the 

short-term, cortisol release in response to HPA axis activation can 
be beneficial for dealing with stress (Dhabhar and Mcewen, 1997; 
McEwen, 2004). However, chronic elevations of blood cortisol 
levels are related to depressive symptomology, and response to 
antidepressant drugs is associated with normalization of plasma 
cortisol levels (Johnson et al., 1992; Wong et al., 2000).

The interactions between the monoaminergic neurotransmitter 
system and the HPA axis are complex. For example, activation 
of monoaminergic receptors on the PVN, pituitary gland, and 
adrenal gland by monoaminergic neurotransmitters has been 
found to enhance HPA axis activity (Dinan, 1996; Ziegler et al., 
1999; Ma and Morilak, 2005), while cortisol can alter expression 
of proteins involved in monoaminergic synaptic transmission, 
including serotonergic receptors, monoamine synthesis enzymes, 
and monoamine oxidase (MAO) (Hucklebridge et al., 1998; 
McAllister-Williams et al., 2007; Nexon et al., 2011).

Here we represent the major interactions between the 
monoaminergic neurotransmitter systems and the HPA axis 
in a computational model that we refer to as the Monoamine-
Stress model (MS-model). It extends our previously published 
computational model of the monoaminergic neurotransmitter 
system but differs in its structure, training procedure, and analysis 
(Camacho and Anastasio, 2017). Specifically, the MS-model takes 
the form of a recurrent network in order to use a more efficient 
learning procedure to train its more extensive representations of 
neurobiological interactions, and to conform to a larger set of 
experimental observations.

Our approach is to model the interactions within and 
between the monoaminergic neurotransmitter systems and the 
stress hormone system as a network of nonlinear elements, and 
to train the model using machine learning. Both the structure 
of the model and the data on which it is trained are based on 
experimental observations as described in the literature. The 
model is of necessity abstract, but the form and behavior of the 
fully trained model are consistent with a broad range of findings 
on the monoaminergic-transmitter and stress-hormone systems. 
The fully trained model can be used to predict the acute effects 
of drug or drug-hormone combinations. Through systematic 
adjustments of model parameters that represent known, adaptable 
elements of the monoaminergic-transmitter and stress-hormone 
systems (referred to as transmitter system components, TSCs), 
the model can also be used to predict the range of responses of a 
population of patients to chronic administration of drug or drug-
hormone combinations.

Acute administration of substances (such as drugs or 
hormones) has been observed to alter neuronal activity levels, and 
chronic (days to weeks) substance exposure can lead to adaptive 
changes in neurons that move their activity levels back toward 
their original levels (Blier and De Montigny, 1987; Turrigiano, 
1999; 2008). We simulated neuroadaptive changes by allowing 
a subset of TSCs (mainly proteins such as neurotransmitter 
or neurohormone receptors or transporters) to adjust their 
strengths (corresponding to factors such as expression levels, 
sensitivities, and synaptic locations) incrementally up or down. 
TSC-strength configurations that restored the activities of DR, 
LC, VTA, and PVN back toward normative baselines were 
referred to as “adapted.”
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We found that many different TSC-strength configurations 
could produce adaptation to chronic administration of any drug 
or drug combination, and each adapted configuration had its 
own, unique pattern of neurotransmitter and hormone levels. 
This computational finding provides a possible explanation 
for the clinical finding that no single antidepressant drug or 
combination alleviates depressive symptoms in all patients 
(Barowsky and Schwartz, 2006; Turner et al., 2008; Zhou et al., 
2015; Cipriani et al., 2016; Friedrich, 2017). By revealing that 
many different TSC-strength configurations, each associated 
with its own monoamine levels, could be equally well adapted 
to any chronic antidepressant treatment, the MS-model 
identifies a key challenge to effective antidepressant drug design. 
By enumerating a very large set of possible neuroadaptive 
configurations to chronic drug or hormone administration, and 
by reporting the associated monoaminergic neurotransmitter 
and cortisol levels, our computational model can be used to 
address this challenge and to identify drug and/or hormone 
combinations that potentially could be therapeutic for a higher 
proportion of patients, or patients with specific subtypes of 
depression requiring elevations in specific monoamines.

METHODS

Model Formalism Overview
The MS-model takes the form of a recurrent network of units 
that all have the same sigmoidal (S-shaped, nonlinear but 
differentiable) activation function. This powerful computational 
formalism is a Turing-equivalent universal approximator that 
can be efficiently trained, via machine learning, to perform a 
broad range of desired, dynamic input-output transformations 
(Siegelmann and Sontag, 1991). When used to model neural 
systems, the units in a recurrent network usually represent 
single neurons, or the average activity of the neurons in the same 
brain region (Anastasio, 2010). In modeling and analysis of the 
transmitter and hormonal systems that mediate mood, however, 
multiple levels of organization must be taken into account that 
include not only brain regions and neurons but also proteins and 
small molecules.

In the MS-model, individual units represent the brain regions, 
transmitters, receptors, transporters, enzymes, precursors, 
metabolites, and hormones that are involved in the pathologies 
of anxiety and depression. Some individual units represented 
whole brain regions that are central to these pathologies. The 
monoaminergic neurotransmitter-producing regions (DR, LC, 
and VTA) were represented as single units because the majority 
of antidepressant drugs target these regions directly (Koenig 
and Thase, 2009). The HPA axis regions (PVN, pituitary gland, 
and adrenal gland) were represented as single units in order to 
incorporate the effects of the stress response in our analysis. 
The amygdala, prefrontal cortex (PFC), and hippocampus were 
represented because these regions are implicated in regulation 
of the HPA axis, and because they are also implicated in the 
antidepressant response itself through their involvement in 
cognitive control (Albert et al.,2014; Dinan, 1996; Malagie et al., 
1996; Godlewska et al., 2012).

Single units also represented key neurotransmitters (e.g. 5HT, 
NE, and DA) and hormones (e.g. cortisol (CORT) and oxytocin 
(Oxt)), and many of the key transmitter receptors, transporters, 
and enzymes that are transmitter-system components (TSCs). 
See Supplemental Figure 1 for a diagram of the full MS-model. 
A comprehensive literature search guided model-structure 
design in order to ensure that model architecture conformed to 
known neurobiological interactions.

Representing neurobiological entities (brain regions, 
transmitters, receptors, etc.) as single units enabled the model 
to represent the level (of activity, expression, concentration, etc.) 
of that entity in the whole brain, or in specific brain regions as 
appropriate. The 5HT unit, for example, represented the brain 
serotonin level, which is the major neurobiological endpoint for 
antidepressant action. The weights of the connections between 
the units also had specific identities in the model. For example, 
the effectiveness of the 5HT autoreceptor in inhibiting DR 
neurons was represented in the model by the absolute value of 
the inhibitory weight of the 5HT1A receptor (5HT1AR) unit 
onto the DR unit.

Relative to the overall number of network weights, a very 
small number of weights were of great significance because they 
represented TSCs whose efficacies, or strengths (expression 
levels, sensitivities, concentrations, synaptic locations, etc.), are 
known to adapt under chronic stress or chronic antidepressant 
administration. All of the weights in a trained network represent 
the normative strengths of influences of specific neurobiological 
entities on each other. The weights of the adaptable TSCs 
specifically were further adjusted to analyze the possible modes 
of adaptation to chronic stress, drugs, or hormones in the model.

Model Structure and Function
In describing neural networks it is necessary to distinguish 
inputs/outputs to/from the network overall, and inputs/outputs 
to/from individual units in the network. Units are categorized as 
input, output, or “hidden units.” There were 40 input units that 
provided input to the overall network. They take on assigned 
values and project to other units but do not receive connections 
from other units. Hidden and output units receive connections 
from input units and from each other. There were 23 output units 
that provided the output of the overall network. Output units 
are distinguished from hidden units in having targets (desired 
outputs). Hidden units have neither assigned nor desired 
values. The network consisted of 102 total units (input, hidden, 
and output).

Individually, the activity of each unit is a function of its inputs 
from the other units (this is not true for input units that do not 
receive inputs from other units). Each sending unit provides 
inputs to receiving units that are equal to the product of the 
sending unit’s activity level and the value of the weight (positive or 
negative) of the connection from the sending unit to the receiving 
unit. The net input to a receiving unit is the sum of the weighted 
inputs from all its sending units. The activity level of a unit is the 
value of its net input (i.e. weighted input sum) after it has passed 
through the sigmoidal activation function, which “squashes” the 
net input sigmoidally in the range between 0 and 1. The value 
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of the sigmoidal squashing function for net input 0 is 0.50 (the 
midpoint of the 0–1 range).

The connection weights from the input, hidden, and output 
units to the hidden and output units are organized into the 
network weight matrix. The weight matrix consisted of 61 rows 
and 102 columns for a total of 6222 weights. Any input, hidden, 
or output unit could project to any hidden or output unit, but 
various distinctions between specific classes of connection 
weights were made in order to satisfy modeling goals.

The subject of the MS-model is the behavior of the 
monoaminergic transmitter systems and the stress hormone 
system (i.e. the monoamine-stress system) as they relate to the 
pathophysiology of depression. This behavior involves heavy 
interaction between the three monoaminergic transmitter systems 
and the stress hormone system, but also involves interactions 
between those systems and many other systems throughout 
the nervous system. The MS-model is therefore focused on the 
interactions between the monoaminergic transmitter and stress 
hormone systems, but also represents many other interactions 
that are included to ensure that model behavior is in line with 
a large set of empirical observations on the monoamine-stress 
system, as described in the literature.

In order to foreground monoamine-stress system interactions 
in the model, three classes of connection weights are distinguished: 
canonical, structure, and non-structure. Canonical weights are 
the weights of the known connections between units representing 
key components of the monoamine-stress system, such as the 
weight from the DR to 5HT, representing the effectiveness of 
the DR in producing 5HT. There were 23 canonical weights (see 
Supplemental Table 2). Structure weights are the weights of the 
connections between units representing neurobiological entities 
that are also known to interact empirically but are not canonical 
weights, such as the weight from DR to galanin, representing 
the effectiveness of the DR in co-releasing galanin. There were 
305 total structure weights. Non-structure weights denote all 
other connection weights; they may or may not represent as yet 
unidentified interactions that actually do occur in neurobiology. 
There were 5,894 non-structure weights in total. The three classes 
of weights are treated differently during model training (see 
next subsection).

Two data structures were needed in order to construct and 
train the MS-model: a structure matrix and a truth table. Both 
the structure matrix and the truth table were compiled via a 
comprehensive literature search. To include as much of the 
available experimental data as possible, the search compiled 
findings from multiple groups using a broad range of experimental 
methods in humans and other animals. Due to the heterogeneity 
in methods and test subjects, values in the structure matrix and 
truth table do not reflect precise measurements (e.g. mg/kg of 
a compound in a rat versus a human) but were quantized into 
a few discrete values. This course-graining allowed the model 
to represent much of the relevant phenomenology but in an 
approximate way.

The structure matrix is a two-dimensional matrix, coextensive 
with the network weight matrix, which specifies which 
neurobiological entities in the model are known to interact with 
which others, and their valance (positive or negative) if also 

known (see Supplementary Material S1: Details on Structure 
Connections). The structure matrix designates all structure and 
canonical weights in the model using non-zero integers (+/− 1 
for structure, +/− 2 for canonical). Non-structure weights 
take value 0 in the structure matrix. Figure 1 shows a highly 
simplified version of the structure of the model using only one 
of the three monoaminergic neurotransmitter systems in its 
representation. The full model diagram, which incorporates the 
connections within and between all three of the monoaminergic 
neurotransmitter systems and many other neurobiological 
entities, can be viewed in Supplemental Figure 1: Complete 
Model Structure Diagram.

The truth table is an array of input/desired-output training 
patterns that specifies how specific experimental manipulations, 
which are represented as patterns of network inputs, are known to 
affect specific neurobiological endpoints, which are represented 
as patterns of desired network outputs. Each row of the truth 
table represents the statistically significant results of one or 
more actual experiments. When more than one finding was 
available on a particular input-output relationship, a consensus 
was reached using the available data (see Supplemental Material 
S2: Truth-table Justification for a summary of the experiments 
included in the truth table and corresponding references).

Inputs in the truth table are either present or absent (1 or 0) 
and outputs are assigned discrete levels between 0.30 (maximal 
decrease) and 0.70 (maximal increase) with reference to a 
baseline of 0.50. An output could either decrease maximally 
(0.30), decrease moderately (0.40), exhibit no change from 
baseline (0.50), increase moderately (0.60), or increase maximally 
(0.70) in response to an input or combination of inputs. 
Determinations of “moderate” versus “maximal” changes were 
made based on a comprehensive literature search of available 
qualitative and quantitative data. The discrete level assigned to a 
neurotransmitter as an output was taken as the whole-brain level 
of that neurotransmitter, if reported. If neurotransmitter level 
was reported in specific brain regions, then its level in the PFC 
was used preferentially over other brain regions. Otherwise, the 
discrete level assigned to a neurotransmitter was proportional to 
the average of its level in the regions in which it was measured. 
Table 1 is a condensed, example input/desired-output table (i.e. 
truth table). The complete truth table has 66 input/desired output 
patterns (see the Excel file corresponding to Supplemental 
Table 1: Complete Model Truth-Table).

Training the Model
The model was trained using an efficient, gradient-based machine 
learning method known generally as recurrent back-propagation. 
The specific algorithm we used is due to Piñeda and it trains 
dynamic, recurrent neural networks to produce desired steady-
state output patterns given specific input patterns (Pineda, 1987) 
(see Supplemental Material S3: Details on Model Training). The 
Piñeda algorithm assumes that networks reach steady-states and 
tends to train networks to reach steady states.

Prior to training, the complete network weight matrix, 
including canonical, structure, and non-structure weights, 
is randomized. Training occurs over 1 × 106 training cycles 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Modeling Therapeutic Neuroadaptation to Chronic AntidepressantCamacho et al.

5 October 2019 | Volume 10 | Article 1215Frontiers in Pharmacology | www.frontiersin.org

(presentation of input/desired-output patterns). Input/desired-
output patterns are presented to the network in random order 
during training. The steady-state network response to each 
network input is found after 100 iterations of unit updating (each 
unit computes the value of the sigmoid for its net input on each 

iteration). The differences between the desired and actual outputs 
of the units in the model were used to compute an error measure. 
The training method then computes the change for each weight 
using the error measure, and updates network weights on each 
training cycle.

Weight changes were scaled by a learning rate term before 
being applied to a weight. The learning rates were set to 1 for the 
canonical and structure weights, and to 0.10 for the non-structure 
weights, in order to disadvantage the non-structure connections 
because they are not known for certain to be involved in the 
behavior being modeled. All weights had an upper-bound at 
absolute value 10. All weights had a lower bound of 0 except for 
the canonical weights, which had a lower bound of 1 to ensure 
they exerted an influence on overall network performance. For 
more details on model training, see Supplemental Material S3: 
Details on Model Training.

We developed a pruning procedure to prune networks in 
order to eliminate unneeded non-structure connections. This 
was intended both to minimize the number of non-structure 
connections and to improve generalizability of model behavior. 
Generalizability was assessed by training the model on all 
single-manipulation inputs (e.g. single drugs) and testing on all 
combination inputs (e.g. drug combinations). The truth table 

FIGURE 1 | Simplified schematic representation of the model. The Monoamine-Stress model takes the form of a recurrent neural network of nonlinear elements 
(units) that represent neurotransmitter-producing regions, enzymes, neurotransmitters, hormones, and receptors. Each unit type in the model is represented 
using a different shape in this highly simplified model diagram, in which only one or two of each unit type is shown. The full model diagram incorporates all three 
monoaminergic neurotransmitter-producing brain regions and the stress hormone system, and can be viewed in Supplemental Material. Neurotransmitter 
and hormone producing regions are represented as triangles, neurotransmitters and hormones are represented as circles, protein molecules are represented as 
rectangles, and inputs are represented as rounded rectangles. Connections between model units can be excitatory (arrow) or inhibitory (tee). DR, dorsal raphe; AG, 
adrenal gland; 5HT, serotonin; CORT, cortisol; 5HTT, serotonin transporter; 5HT1AR, 5HT1A receptor; and GCR, glucocorticoid receptor.

TABLE 1 | Highly simplified example of the input/desired-output relationships 
used to train the model. 

Desired output

Row Input DR AG 5HT CORT

1 Baseline 0.50 0.50 0.50 0.50
2 SSRI 0.40 0.60 0.70
3 Dexamethasone 0.60 0.30
4 Stress 0.60 0.70 0.60 0.70
5 Adrenalectomy 0.30 0.30

The relationships represented in this truth table are based on the simplified diagram 
in Figure 1. Each row represents the consensus of the results of one or more 
experiments in which output levels were measured in response to each input. Row 1 
is the baseline where there is no input. In rows 2 and 3 the inputs are drugs: SSRI or 
dexamethasone (glucocorticoid receptor agonist). In rows 4 and 5 the input is stress 
or adrenalectomy. The output values range from 0.30 to 0.70, where 0.30 represents 
maximal decrease, 0.40 represents moderate decrease, 0.50 represents the baseline 
value, 0.60 represents moderate increase, and 0.70 represents maximal increase.
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included 41 single-input patterns and 25 combination-input 
patterns. Our pruning procedure eliminates 3981 non-structure 
connections (68% of all non-structure weights) on average and 
slightly improves generalization. The process of optimizing 
the pruning method is discussed in detail in Supplemental 
Material S4: Pruning Methods.

All further networks were trained using the following 
procedure: Networks with the full weight matrix (i.e. all canonical, 
structure, and non-structure connection weights) were trained 
on the full truth table (all single and combination inputs). Non-
structure connections were pruned at the sensitivity cutoff 
optimized for generalizability, and the pruned networks were 
then retrained on the full truth table.

Adjusting Adaptable TSCs
Most antidepressants are administered chronically, so a 
model designed to represent the behavior of the monoamine-
stress system in the context of depression must represent 
the responses to chronic-drug as well as to acute-drug 
administration. The MS-model can reproduce the effects of 
acute antidepressant administration by virtue of its training 
on the truth table, which includes many input/desired-output 
patterns that describe the effects of acute drugs. Because the 
monoamine-stress system is known to adapt under conditions 
of chronic drug (or chronic stress), the model must also 
account for neuroadaptation. Neuroadaptation is the process 
by which the overall activity levels (specifically the resting or 
spontaneous activity levels) of neurons in key brain structures 
are brought back to their normative baselines under conditions 
of chronic perturbation, such as chronic administration of a 
drug (see Introduction).

The four key brain regions in the MS-model are the four 
canonical neural structures: DR, LC, VTA, and PVN. These 
canonical brain structures are represented as individual units 
in the model. Neuroadaptation is known to occur through 
changes (i.e. adaptations) in the expression, sensitivity, efficacy, 
cellular or synaptic location, or other aspects associated with 
proteins (receptors, transporters, ion channels, etc.) that 
influence the activity levels of neurons in key brain regions 
(see Introduction). The 10 adjustable TSCs in the MS-model 
correspond to 10 actual TSC proteins that are known empirically 
to undergo adaptive changes under conditions of chronic 
manipulations within the purview of the model truth-table 
(see Supplemental Table 3: Adjustable TSCs). These 10 real 
TSCs are also known to play critical roles in the interactions 
between the three monoaminergic-transmitter systems and the 
stress-hormone system.

The strengths of cell-type specific TSCs are represented as 
individual weights in the MS-model. For example, the best known 
adjustable TSC in the context of antidepressant neurobiology 
is the 5HT1AR on DR neurons, which has been observed to 
“desensitize” (i.e. to become less sensitive to 5HT and therefore 
less effective in inhibiting the DR) (Blier and De Montigny, 1987; 
El Mansari et al., 2005). The TSC corresponding to the 5HT1AR 
on DR neurons is represented in the model as the weight of the 
connection from the 5HT1AR unit to the DR unit.

TSCs are network connection weights, but changes in these 
weights in the context of neuroadaptation are fundamentally 
different from changes due to neural network training. In neural 
network training, all connection weights can be changed in 
order to bring network outputs closer to specific desired, target 
outputs. In neuroadaptation, only a small subset of weights may 
change (i.e. those that correspond to key TSC proteins that are 
known to adapt), and these changes are directed not toward 
achievement of specific target outputs but to produce a more 
general restoration of the overall activity levels of neurons in key 
brain structures. For this reason, neuroadaptation was produced 
in the model simply by incrementally changing (i.e. adjusting up 
or down) the strengths of the network weights corresponding to 
the 10 adjustable TSCs. Note that the weights corresponding to 
the strengths of the 10 adjustable TSCs constitute a small number 
of the network connection weights.

An adjusted network was one in which the ten weights 
corresponding to the adjustable TSCs are replaced with one 
or more adjusted values. Adjusted networks were considered 
adapted if their activation error was lower than their initial error, 
where initial error is the error due to acute administration of the 
drug or combination that is observed before any TSC adjustments 
have been made (see Results). The adjustment procedure was 
implemented “blindly” (i.e. in an unsupervised manner) so the 
adjustments could just as easily move the activities of the DR, LC, 
VTA, and PVN units away from normative activity as toward it, 
but adapted configurations were easily identified by the behavior 
of the adjusted networks.

We computed all possible configurations of the 10 adjustable 
TSC weights that were reachable by increasing or decreasing 
any single TSC weight by 0.50, within the predetermined TSC 
strength minimum of 0 and absolute maximum of 10, for a 
preset number of allowed adjustments that was the same for all 
weights. The “normative” strength of any network connection 
weight, including the weights corresponding to the 10 TSCs, 
is simply its value following neural network training. Due 
to the randomness inherent in neural network training (see 
previous subsection), equally well-trained networks can have 
very different network connection weights. This variability 
nicely corresponds to the natural variability in neurobiological 
properties that are known to occur between individuals 
(see Discussion).

To account for this inter-individual variability of 
neurobiological systems we studied adjustments of the normative 
weights in three representative networks, each trained from a 
different random initial weight matrix according to a different 
random order of input/desired-output presentations. We found 
all configurations of the 10 TSC weights reachable from each of 
the three representative, normative networks for all increments of 
0.50 within the bounds of 0 and |10| up to a total of six adjustments, 
producing 382,747 total TSC-strength configurations over the 
three networks. Possible modes of adaptation of the MS-model 
were studied by analyzing this large set of adjusted configurations. 
Generation of the full set of TSC-weight configurations for a total 
of seven adjustments, which would have produced over 11 × 106 
configurations, was not possible due to technical limitations (see 
subsection on Hardware Considerations).
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Full-Range Individual-Weight Adjustment
We assume that all normal individuals will adapt to chronic 
antidepressant but we further assume that different individuals 
will adapt in different ways, and not all of them will achieve 
“therapeutic” levels of the monoamines, defined as the levels 
necessary to achieve remission of depressive symptoms. We 
set the therapeutic floor for 5HT to 0.70 because the baseline 
for 5HT was set to 0.50, and the desired 5HT output for acute 
SSRI was set to 0.60 (see Supplemental Material S2: Truth 
Table Justification). The therapeutic 5HT floor was set to 0.70 
in order to double the acute increase of 0.10. This is consistent 
with findings that 5HT levels can increase to about 200% and 
400% of baseline with acute or chronic SSRI administration, 
respectively (Ceglia et al., 2004). Elevations in NE and DA with 
chronic antidepressant administration have also been found to 
be associated with antidepressant response (Page et al., 2003; 
Yoshitake et al., 2004). For consistency, 0.70 was also used as the 
therapeutic floor for NE and DA because therapeutic levels for 
NE and DA with chronic antidepressant have not been identified 
conclusively. CORT levels have been found to decrease with 
chronic SSRI administration and antidepressant response, so the 
therapeutic ceiling for CORT was set to 0.70 to reflect a decrease 
from the acute-SSRI CORT level of 0.70 (Lenze et al., 2011; Ruhé 
et al., 2015).

It is possible that some adjustable TSCs contribute more to 
the attainment of therapeutic monoamine levels than others. 
We define “therapeuticity” as the ability of a TSC to contribute 
to the attainment of therapeutic monoamine levels through 
adjustments in its strength. We conducted full-range individual-
weight adjustment (FRIWA) analysis (a kind of sensitivity 
analysis) to gauge the therapeuticity of single TSCs. The starting 
configurations for FRIWA analysis were all of the configurations 
adapted to chronic SSRI that were also therapeutic, extracted from 
the exhaustive set of configurations of adjustments in all TSCs up 
to a total of six adjustments. The total number of adapted and 
therapeutic configurations over all three representative networks 
was 5598. Therapeutic configurations were those that increased 
5HT above the 5HT therapeutic floor (> = 0.70) and decreased 
CORT below the therapeutic CORT ceiling (< = 0.70).

FRIWA analysis involved adjustment of the weight of a single 
adaptable TSC across its full range (0 to |10|; note that individual 
TSCs are either positive or negative), while the weights for the 
nine other adaptable TSCs remained frozen at their starting 
values, in each of the 5598 adapted and therapeutic starting 
configurations. FRIWA occurred in steps, where each individual 
weight adjustment (IWA) was an increment of |0.50|. Thus, 
FRIWA generated a set of 200 new configurations (20 IWA 
adjustments for each of 10 TSC weights) starting from each of 
the 5598 adapted and therapeutic configurations for a total of 
980,193 new configurations. All configurations that were no 
longer adapted after a step of IWA were excluded from further 
analysis, leaving 493,564 adapted TSC-strength configurations. 
Of those, 285,635 configurations were designated “resistant,” 
because they remained therapeutic despite a step of IWA, while 
the remaining 207,929 configurations were designated “sensitive” 
because there were rendered non-therapeutic by a step of IWA.

The weights of each of the 10 adjustable TSCs in all of the 
post-IWA configurations were pooled over each representative 
network, and separated on the basis of resistance and sensitivity, 
excluding the weights that were manipulated by FRIWA. The 
mean weight of each adjustable TSC was computed for both 
the resistant and sensitive configurations of each network and 
compared (see Results). Further FRIWA analysis involved 
computing the pairwise correlations between all TSC weights 
over all the resistant, or over all the sensitive, configurations in 
each network. Only pairwise correlations that were statistically 
significant (P < 0.05) over all three representative networks 
would have been reported. Again for correlation analysis, the 
TSC weights that were manipulated by FRIWA were excluded.

Temporal-Logic Model-Checking
As described above, we studied the consequences of adaptation 
by generating a large set of adapted TSC-strength configurations 
(see subsection on Adjusting Adaptable TSCs). We also studied the 
process of adaptation by making allowed TSC weight adjustments 
(increments of 0.50 up or down, within bounds of 0 and |10|) in 
all possible sequences. Linear temporal logic (LTL) is a type of 
modal temporal logic that facilitates reasoning about sequences of 
discrete states evolving in time. LTL analysis enables the evaluation 
of temporally specified logical propositions such as whether a 
specific state is always maintained or eventually reached; whether a 
specific state pertains only until another state pertains; or whether 
a specific state always leads to another specific state.

Temporal-logic model-checking allowed us to determine such 
temporal relationships between TSC-strength configurations (i.e. 
states) of the MS model. We used LTL model checking to determine 
if specific degrees of neuroadaptation (e.g. a configuration in 
which a specific TSC has been adjusted down three times) always 
leads to an adapted and therapeutic configuration (for all possible 
sequences of adjustments proceeding from that configuration up 
to a total of six adjustments) (see Supplemental Material S5: 
Details on Temporal-logic Model-checking Procedure for details 
on model-checking statements).

In order to evaluate model-checks in the MS-model, it was 
necessary to define a set of logical predicates to be tested. The 
following predicates were used in the temporal-logic analysis: 
fht_high, 5HT is above the 5HT therapeutic floor (> = 0.70); 
cort_low, CORT is below the therapeutic CORT ceiling (< = 
0.70); TSC_sens_gt_3, the adjustable TSC has sensitized by 
at least three steps; and TSC_desens_gt_3, the adjustable 
TSC has desensitized by at least three steps. Note that TSC in the 
last two predicates is a placeholder for any specific, adjustable 
TSC (e.g. 5HT1AR).
Then we evaluated the following propositions for each of the 10 
adjustable TSCs, where |-> and /\ are the LTL “LEADS TO” 
and “AND” operators, respectively:
TSC_sens_gt_3 |-> fht_high /\ cort_low
TSC_desens_gt_3 |-> fht_high /\ cort_low

These are equivalent to the LTL propositions that if at any point 
in the trajectory of TSC strength adjustments, the TSC sensitizes 
or desensitizes by at least three increments, then 5HT is high and 
CORT is low at some subsequent point in time. We found that 
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both these propositions were false for all of the tested TSCs in all 
three representative networks (see Results).

Next, we evaluated the following more-easily-satisfiable 
propositions, where \/ and ~ are the LTL “OR” and “NOT” 
operators, respectively:
TSC_sens_gt_3 |-> (fht_high /\ cort_low) \/ 
~TSC_sens_gt_3
TSC_desens_gt_3 |-> (fht_high /\ cort_low) 
\/ ~TSC_desens_gt_3

These are equivalent to the LTL propositions that if at any point 
in the trajectory of TSC strength adjustments, the TSC sensitizes 
or desensitizes by at least three adjustments, then either 5HT is 
high and CORT is low at some subsequent point in time, or the 
TSC is no longer sensitized or desensitized. If one adjustable TSC 
was solely responsible for modulating the 5HT and CORT levels, 
then the model check for either of those two propositions for that 
specific, adjustable TSC should return True. Each LTL model check 
was carried out using each of the three representative networks for 
up to six adjustments, and only model-checking results that were 
consistent over all three networks are reported in Results.

Hardware Considerations
MATLAB was used for training, pruning, enumerating, and 
analyzing all adjustable-TSC configurations with up to six 
adjustments in TSC strength, generating all histograms and 
heatmaps, and FRIWA analysis. All MATLAB computational 
procedures were performed on an Intel Core 2 Duo CPU processor 
with 2, 2.33 GHz cores and 4 GB of RAM under the Windows 7 
operating system, an Intel-inside CORE i7 processor with 2, 2.69 
GHz cores and 8 GB of RAM under the Windows 8 operating 
system, and an Intel Core i7 processor with 4, 4.00 GHz cores and 
32 GB of RAM under the Windows 10 operating system. Training a 
network (100 time steps, 1 × 106 iterations, 66 training patterns) took 
between 20 and 25 min on these machines. Exhaustively computing 
full sets of adjustable TSC configurations to degree 6 took about 1 
minute. Computational overhead (memory limitations) prevented 
computing the full set to degree 7. Checking the set of TSC-strength 
configurations for neuroadaptation to chronic drug or hormone 
combinations in each of the three representative networks took 
about 8 min per network using MATLAB.

Python was used for enumeration of TSC-strength 
configurations and LTL analysis. Python search and LTL analysis of 
TSC-strength configurations having 127,582 states took 34 seconds 
on one quad-core Intel Core i5 processor. For subsequent model 
checks where steady-state values had been cached, model checks 
took an average of 3.10 seconds. Python enumeration of TSC-
strength configurations was limited to degree 6 for consistency 
with the MATLAB analysis and because the results were unlikely 
to be different for degree 7 than for degree 6 (see Results).

RESULTS

Agreement Between Actual and Desired 
Outputs
Networks were trained, pruned, and then retrained as described 
in Methods. The results of training can be viewed in Figure 2. 

Each plot in Figure 2 shows all of the desired and actual outputs 
for one brain-region, transmitter, or hormone output unit (DR, 
LC, VTA, PVN, 5HT, NE, DA, or CORT). Each actual output 
response and desired output response is plotted as a solid 
line and a dashed line, respectively. Correspondence between 
steady-state actual responses and desired responses is nearly 
exact. The results of training are shown in Figure 2 for only eight 
model units, however, the degree of correspondence between 
actual and desired output responses shown in this figure is 
representative of the remaining trained output responses. The 
average error of these units over all of the trained-pruned-
retrained networks was very low (6.39 × 10−5), indicating close 
correspondence between model output responses to acute 
inputs described in the neurobiological literature. The heatmaps 
in Supplementary Figure 2 illustrate the extent of model 
agreement for all 23 output units over the whole training set 
both before (Supplementary Figure 2A–C) and after pruning 
(Supplementary Figure 2D–F).

Enumeration of Adjustable TSC-Strength 
Configurations
The baseline activity levels of key model units are represented 
as dashed blue lines in Figure 3. The baseline activity is simply 
the activity of units in a trained network when the inputs to the 
network are all zero. All units have positive (nonzero) baseline 
activities because the squashing function, which determines each 
unit’s output as a function of its net weighted input, produces a 
“spontaneous” output activity of 0.50 for a net input of 0. Note 
that the squashing function bounds unit activation between 0 
and 1 (see Methods).

The units in the network influence each other’s activity 
through their weighted interconnections. Because the unpruned 
weights of the connections between the units are nonzero 
(positive or negative), the baseline activities of the units can 
depart substantially from 0.50. The baseline activity of the units 
is basically the “response” of the network to 0 input. Following 
an initial transient, all unit “responses” to 0 input (baseline 
responses) settle into a stable activity pattern within 25 time 
steps that is maintained for the duration of the response. The 
baseline activity levels of the units in a trained network are their 
“normative” activity levels.

Simulated acute administration of an SSRI (an SSRI input of 
level 1) alters the responses of the canonical units in the model, 
as shown by the orange lines in Figure 3. Note that the responses 
of some of the units to acute SSRI were trained directly because 
these responses had been reported in the literature and were 
included in the truth table. The acute SSRI responses of the other 
canonical units are essentially estimated by the model, on the 
basis of its structure and on its training on the truth table overall. 
In general, unit activities can deviate substantially from their 
normative baselines due to acute SSRI. From the neuroadaptive 
standpoint, any deviation from normative baseline is considered 
an error that should be corrected by the adaptive process. We 
define “adaptation error” as the sum of the absolute differences 
from baseline of the activities of the DR, LC, VTA, and PVN 
units, because these are the canonical units in the MS-model.
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FIGURE 2 | Agreement between desired (i.e., target) and actual outputs after pruning and re-training. All of the desired and actual outputs, collected over all input/
desired-output patterns, are represented in a single plot for each of the brain region and transmitter or hormone output units (DR, LC, VTA, PVN, 5HT, NE, DA, and 
CORT). Each output response is plotted as a solid line and each target (i.e. desired) output is plotted as a dashed line. Each of the outputs reach a steady-state 
value within 25 time steps. The RMS error of this network is 5.10 × 10

−5
. Note that the solid line (actual output) is superimposed on the dashed line (desired or target 

output), illustrating the accuracy of the training method.

FIGURE 3 | Model element activities in the baseline (no-drug) condition, acute (no-adaptation) SSRI condition, and chronic (adaptation) SSRI condition. Each 
plot corresponds to a different model unit as labeled. The blue dotted line in each plot shows the baseline activity level of a unit in the normal (no-drug) baseline 
condition. The red line in each plot shows the unit activity in the acute (no-adaptation) SSRI condition. Note that acute SSRI changes the activity levels of all of the 
units. The yellow line in each plot shows the adapted activity of a unit in an example, adapted configuration with chronic SSRI. Note that the adapted DR and PVN 
unit responses return closer to baseline, and the adapted 5HT and CORT responses increase and decrease, respectively. DR, dorsal raphe; LC, locus coeruleus; 
VTA, ventral tegmental area; PVN, paraventricular nucleus of the hypothalamus; 5HT, serotonin; NE, norepinephrine; DA, dopamine; and CORT, cortisol.
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Chronic (as opposed to acute) administration of a drug (or 
combination) was simulated simply by keeping the input unit 
corresponding to that drug (or drugs, for a combination) at 1. We 
further defined “initial error” as the adaptation error of a trained 
network subjected to chronic administration of a drug (or 
combination) in the absence of any adjustments of the strengths 
of the weights representing the adjustable TSCs. An “adapted 
network” was any network that, due to one or more adjustments 
in TSC weights, had adaptation error lower than initial error. 
Model responses to acute SSRI, and adaptation to chronic SSRI, 
were of particular interest because SSRI is the drug class most 
often prescribed for the treatment of anxiety and depression. The 
responses of the canonical units in an example network adapted 
to chronic SSRI are represented in Figure 3 as yellow lines. This 
figure shows that adaptation to an SSRI can return the responses 
of DR and PVN back toward normal while also increasing 5HT 
levels and decreasing CORT levels, which is in agreement with 
experimentally and clinically observed chronic SSRI effects 
(Rutter et al., 1994; Ceglia et al., 2004; Nikisch et al., 2005; Rush 
et al., 2006).

Many other adapted networks, however, did not also have this 
pattern of adapted behavior. Transmitter and hormone responses 
to chronic drug administration, therefore, must be evaluated 
in many different TSC-strength configurations, derived from 
adjustments in the TSC weights of several different initial 
networks. As described above, our results are based on three 
representative networks (see also Methods).

We analyzed all of the configurations, starting from each 
of the three different, representative networks that could 

be generated by up to six adjustments at an increment of 
0.50 (the number of adjustments was limited to six due to 
computational overhead, see Methods). The distributions 
of the three monoaminergic transmitter and CORT levels 
corresponding to all the adapted configurations of the 
three networks to chronic SSRI are shown as histograms in 
Figure 4. Each histogram in Figure 4 shows the numbers of 
configurations adapted to chronic SSRI that had levels of 5HT, 
NE, DA, and CORT falling within various bins as indicated. 
The first three columns show the histograms for the three 
representative networks separately, while the fourth column 
shows the histograms for the three representative networks 
combined. In this histogram figure and in all subsequent 
histogram figures the baseline, average, and therapeutic levels 
of each transmitter or hormone will be represented with a 
blue, green, or magenta line, respectively.

A central goal of this study was to use the trained network 
models to evaluate the possibility that combinations of 
antidepressant drugs, or combinations of drugs and hormones, 
could be more therapeutically effective that single SSRIs. 
Configurations adapted to chronic administration of select 
drugs and hormones in combination with SSRI were analyzed. 
The results of some specific drug and hormone combinations are 
shown in Figures 5 and 6. The rows of these two sets of histograms 
(Figures 5 and 6) show the monoamine and CORT distributions 
of all configurations starting from all three representative 
networks that were adapted to SSRI alone, to SSRI paired with 
another drug or hormone, and SSRI combined with the two 
other drugs or a drug and a hormone. Each column of these two 

FIGURE 4 | Histograms showing numbers of configurations adapted to SSRI expressing different levels of monoamines or CORT. Results are shown for three 
networks individually or pooled. Networks were adapted to chronic SSRI. The bin width of these and all other histograms was set to 0.03. The blue, green, or 
magenta vertical line in each plot is located at the baseline level (0.50), the average level, or the therapeutic cutoff (0.70), respectively, for each neurotransmitter or 
hormone. This figure also demonstrates pooling of the adapted configurations from three networks.

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Modeling Therapeutic Neuroadaptation to Chronic AntidepressantCamacho et al.

11 October 2019 | Volume 10 | Article 1215Frontiers in Pharmacology | www.frontiersin.org

sets of histograms (Figures 5 and 6) corresponds to a specific 
transmitter or hormone unit (5HT, NE, DA or CORT). Viewing 
the histograms down the columns shows how the distributions of 
monoamine and CORT levels are affected by the different drugs 
and combinations. These histograms illustrate the wide degree 
of variability in adapted neurotransmitter and hormone levels 
that may be present in real, neurobiological systems with chronic 
drug or hormone administration.

Figure 5A shows the results of adaptation to SSRI alone, 5B 
shows SSRI paired with Asenapine (an antipsychotic drug), 5C 
shows SSRI paired with Oxytocin (a peptide neurohormone), 
and 5D shows SSRI combined with both Asenapine and 
Oxytocin. Figure 5B shows that combining SSRI with 
Asenapine not only increases the proportion of adapted states 
with therapeutically elevated (toward the right) 5HT, but 
also shifts the NE histogram to the right as well, increasing 
the proportion of adapted states with elevated NE. Figure 
5B also shows that the combination of SSRI and Asenapine 
can decrease CORT levels in a higher proportion of adapted 
configurations below the therapeutic ceiling (toward the left). 
In Figure 5C, the combination of an SSRI and Oxytocin also 
shifts the 5HT distribution to the right and increases the 
proportion of adapted states with low CORT. The combination 
of all three factors (SSRI, Asenapine, and Oxytocin) in Figure 
5D increases the proportion of adapted states with high 
monoamine levels for all three monoamines, and also increases 
the proportion of adapted states with low CORT beyond the 
levels observed with SSRI by itself. These findings suggest that 

augmentation of SSRI action with Asenapine, Oxytocin, or 
both can potentially be therapeutic in a larger proportion of 
depressed patients than an SSRI alone.

Figure 6A shows the results of adaptation to SSRI alone, 6B 
shows SSRI paired with Bupropion (an atypical antidepressant), 
6C shows SSRI paired with Olanzapine (an antipsychotic 
drug), and 6D shows SSRI combined with both Bupropion and 
Olanzapine. Figure 6B shows that adaptation to the combination 
of SSRI and Bupropion can increase the proportion of adapted 
states with high NE and DA levels over that observed with the 
SSRI by itself. It also shows that this combination decreases 
CORT levels in a higher proportion of adapted states than the 
SSRI by itself. Figure 6C shows that the combination of SSRI 
and Olanzapine can increase the proportion of adapted states 
with therapeutic 5HT over the SSRI by itself. The combination 
of all three (SSRI, Bupropion, and Olanzapine) in Figure 6D was 
found to shift all three of the monoamine (5HT, NE and DA) 
histograms to the right (toward high monoamine levels) and 
increase the proportion of adapted states that reduce CORT 
below its therapeutic ceiling.

In none of the histograms in Figures 5 and 6 are the 
monoamine or CORT levels in all of the adapted states in their 
therapeutic ranges. This is in agreement with the finding that 
no single antidepressant drug, hormone, or combination has 
been found to be therapeutic in all patients. Overall, these 
histograms illustrate how combinations of chronic drugs (or of 
drugs and hormones) can increase the proportion of adapted 
states with elevated monoamines and reduced CORT levels (see 

FIGURE 5 | Histograms showing number of adapted configurations expressing different monoamine and CORT levels with combinations of SSRI, Asenapine, and 
Oxytocin. Networks were adapted to SSRI alone (A), SSRI+Asenapine (Asn, an antipsychotic drug) (B), SSRI+Oxytocin (Oxt, a hormone) (C), and SSRI+Asn+Oxt 
(D). (B) and (C) show that combining an SSRI with either Asn or Oxt increases the proportion of high monoamine and low CORT states over the SSRI by itself. 
(D) shows that combining an SSRI with both Oxt and Asn further increases the proportion of high monoamine and low CORT states. These histograms suggest that 
combining an SSRI with either Oxt, Asn, or both may be therapeutic for a greater proportion of patients than an SSRI administered alone.
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Discussion). The shifts in neuroadapted monoamine levels with 
chronic administration of the drug and hormone combinations 
in Figures 5 and 6 correspond with experimental findings that 
these combinations may result in elevations in brain monoamines 
in rodent models (Shrier et al., 2000; Björkholm et al., 2014; 
Amini-Khoei et al., 2017; Thomas et al., 2017). These findings 
represent the model prediction that the combinations of drugs 
and hormones in Figures 5 and 6 may be therapeutic in a larger 
proportion of depressed patients than SSRIs alone, and are in 
agreement with clinical observations (Leuchter et al., 2008; Zhou 
et al., 2015; Pilkinton et al., 2016).

Predicting the Effects of Drug and 
Hormone Combinations on Monoamine 
Levels
The model was then used to evaluate the configurations adapted 
to chronic administration of 60 drug or drug/hormone pairs and 
triples. The 27 pairs consisted of SSRI paired with each of the 
27 drugs and hormones (excluding SSRI itself) that were used 
as individual (single) inputs in model training. The 33 triples 
consisted of the subset of those pairs that have been used to 
augment SSRI action clinically or (in one case) experimentally, 
combined with a third substance that was either Oxytocin 
(a hormone), Antalarmin (a CRF1 receptor antagonist), or 
Olanzapine (an antipsychotic). These three substances were 
selected due to recent preliminary evidence suggesting that 
Oxytocin, Antalarmin, and Olanzapine could potentially have 

antidepressant effects either by themselves or in combination with 
another antidepressant (Björkholm et al., 2015; Scantamburlo 
et al., 2015; Amini-Khoei et al., 2017; Thomas et al., 2017).

The monoamine levels for the three networks adapted to each 
of the drug or hormone pairs and triples were compiled and the 
average monoamine levels were computed. The average levels of 
each of the three monoamines for each chronic drug or hormone 
combination are shown as rows in the heatmap in Figure 7. Each 
column represents the level of one monoamine (5HT, NE, or 
DA, moving across the columns). For purposes of illustration, 
quantification, and ordering, the three monoamine levels can be 
combined into a monoamine vector: [5HT NE DA]. Baseline, 
therapeutic, and excess monoamine reference vectors can then 
be defined. The baseline reference vector consists of the baseline 
monoamine levels [0.50 0.50 0.50], the therapeutic reference vector 
consists of the therapeutic monoamine levels [0.70 0.70 0.70], and 
the excess monoamine reference vector consists of excessively high 
monoamine levels [0.80 0.80 0.80]. The excess monoamine reference 
vector represents a tripling of the acute level and is included 
in order to identify drug pairs and triples that may elevate the 
monoamines high enough to produce unwanted side effects (Shrier 
et al., 2000; Boyer and Shannon, 2005). All adapted monoamine 
vectors [5HT NE DA] that had any monoamine elevated above 0.80 
were ordered by their vector distance from the excess monoamine 
vector; all remaining adapted monoamine vectors were ordered by 
their vector distance from the therapeutic reference vector.

The majority of the drug/hormone combinations tested in the 
model have been tested neither in animals nor in humans, but 

FIGURE 6 | Histograms showing number of adapted configurations expressing different monoamine and CORT levels with combinations of SSRI, Bupropion, and 
Olanzapine. Networks were adapted to SSRI alone (A), SSRI+Bupropion (Bup, a NET and DAT blocker) (B), SSRI+Olanzapine (Olan, an antipsychotic drug) (C), 
and SSRI+Bup+Olan (D). (B) and (C) show that combining an SSRI with either Bup or Olan increases the proportion of high monoamine and low CORT states 
over the SSRI by itself. (D) shows that combining an SSRI with both Bup and Olan further increases the proportion of high monoamine and low CORT states. The 
histograms in (D) illustrate that the combination of SSRI+Bup+Olan shifts the monoamine and CORT histograms, especially those of NE and DA, toward more 
therapeutic states, suggesting that this combination can be therapeutic for a greater proportion of patients than an SSRI administered alone.
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a few have been examined in clinical studies and the results are 
in general agreement with the model. SSRI alone was found to 
modestly elevate monoamine levels chronically. The combination 
of an SSRI and Reserpine was found to be at the bottom (low 
adapted monoamine vector) of this figure, as expected due to the 
monoamine-depleting effect observed with Reserpine (Cooper 
et al., 1994). The combinations that include both an SSRI and 

Olanzapine are at the upper (more therapeutic) range of Figure 7, 
which is in line with the clinical finding that Olanzapine can be 
used to effectively augment SSRI action (Björkholm et al., 2015; 
Zhou et al., 2015; Thomas et al., 2017). The combinations of 
SSRI/Bupropion and SSRI/Quetiapine, have both shown to be 
effective in depressed patients and are also at the upper range of 
Figure 7 (Adson et al., 2004; Baune et al., 2007; Papakostas et al., 

FIGURE 7 | Heatmap of adapted monoamine levels with SSRI, all other drugs paired with SSRI, and selected 3-drug combinations. Adapted monoamine levels 
were averaged over the three networks and expressed as a vector [5HT NE DA]. The excess monoamine reference vector, representing levels high enough 
that they could be associated with unwanted side effects, was set to [0.80 0.80 0.80]. All drug combinations that resulted in one or more excess monoamine 
levels were ordered by vector distance from the excess monoamine reference vector. The therapeutic and the baseline reference vectors were set to [0.70 0.70 
0.70] and [0.50 0.50 0.50], respectively. The baseline reference vector and all remaining drug pair and triple vectors were ordered by vector distance from the 
therapeutic reference vector. GBR, GBR-12909; WAY, WAY-100635; PPX, Pramipexole; RU, RU-28362; Org, Org-34850; CP, CP-96345; MAOI, Monoamine 
oxidase inhibitor.
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2007; Leuchter et al., 2008; Cutler et al., 2009). The heatmap in 
Figure 7 illustrates how the MS-model could be used to screen 
chronic drug/hormone combinations for potential efficacy as 
monoamine-elevating treatments.

Full-Range Individual-Weight Adjustment 
(FRIWA) to Evaluate the Therapeuticity of 
Each Adjustable Weight
Though we identified and examined adjustments in 10 adjustable 
TSCs, it is possible that single TSCs can alone determine the 
therapeutic state of the MS-model, regardless of the values of 
the weights representing the other adaptable TSCs. We define 
“therapeuticity” as the ability of a biological factor to alter the 
properties of a biological system in a therapeutic direction. 
Specifically here, therapeuticity is the ability of a TSC to alter three 
of the properties of interest in the MS-model: the level of adaptation, 
the level of 5HT, and the level of CORT. Identification of the 
TSCs that could alone determine therapeutic state could enhance 
antidepressant drug design by identifying specific receptors or 
transporters that could be targeted in single-drug therapies.

In order to determine if therapeutic effects were specifically 
dependent on single adjustable TSCs, an analysis was conducted 
that evaluated the contribution of each individual, adjustable 
TSC to therapeutic adaptation with chronic SSRI administration. 
Therapeutic states were defined as adapted states that increased 
5HT up to or above the therapeutic 5HT floor (> = 0.70) and 

decreased CORT down to or below the therapeutic CORT ceiling 
(< = 0.70). All configurations, generated from adjustments of 
all adjustable TSC weights from one to six adjustments, which 
were adapted to chronic SSRI and also therapeutic, were pooled 
for each of the three representative networks for full-range 
individual-weight adjustment (FRIWA) analysis.

In FRIWA analysis, for each adapted and therapeutic 
configuration, one adjustable TSC weight was adjusted across 
its full range (0 to absolute value 10), while the nine other TSC 
weights remained frozen. FRIWA occurred in 20 IWA steps of 
0.50 each (see Methods). All states that were no longer adapted 
after an IWA step were excluded from the analysis. The still-
adapted configurations that were resistant (remained therapeutic 
after an IWA step) or sensitive (became non-therapeutic after 
an IWA step) were then identified. The weights for each TSC 
were compiled for all resistant or all sensitive post-FRIWA 
configurations for each representative network. The average 
values of the weights for each TSC over either the resistant or the 
sensitive configurations were then computed for each network, 
but the TSC weights that were adjusted using FRIWA were 
removed because their values were manipulated.

Figure 8 shows the average strengths of each adjustable TSC 
weight over all resistant or all sensitive configurations as an 
asterisk or diamond, respectively. Each adjustable TSC weight 
in Figure 8 has three asterisk-diamond pairs in three different 
colors (red, blue, and green), illustrating the results from each 
of the three representative networks on a single plot. This figure 

FIGURE 8 | Comparison of average adjustable TSC strengths between resistant and sensitive configurations in all representative networks. Every configuration 
adapted to chronic SSRI that was also therapeutic (high 5HT and low CORT) at degree 6 was assessed for resistance to adjustments of each of the 10 adjustable 
TSCs. All TSC strength adjustments that resulted in configurations that were no longer adapted were excluded. Configurations that remained adapted and 
therapeutic following weight adjustments were determined to be “resistant” and adapted configurations that were no longer therapeutic following TSC adjustments 
were determined to be “sensitive.” The average strength of each of the 10 adjustable TSCs in all of the configurations, excluding those in which that TSC itself was 
adjusted, was computed for both the resistant and sensitive configurations and plotted as asterisks or diamonds, respectively. The results for all three networks are 
represented on this single plot using three different colors (red, blue, or green) to distinguish between the mean adjustable TSC strengths of each network. Note 
that the average resistant and sensitive strengths for each adjustable TSC are very close in all three networks, illustrating that each individual TSC can provide a 
contribution to therapeutic resistance, but no single TSC by itself determines the therapeutic state. 5HT1AR, 5HT1A receptor; AR2, α-2 adrenergic receptor; GCR, 
glucocorticoid receptor; DAT, DA transporter; NET, NE transporter; 5HTT, 5HT transporter; CRF1R, CRF1 receptor; DR, dorsal raphe; LC, locus coeruleus; VTA, 
ventral tegmental area; PVN, paraventricular nucleus of the hypothalamus; Pit, pituitary gland; Adr, adrenal gland.
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illustrates closeness in the averages of all the TSC strengths 
between the resistant and sensitive configurations in all three 
representative networks, demonstrating that no single TSC 
mediates the therapeutic state by itself. The results of this analysis 
suggest that all adjustable TSCs contribute to the attainment of 
the therapeutic state and that no single TSC is determinative of 
it. This model result suggests that there may not exist a single, 
individual TSC that can be targeted to alleviate depressive 
symptoms in all patients (see Discussion).

Pairwise Correlations Between Adaptable 
TSC Strengths
The FRIWA analysis considered one adjustable TSC at a time. 
It does not rule out the possibility that therapeuticity may be 
a property of correlations between pairs of TSCs rather than 
of single TSCs by themselves. To evaluate this possibility, 
pairwise correlations between all TSC weights over either all 
resistant or all sensitive configurations were computed for each 
representative network, but again, the TSC weights that were 
adjusted using FRIWA were removed because their values were 
manipulated. Even at the permissive significance level of P = 0.05, 
the analysis found no significant pairwise correlations between 
adjustable TSCs that were consistent over all three representative 
networks in either the resistant or the sensitive configurations. 
This result suggests that there are no two TSCs that can be 
targeted together to ensure therapeutic neuroadaptation in 
all patients. It exemplifies the challenge faced by investigators 
designing chronic drug and hormone combinations for relief of 
depressive symptomology.

Temporal-Logic Model-Checking
As described in previous subsections, the FRIWA and correlation 
analyses examined a large space of configurations adapted to an 
SSRI and determined that no single TSC, nor pairs of TSCs, 
mediates therapeutic resistance by themselves. Neuroadaptation 
to chronic antidepressant, where each TSC change is incremental, 
can also be examined as a process to determine if specific states or 
degrees of neuroadaptation must be reached prior to arriving at 
therapeutic configurations. Linear temporal-logic (LTL) analysis 
can be used to elaborate all pathways of sequential TSC-strength 
adjustments in order to evaluate possible temporal relationships 
in neuroadaptation (see Methods). This mode of analysis can be 
used to determine whether certain numbers of TSC-strength 
adjustments, once attained, will always lead to an adapted and 
therapeutic state.

The antecedent of the LTL propositions we analyzed specified 
that a specific TSC had been adjusted three times, either up 
or down (see Methods for details). The antecedent of three 
adjustments was chosen because it was halfway between 0 and 
6, the total number of adjustments to which we were limited 
for technical reasons. The consequent queried whether all 
subsequent sequences of up to three adjustments in any subset 
of the 10 TSCs would all lead to an adapted and therapeutic state 
(5HT > = 0.70 and CORT < = 0.70). Each LTL model-check 
was carried out using each of the three networks for six total 
adjustments in all TSCs, and only those model-checking results 

that were consistent over all three networks are reported. All 
propositions returned false.

We next examined the more easily satisfiable propositions that 
once a specific TSC had been adjusted three times, either up or 
down, then all subsequent sequences of up to three adjustments 
in any subset of the 10 TSCs would all lead to an adapted and 
therapeutic state, or the TSC no longer maintains its degree of 
adjustment. This proposition allowed for the possibility that 
failure to maintain an adapted and therapeutic state occurred 
because the specific TSC had not maintained the specified level 
of adjustment. All of these more satisfiable propositions, however, 
again returned false, as shown in Table 2.

The LTL analysis shows that three adjustments of any single 
adjustable TSC weight up or down will not guarantee that a 
therapeutic state will be reached. All propositions returned false 
to degree 6, and it is unlikely that they would be true were the 
LTL analysis extended to greater degrees of adjustment because 
that would entail additional opportunities for TSC de-adjustment 
and overall de-adaptation. We did not attempt an exhaustive LTL 
analysis because the number of potentially relevant propositions 
that could be tested is simply too many. The result we generated, 
that three adjustments either up (sensitization) or down 
(desensitization) in no single TSC by itself can lead to states that 
are all therapeutic within three additional adjustments over the 
other nine TSCs or itself, supports the FRIWA analysis finding 
that adjustment of no single weight individually can determine 

TABLE 2 | LTL analysis on the relationship between TSC-adjustments and a 
therapeutic state. 

Experiment Condition (at three 
adjustments and beyond)

Leads to 5HT high and 
CORT low?

1 DR 5HT1AR desensitization False
2 LC AR2 desensitization False
3 VTA D2R desensitization False
4 5HT 5HTT desensitization False
5 NE NET desensitization False
6 DA DAT desensitization False
7 PVN GCR desensitization False
8 Pituitary GCR desensitization False
9 Adrenal GCR desensitization False
10 Pituitary CRF1R desensitization False
11 DR 5HT1AR sensitization False
12 LC AR2 sensitization False
13 VTA D2R sensitization False
14 5HT 5HTT sensitization False
15 NE NET sensitization False
16 DA DAT sensitization False
17 PVN GCR sensitization False
18 Pituitary GCR sensitization False
19 Adrenal GCR sensitization False
20 Pituitary CRF1R sensitization False

Each LTL analysis was used to evaluate whether three steps of sensitization 
(adjustment up) or desensitization (adjustment down) of a specific TSC during 
neuroadaptation to chronic SSRI leads, over an ensuing three additional adjustments 
over any subset of the 10 TSCs, either to adapted and therapeutic configurations 
or to failure to maintain sensitization or desensitization of the specific TSC. Only 
the results of LTL model-checks that were in agreement in all three networks 
are reported here. All propositions returned false, meaning that desensitization 
or sensitization of single adjustable-TSCs for three adjustment steps is not 
determinative of subsequent adapted and therapeutic states.
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the therapeutic state when the other TSCs can also adjust. These 
findings impose potential challenges to effective antidepressant 
drug design (see Discussion).

DISCUSSION

A consensus is forming around the general idea that multifactorial 
diseases should be treated with multidrug therapies (Perry et al., 
2015; Xu et al., 2015; Anastasio, 2017). It has become common 
practice to treat psychiatric disorders with combinations of drugs, 
but the approach has been ad hoc and based mainly on clinical 
trial-and-error (Barowsky and Schwartz, 2006; Zhou et al., 2015). 
SSRI non-responders are often treated with combinations of two 
drugs (Trivedi et al., 2006), but systematic evaluation of the 
relative benefits of different combinations of two or more drugs 
in depression treatment has not occurred.

The identification of novel, multidrug treatments for 
depression could proceed either through rational design or 
brute-force screening of drug combinations. The main challenge 
associated with rational design is the overwhelming complexity 
of the neurobiology of depression, which makes it extremely 
difficult to know a priori how any specific drug combination will 
work. The main challenge associated with brute-force screening 
is the sheer number of possible drug combinations, which grows 
geometrically with the number of drugs.

Our model addresses both challenges. It addresses rational 
design by computationally representing many aspects of the 
structure and function of the monoaminergic transmitter 
and stress hormone systems, whose interactions are central in 
depression neurobiology. It addresses combinatorial explosion by 
providing the means computationally to screen a large set of drug 
combinations, and to identify the most promising combinations 
for experimental evaluation. Addressing these dual challenges is 
crucial, because treatment with SSRI alone, which is currently 
the first-line treatment for depression, is less than 40% effective, 
and efficacy is not greatly increased when SSRI is combined with 
another drug (Turner et al., 2008; Zhou et al., 2015; Cipriani 
et al., 2016).

Our previous, initial model of the neurobiology of depression 
offered an explanation for the low SSRI efficacy rate. That model 
(the Monoamine or M-model) represented the monoaminergic 
transmitter systems (and some related transmitter systems) but 
did not represent the stress hormone system. It did, however, 
contain 11 adjustable TSCs. It also admitted of many different 
TSC-strength configurations, and many of those were adaptive 
in that adaptation error in the presence of simulated, chronic 
SSRI was lower than initial error. In the M-model, however, 
only 29% of the configurations adapted to chronic SSRI also 
elevated 5HT to therapeutic levels (Camacho and Anastasio, 
2017). The conclusion was that the clinically observed efficacy 
of chronic SSRI is low (< 40%) because the real monoaminergic 
neurotransmitter system likewise has many ways to adapt to 
chronic SSRI, but only some of those ways also elevate 5HT to 
therapeutic levels.

Both the M-model and our current model (the MS-model) 
take the monoamine hypothesis as a starting point due to the 

finding that drugs that elevate monoamine levels are effective 
in treating depression in placebo-controlled trials (Turner et al., 
2008). Monoamines may or may not be deficient in depressed 
patients (O’Reardon et al., 2004); however, depression relief is 
associated with drug-induced elevations in monoamine levels 
with chronic antidepressant administration (Haddjeri et al., 
1998). Also, the antidepressant effects of rapid-acting treatment 
approaches (such as Ketamine and ECT) may involve the acute 
actions of these drugs on monoaminergic neurotransmission 
(Can et al., 2016; Pinna et al., 2018).

The leading alternative to the monoamine hypothesis posits 
that depression relief is associated with elevations in hippocampal 
brain-derived neurotrophic factor (BDNF) (Duman and 
Monteggia, 2006; Castrén and Rantamäki, 2010). Other hypotheses 
implicate neuroendocrine systems (Rubinow et al., 1998; Schmidt, 
2005; Pariante and Lightman, 2008) or the relative activity levels 
of interacting neural systems (Mayberg et al., 2000; Albert et 
al., 2014). However, drugs that elevate monoamines also elevate 
hippocampal BDNF, influence neuropeptide transmitter systems, 
and alter the relative activity levels of interacting brain regions 
(Duman and Monteggia, 2006; Surget et al., 2008; Berger et al., 
2010). We assume that therapeutically elevated monoamine levels 
may alleviate depressive symptomology through associations with 
previously described mechanisms of depression relief (Berton and 
Nestler, 2006; Stone et al., 2008; Andrews et al., 2015).

The MS-model represents a significant advance over our 
previous, initial model (the M-model) in several respects. The 
MS-model represents the interactions of the three monoaminergic 
systems not only with each other but also with the stress hormone 
system. Model structure connections were selected on the basis 
of known interactions between model units, and the pruning 
procedure optimized generalizability of model predictions (see 
Supplemental Material S4: Pruning Methods). By adopting 
a recurrent nonlinear network formalism (see Supplemental 
Material S3: Details on Model Training), the MS-model represents 
many more relevant neurobiological details and conforms model 
behavior to a much larger set of empirical observations with 
improved agreement between observed and actual output values.

In the M-model, we analyzed the TSC-strength configurations 
of a single representative network, but since individuals can vary 
as well as their TSC-strength configurations, it is necessary to 
analyze more than one representative network. In the MS-model 
we therefore analyze the TSC-strength configurations of three 
representative networks. In the M-model, we analyzed all TSC-
strength configurations reachable in three adjustment steps. In 
the MS-model we double the number of allowed adjustment steps 
to 6. This represents an increase in the number of configurations 
analyzed from 11,155 for the M-model (with 11 TSCs but only 
one representative instance) to 382,747 MS-model configurations 
(with 10 TSCs and three representative instances). In the current 
work we also extend our analytical repertoire to include graphical 
(distribution/histogram), sensitivity (FRIWA), correlation, and 
LTL analysis.

The MS-model recapitulates and extends the key idea 
established in the M-model, that the brain has many ways to 
adapt to chronic drug administration but not all of those ways 
will achieve therapeutic goals. An innovation of the current work 
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is the use of histograms to show how the monoamine and CORT 
levels are distributed over a large set of adapted TSC-strength 
configurations (Figures 4, 5, and 6). To the extent that the model 
reflects actual neurobiology, these histograms illustrate how we 
might expect a chronic drug or drug combination to affect a 
clinical population of people who differ in their pre-drug, starting 
configurations and also differ in their subsequent adaptation 
pathways. Specifically, they illustrate that we should not expect 
everyone in a depressed population being treated with chronic 
antidepressants to raise their monoamines, nor to lower their 
CORT, to therapeutic levels. Computing average monoamine 
levels over a whole distribution of computationally determined, 
adapted TSC-strength configurations (Figure 7), is a plausible 
way to predict the effects on monoamine levels of chronically 
administered antidepressant drugs or drug combinations.

The fact that only a subset of the many possible TSC-strength 
configurations is both adaptive and therapeutic raises the 
possibility that one, or only a few, of the adjustable TSCs are 
determinative of the therapeutic state. We used FRIWA analysis 
(our customized variant of sensitivity analysis) to explore this 
possibility for single TSCs in all three representative networks. 
We found that some configurations were “resistant” in that they 
remained adapted and therapeutic despite IWA applied to a 
TSC. Other configurations were “sensitive” in that they did not 
remain adapted and therapeutic despite IWA applied to a TSC. 
The average values of individual TSC strengths, however, were 
essentially the same in resistant versus sensitive configurations in 
all three networks (Figure 8), indicating that no TSC by itself is 
determinative of the therapeutic state.

We then used correlation analysis to explore the possibility 
that pairs of TSCs were determinative of the therapeutic state, 
and considered all pairs that were significantly correlated at the 
relatively permissive significance level of P = 0.05. We found that 
no pair of TSCs was significantly correlated in either the resistant 
or sensitive configurations over all three representative networks, 
showing that no pairs of TSCs are together determinative of the 
therapeutic state.

We then used LTL analysis to explore the possibility that 
a specific TSC, once it reached a certain level of sensitization 
or desensitization, could guarantee a therapeutic outcome. 
For technical reasons (see Methods), the number of steps of 
adjustment we allowed in the strength of each TSC was limited to 
6, and our LTL analysis took this constraint into account. For each 
TSC, we tested the truth or falsehood of two LTL propositions 
essentially asserting that if a given TSC has reached a certain level 
of sensitization or desensitization, then the network is guaranteed 
to arrive at an adapted and therapeutic configuration no matter 
what the other TSCs do in the remaining adjustment steps. All of 
these propositions returned false in our LTL analysis (Table 2). 
What all of these analyses show is that no single TSC, nor pair of 
TSCs, nor TSCs that have attained a certain degree of adjustment, 
can determine the therapeutic state. They demonstrate, more 
generally, that the properties of interest in the model (the level of 
adaptation, the levels of the three monoaminergic transmitters, 
and the level of CORT) are overdetermined by the 10 TSCs.

In its “overdeterminedness” (or degeneracy), the MS-model 
makes contact with other models depicting phenomena at both 

network and neuronal levels of neurobiological organization. 
In the vertebrate brain, sensory signals, motor commands, and 
information in general is represented not by single neurons but by 
networks of neurons. These representations are overdetermined 
because the pieces of information are few relative to the number 
of neurons in the network that represents them. In consequence, 
the same information can be distributed in many different ways 
over a network, and neurons in the same network can vary 
greatly in their response properties in what has been termed 
a non-uniform distributed representation (Anastasio, 1991; 
Anastasio, 2010).

Overdetermination of physiological properties by the 
values of multiple, relevant parameters has also been 
demonstrated for single neurons and computational models 
of thereof (Edelman and Gally, 2001; Golowasch et al., 2002; 
Bucher, 2005; reviewed in Marder and Taylor, 2011). The 
most well-known case in point was established by Eve Marder 
and colleagues in their model of the lateral pyloric neuron 
(LPN) in the lobster somatogastric ganglion (Taylor et al., 
2009). In the invertebrate brain, information is sometimes 
represented not by neural networks but by single, very large 
(i.e. “giant”) neurons that are identifiable from one animal 
to another. Experiments revealed that many different ion 
channels determine the electrophysiological properties of 
LPNs, and that the parameters that determine the function 
of ion channels of specific types can vary between LPNs from 
different decapods (Golowasch and Marder, 1992; Golowasch 
et al., 2002; MacLean et al., 2005; Schulz et al., 2006; 2007).

The Marder group developed a biophysically detailed model 
of the LPN and identified 17 parameters (i.e. the conductances 
and some related properties of 10 ion channel types) that 
plausibly could vary between individual LPNs. They generated 
~6 x 105 different configurations of these 17 parameters and 
found, after evaluating them all computationally, that 1304 of 
those configurations endowed the LPN model with the same, 
realistic set of electrophysiological properties (number of 
spikes, spike frequency, spike duration, burst duration, etc.). 
Rather than grouping into specific sets of values, however, the 
Marder team found that LPN models having equally realistic 
electrophysiological properties could vary greatly in the values 
of their 17 defining, ion-channel parameters. By examining 
parameter value distributions and correlations, they found 
further that no single parameter nor pair of parameters was 
determinative of LPN model properties.

Analogously, we find that many different configurations of 
TSC-strengths can endow the MS-model with the property of 
adaptation to simulated, chronic SSRI, but we take this a step 
further and show that the adapted configurations can also differ 
in other properties, namely in their levels of the monoamines. 
Overall, these computational studies suggest that there is a large 
amount of degeneracy in neurobiological systems in general. 
The MS-model specifically implicates overdeterminedness as a 
consequence of the complexity inherent in the antidepressant 
response that poses a challenge to the identification of an 
antidepressant drug or hormone combination that is effective 
in all patients (Edelman and Gally, 2001). An approach that 
recognizes different subtypes of depression, and matches those 
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with monoamine profiles predicted from computational models 
of the adapted antidepressant response, could provide an effective 
means of identifying promising drug combinations.

The MS-model identifies drug and hormone combinations 
that could potentially be more therapeutic than single drugs for 
patients suffering from specific subtypes of depression. Because 
the therapeutic effects of chronic antidepressant use have been 
associated with elevations in monoamine levels and reductions in 
CORT levels, we were specifically interested in configurations that 
reproduced these experimentally and clinically observed changes 
(Nikisch et al., 2005; Lenze et al., 2011). Our model demonstrates 
that combining an SSRI with certain antipsychotics, atypical 
antidepressants, or hormones can increase the proportion of 
adapted states that are also associated with elevations in the 
monoamines and reductions in CORT.

The MS-model identifies Asenapine, Olanzapine, Bupropion, and 
Oxytocin as adjuncts to SSRI therapy that hold particular promise. 
Precedent for the use of these adjuncts has been established clinically. 
Physicians in practice frequently resort to the augmentation of 
SSRIs with antipsychotics such as Asenapine and Olanzapine in 
SSRI-monotherapy non-responders (Boulton et al., 2010; Han et al., 
2013). The atypical antidepressant Bupropion has also been found to 
relieve depressive symptoms in SSRI non-responders and is widely 
used clinically, either by itself or in conjunction with SSRI (Trivedi 
et al., 2006; Zisook et al., 2006; Leuchter et al., 2008). Intranasal 
administration of the hormone Oxytocin combined with chronic 
SSRI also can be more effective in treating depressed patients than 
SSRI by itself (Scantamburlo et al., 2015).

Results from the MS-model are consistent with these general 
findings in that pairing SSRI with either Asenapine, Olanzapine, 
Bupropion, or Oxytocin increases the number of adapted states 
with elevated monoamines and reduced CORT over that observed 
with SSRI alone (Figures 5 and 6). Furthermore, the triples 
composed of SSRI/Asenapine/Oxytocin or of SSRI/Bupropion/
Olanzapine further increase the proportion of adapted states 
associated with therapeutic changes in monoaminergic 
neurotransmitter and CORT levels in the MS-model (Figures 
5 and 6). More generally, the heatmap in Figure 7 shows that 
combinations that included an SSRI and an antipsychotic tended 
to be located at the upper range of monoamine levels (closer to the 
therapeutic reference vector [0.70 0.70 0.70]), and combinations 
that included Bupropion tended to elevate average NE and DA 
levels closer to the therapeutic reference vector. The average 
monoamine levels of combinations that included Oxytocin 
hormone were also located near the therapeutic reference vector.

The model shows a wide heterogeneity in effects on monoamine 
levels of different drug/hormone combinations, and this is of 
potential clinical significance as different subtypes of depression 
have previously been shown to respond best to elevations in the 
levels of the different monoamines (Parker, 2000; Malhi et al., 
2005). Specifically, patients with non-melancholic, melancholic, 
or psychotic depression have been observed to respond best to 
antidepressants that elevate 5HT, NE, or DA, respectively (Parker 
et al., 1992; Guelfi et al., 1995, Malhi et al., 2002; Malhi et al., 
2005). Drug combinations that included Trazodone (an SNRI), 
Olanzapine (an antipsychotic), and GBR-12935 (a DAT antagonist) 
tended to raise 5HT, NE, and DA levels, respectively, in the model.

The computational screen predicts potentially adverse as 
well as beneficial combinations. Notably, combinations that 
include both an SSRI and an MAOI were found to increase 
monoaminergic neurotransmitter levels well beyond that of 
other combinations. This MS-model result is in line with the 
clinical finding that combining these two drugs can result in 
toxic elevations of the monoamines (Remick and Froese, 1990; 
Shrier et al., 2000; Boyer and Shannon, 2005). Overall, the model 
identifies many possibly beneficial drug/hormone combinations 
that could be considered for clinical trial after extensive testing 
for safety and efficacy using animals.

CONCLUSION

Our overall MS-modeling strategy is both rational and brute force. 
It is rational in that the model incorporates, both in its structure 
and its function, many aspects of the known interactions between 
the monoamine and stress-hormone systems—two systems that 
are central to depression neurobiology. It is brute force in that 
it can be used to screen large numbers of drug combinations 
computationally, and to predict the distributions of monoamine 
levels that could be expected in a diverse patient population in 
which each individual can adapt to the chronic drug regimen in 
their own unique way. The MS-model could be used to identify 
drug/hormone combinations that, once verified in animal 
experiments, could be therapeutic for a higher proportion of 
patients than single-drugs by themselves.
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