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Spatiotemporal progression of metastatic breast cancer:
a Markov chain model highlighting the role of early
metastatic sites
Paul K Newton1,2, Jeremy Mason3, Neethi Venkatappa4, Maxine S Jochelson4, Brian Hurt5, Jorge Nieva6, Elizabeth Comen4,
Larry Norton4 and Peter Kuhn3

BACKGROUND: Cancer cell migration patterns are critical for understanding metastases and clinical evolution. Breast cancer
spreads from one organ system to another via hematogenous and lymphatic routes. Although patterns of spread may superficially
seem random and unpredictable, we explored the possibility that this is not the case.
AIMS: Develop a Markov based model of breast cancer progression that has predictive capability.
METHODS: On the basis of a longitudinal data set of 446 breast cancer patients, we created a Markov chain model of metastasis
that describes the probabilities of metastasis occurring at a given anatomic site together with the probability of spread to
additional sites. Progression is modeled as a random walk on a directed graph, where nodes represent anatomical sites where
tumors can develop.
RESULTS: We quantify how survival depends on the location of the first metastatic site for different patient subcategories. In
addition, we classify metastatic sites as “sponges” or “spreaders” with implications regarding anatomical pathway prediction and
long-term survival. As metastatic tumors to the bone (main spreader) are most prominent, we focus in more detail on differences
between groups of patients who form subsequent metastases to the lung as compared with the liver.
CONCLUSIONS: We have found that spatiotemporal patterns of metastatic spread in breast cancer are neither random nor
unpredictable. Furthermore, the novel concept of classifying organ sites as sponges or spreaders may motivate experiments
seeking a biological basis for these phenomena and allow us to quantify the potential consequences of therapeutic targeting of
sites in the oligometastatic setting and shed light on organotropic aspects of the disease.
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INTRODUCTION
It is widely appreciated that cancer is a multifaceted disease
comprised of distinct biochemical, biomechanical, molecular, age,
gender, race, and environmental factors, all of which contribute
directly or indirectly to uncontrolled cell growth, survival, motility,
dissemination, and colonization,1–5 which in turn effect long-term
survival of patients.6 The complex interplay of all of these factors is
poorly understood, which hinders our ability to accurately predict
and optimally influence outcomes throughout the course of
disease progression. As breast cancer spreads from one organ to
another via hematogenous and lymphatic routes, cell migration
patterns are critical for understanding metastasis and clinical
evolution, but these patterns are commonly dismissed as
unpredictable in the absence of detailed clinical and patient-
specific contextual information. As a consequence, comprehensive
quantitative statistical forecasting tools to aid in medical decision
making have been slower to develop than in other fields, such as
financial forecasting and weather prediction.7 For breast cancer,
the main prognostic factors in current use include tumor size,
patient age, lymph node status, histologic type of tumor,
pathologic grade, and hormone-receptor status, and when
available, genetic profiling can also be used effectively.8–19 But

all are based (typically) on a single snapshot of patient information
in time and mostly obtained only at the primary tumor location
when clinically detectable, hence have limited predictive power
with respect to forecasting of disease progression and survival. In
other forecasting settings (e.g., weather prediction), it is widely
appreciated that collecting data at multiple spatial locations and
at multiple time points gives far superior forecasting capability7

(even if at lower resolution than a single site) as from these, one is
able to obtain estimates of time derivatives (velocities), and spatial
gradients, facilitating better estimates not just of the current
localized state, but the future distributed state.
In this paper, we explore the possibility that although breast

cancer progression in individuals where little additional clinical
information is known can be viewed as unpredictable, metastasis
patterns assembled over populations of patients that incorporate
both temporal and spatial information can be used as a firm basis
for predictive modeling and provides an essential step in
developing computer-assisted forecasting tools. One of the
simplest and most effective dynamical modeling assumptions
used in this paper is the Markov assumption that progression from
one anatomical location to another proceeds as a weighted
random walk on a directed graph, with no history dependence
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other than the fact that the tumor initiates in the breast. Although
not exact, the Markov assumption has been used effectively for a
lung cancer data set.20–23

Formed by the longitudinal data set of 446 breast cancer
patients from Memorial Sloan Kettering Cancer Center assembled
over a 25-year period, the Markov transition probabilities
from site to site are estimated for each of the groups
estrogen receptor (ER)+/human epidermal growth factor receptor
2 (HER2)− , ER− /HER2− , and HER2+. We show that survival
depends on the location and characteristics of the first metastatic
site to which the disease spreads. In fact, the data show that
survival characteristics that use this dynamical and spatial
information are potentially as predictive as the ER/HER2 status
of a patient. Stated differently, we use information not only on
static characteristics of the primary tumor taken as a snapshot in
time but also dynamical information on where the disease is
spreading, and associated characteristics of the first metastatic
site. The location and character of this first site, in turn, have
important consequences on the locations and time sequence of
subsequent metastatic sites, influencing timescales of disease
progression and survival. The full panel of spatiotemporal
diagrams and models for each subgroup is available for further
study on the interactive website. Additional information
associated with treatment scenarios is also available.

MATERIALS AND METHODS
Description of data set
The time-resolved data contain annotated clinical information on 446
patients from the time of their initial diagnosis of breast cancer between
1975 and 2009 at Memorial Sloan Kettering Cancer Center. Notably, the
majority of patients were originally diagnosed after 1990, with only 2 patients
diagnosed initially in 1975 and 1979, and 25 patients diagnosed in the 1980s.
None of the patients had evidence of metastatic disease at the time of
diagnosis; all of the patients eventually developed metastatic disease. For
each patient, the database contains all clinical and demographic information
on the patient from the date of their diagnosis and subsequent development
of metastatic disease over time. For each patient, metastatic disease is noted
at the time of diagnosis of metastatic disease, usually first detected by
positron emission tomography imaging and confirmed by biopsy. Patients
were then followed with serial positron emission tomography and/or
computed tomography imaging and physical exams. Physical exams were
usually done between 1- and 3-month intervals. Imaging was usually done at
3-month intervals. At the time of new metastatic development, site(s) of
disease and the date were noted. The treatment rendered and any other
pertinent clinical and demographic information is available on each patient.
All the relevant information regarding each patient’s original breast cancer
diagnosis, including date of pathology report, type of breast cancer, and
oncologic and surgical treatment rendered at original diagnosis is noted. All
of the information on the treatment rendered throughout metastatic disease
course is documented. The date of last follow-up and whether patients are
alive or deceased is also noted. Of the 446 patients, 173 patients were alive as
of 5 January 2013 and 273 had expired.

Metastatic progression diagrams
Longitudinal data can be organized most usefully in the form of ring
diagrams, as shown in Figure 1a for the entire aggregated data set. Disease
progression proceeds from the inner pink ring (primary breast tumor)
outward, with each ring representing a subsequent metastatic tumor, color
coded according to anatomical site, with a sector size representing the
percentage of patients with tumors at that location. The first ring out from
the inner ring in Figure 1a shows that bone is the most prominent first
metastatic site, in roughly 35% of the patients. The progression of each of
the 350 patients proceeds along a ray. The diagram summarizes the
complete pathway history (207 distinct pathways) associated with this
group of patients tracked over the duration of 10 years. From this data, we
can compute the probability of disease “transition” from one anatomical
site to any of the others, based on the statistical information contained in
the diagrams. This allows us to estimate the entries of the Markov
transition matrix associated with disease progression, both in bulk, and for
subgroups, which we describe next.

Markov chains
A Markov chain dynamical system is a discrete-time stochastic process:

v!kþ1 ¼ v!kA; ðk ¼ 0; 1; 2; ¼ Þ
where A is an nxn transition matrix and v!k is a state vector whose entries
indicate the probability of a metastatic tumor developing at each of the n
anatomical sites, at time step k. The time step k represents spread from
one site to the next in a patient, which can be calibrated with data. The
initial state vector in our model is given by v!0 ¼ ð1; 0; 0; 0; ¼ Þ, where the
first entry corresponds to the breast location, indicating that initially there
is a tumor located in the breast with probability 1, and no other metastatic
tumors at the other locations. The transition matrix A has entries whose
rows sum to one (corresponding to the fact that they represent
probabilities of transition and hence must sum to one), and the ijth entry,
aij, indicates the probability of metastatic disease spreading from site “i” to
site “j”. We refer the reader to Norris24 for a comprehensive introduction to
Markov chains and refs 20–23 for recent applications of Markov modeling
in the context of lung cancer metastasis. As the longitudinal data are
relatively time resolved over long periods, the entries of the transition
matrix are obtained in a straightforward empirical way by simple
denumeration of disease progression events from one anatomical site to
the next in each of the patients in a cohort (see ref. 25 for more general
discussions). For example, in tracking a cohort of 100 patients with a
primary breast tumor only, if 36 of them subsequently develop their first
metastatic tumor in the bone, then the transition probability from breast to
bone, obtained empirically, would be 0.36 for this cohort. Note that this
number should be interpreted as an estimate based on the length of time
the cohort is being followed. In a similar way, by simple denumeration of
the distinct metastatic transitions from site to site that each patient
follows, we can estimate the Markov transition probabilities from any given
site to any other site to create the Markov transition matrix A, which drives
our model dynamics.

RESULTS
Ten-year progression pathways
The panels in Figure 1a show ring diagrams associated with
10-year progression representing all patients whom we have a
minimum of 10 years of continuous data on starting at the time of
diagnosis. These include patients that were enrolled in the study
for more than 10 years and those that were expired before the
10-year mark (as we know their metastatic progression after their
death date). For the remainder of the paper, we will only focus on
those patients that qualify for the 10-year study. The 10-year
window was chosen as a balance between having enough
patients for statistical significance (i.e., not too long), yet long
enough so that significant progression occurred in the cohort
under study. The website http://kuhn.usc.edu/breast_cancer/
allows for interactive viewing of these diagrams for both shorter
and longer windows. Figure 1a shows the pathways of the 350
eligible patients all grouped together over the 10-year window.
For this group, bone metastases are the most prominent first
metastatic location, occurring in roughly 35% of the patients
being followed. In Figure 2b–d we break the group down into
subcategories. Figure 1b shows the ER+/HER2− subgroup
(218 patients), where bone metastasis occurs first in roughly
40% of all patients. Figure 1c shows the ER− /HER2− subgroup
(70 patients), where bone metastases occurs in a little over 25% of
the patients, and Figure 1d shows the HER2+ subgroup
(62 patients) with ~ 33% of patients relapsing first at the bone
site. Further examination of the sector sizes in the first metastatic
ring shows that the second most common first relapse site differs
among the subgroups. For the ER+/HER2− and the ER− /
HER2− groups, distant lymph nodes are the second most common
first metastatic site, whereas for the HER2+ subgroup, the second
most common first relapse site is lung/pleura, followed by chest
wall. The diagrams can be viewed from year to year as gif files on
the interactive website, giving a dynamic view of the disease as it
progresses from the central pink ring outward.
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It should be noted that death is a relatively uncommon
outcome for a patient with a metastasis to a single organ site,
occurring in only 33.33% of patients in the overall cohort. Though
it was notably more common in the HER2+ subgroup of patients
with liver metastasis, and affected 100% of that subgroup. As
expected, the largest number of long-term survivors is recognized
as ER+/HER2− patients with bone-only metastasis, with 91.67% of
these patients remaining alive during the median 10 years of
follow-up. Unexpectedly, we also identified that patients with their
first site of metastasis to lung-only metastasis had a favorable
percentage of patients going on to be long-term survivors
with 68.97% of this subgroup surviving to the end of the
10-year study period. Of note, the majority of the patients with
single lung metastasis as their first presentation of metastasis had
ER+/HER2− disease, only 5 of the patients with a single
lung metastasis at first presentation had triple-negative
disease. Interestingly, while many of these patients had lung
biopsies to confirm metastatic breast cancer as opposed to a
primary lung cancer, they did not routinely undergo resection of
the lung metastasis or radiation to the lung. Long-term
survivors were also identified in 60.00% of patients with isolated
liver metastasis.

Kaplan–Meier curves
Figure 2 shows Kaplan–Meier survival curves associated with the
10-year cohort that we track. Figure 2a shows survival
curves based on the three subgroups ER+/HER2− (218 patients),
ER− /HER2− (70 patients), and HER2+ (62 patients). Note that the
ER+/HER2− subgroup and the HER2+ subgroup show better
survival trends than the ER− /HER2− group.
Survival times are measured from the time of initial breast

cancer diagnosis and not from the time of the development of
metastatic disease. Patients were treated with Memorial Sloan
Kettering Cancer Center standard of care or appropriate clinical
trial-based therapy depending on physician recommendations
and patient preferences. Of the HER2+ patients, 87.10% received
trastuzumab-based therapy at some point during their disease
course. HER2+ patients diagnosed before 15 May 2005 did not
routinely receive trastuzumab in the adjuvant setting.26 After this
date, most patients did receive herceptin in the adjuvant setting,
which was noted to significantly improve the outcomes for HER2+
breast cancer patients. In the metastatic setting, the Food and
Drug Administration originally approved trastuzumab in Septem-
ber of 1998 (ref. 27). All of the ER+ patients received some form of

Figure 1. Spatiotemporal progression diagram over a 10-year period of subsets of breast cancer patients. The innermost to outermost rings
show progression patterns of primary breast cancer patients (pink ring) and formation of metastases (subsequent rings). Circular arc length of
each sector represents the percentage of patients with a metastatic tumor in that location. Bone (yellow) is the most common first metastatic
site (first ring outside pink). (a) All Patients, (b) ER+/HER2− , (c) ER− /HER2− , and (d) HER2+.
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Figure 2. Kaplan–Meier curves showing the survival of breast cancer patients when they initially have no evidence of metastasis to when they
progress through their metastatic disease. (a) Comparison of ER+/HER2− , ER− /HER2− , and HER2+ patients, (b) patients with a solitary first
metastatic site at bone, chest wall, liver, or brain, and (c) subsets of patients with different numbers of first relapse metastases.
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endocrine therapy during the course of their treatment
(i.e.,—tamoxifen, aromatase inhibitor, faslodex).
Figure 2b shows survival trends based not on these subgroups,

but on groupings associated with the location of the first
metastatic site. We focus on four main metastatic sites being
bone (87 patients), chest wall (54 patients), liver (21 patients), and
brain (5 patients). The patients with first mets to the chest wall
have the best prognosis, whereas those with first mets to the brain
have the poorest prognosis. Although the 5-year survival of
patients with a bone first met is equal to those with a chest wall
met (around 85%), the 10-year survival is much worse for chest
wall patients as compared with bone patients (50% vs. 70%,
respectively). Patients with first mets at the liver have a poor
10-year survival rate (~30%).
Definition of a metastasis was based on global clinical

evaluation, which included imaging results, physical examination,
and in many cases, biopsy. However, tissue confirmation of a
metastatic site was not required for the purposes of the model.
A comparison of Figure 3a, b generally shows that groupings

associated with first metastatic location (Figure 2b) gives at least

as good an indicator of survival as groupings associated with
ER/HER2 status. Figure 2c shows survival of patients with multiple
early metastases to various sites. Poorest survival are those with
multiple (more than two) first metastases, while much better
survival characteristics are associated with those patients with first
metastases that are solitary.
The hazard rate of a Kaplan–Meier curve indicates the rate at

which survival probability is decreasing within the population
being studied. Computing the hazard ratio between two survival
curves is a good measure of how much better or worse a certain
subgroup is doing compared with another. For example, if group
A dies at twice the rate of group B, then the hazard ratio
would be 2.

Markov chain networks and spreader–sponge diagrams
Figure 3 shows the Markov diagrams whose transition values are
obtained from the data depicted in the ring diagrams of Figure 1a.
The breast site is listed at 12:00 in these diagrams, followed in
clockwise decreasing order by the most likely first metastatic sites

Figure 3. Markov chain networks of metastatic breast cancer shown as circular chord diagrams. Chord widths at their respective starting
locations represent one-step transition probabilities between two sites. Primary breast cancer is located on top with metastatic sites ordered
clockwise in decreasing order according to transition probability from primary. (a) All patients’ network, (b) all patients’ network highlighting
paths connected to the breast, (c) all patients’ network highlighting paths connected to the bone, and (d) all patients’ network highlighting
paths connected to deceased.
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from the breast. Figure 3a shows the full network diagram clearly
depicting the systemic interconnectedness of the anatomical sites
throughout the course of the disease. In these diagrams we also
use “deceased” as one of the states in the model and list it in the
last position. The thickness of the paths leaving each of the sites
indicates the proportion of transitions from that site to the
receiving site. To clarify this further, we show the outgoing paths
from breast (Figure 3b) and bone (Figure 3c). In Figure 3d we show
the paths incoming to the deceased site.
Although the patterns of metastatic spread appear to be highly

complex, they can be simplified by examination of respective
components. The finding on Figure 3b showing that the pathways
that breast cancer takes out of the breast is significantly less
complex than the overall model in Figure 4a suggests that not
only is the primary tumor a source for metastasis but also
metastases themselves serve as sources of other metastatic sites
and many of these secondary metastases are associated with high
risk of transitioning to death as shown in Figure 3d.
Figure 4 shows the reduced spreader–sponge diagrams for all

of the patients (Figure 4a), followed by diagrams for each of the
subgroups ER+/HER2− , ER− /HER2− , HER2+. Sites colored in red
are “spreader” sites, whose ratio of outgoing path probability to
incoming path probability (called the amplification factor) is
greater than one, whereas those colored blue are “sponge” sites,
whose ratio of outgoing path probability to incoming path
probability (called the absorption factor) is less than one. For all of

the patients aggregated (Figure 4a), bone, chest wall, and
mammary lymph nodes are the spreader sites, and lung/pleura,
distant lymph nodes, and liver are the sponge sites. In
Figure 4b we show the ER+/HER2− subgroup with the same
spreader/sponge sites. The amplification factor of bone for this
subgroup (5.421) is particularly high, whereas the absorption
factor for liver (0.166) is quite low. For the ER− /HER2− group
shown in Figure 4c, the mammary lymph nodes seem to be the
strongest spreader (amplification factor of 5.778). Also of some
significance is the brain in this subgroup becomes a sponge, with
an absorption factor of 0.392. For the HER2+ subgroup shown in
Figure 4d, lung/pleura and chest wall become the main spreaders,
aside from bone. To clarify the spreader/sponge paths more
clearly, Figure 5a–f shows the paths exiting from each of the main
spreaders (all category), and each of the main sponges. Figure 6a,
d, when viewed together, are instructive in that they show direct
significant exchange between spreaders and sponges. For
example, Figure 5a shows that lung/pleura is the most probable
(sponge) site when exiting bone. Figure 5d, on the other hand,
shows that cells that exit the lung/pleura site most probably go to
liver, another sponge, but they can also go back to bone.
Prior animal and human experiments have supported the

concept that metastatic sites are seeded and re-seeded with travel
of cancer cells from one site to another via hematogenous
routes;20–21,28 hence flow of cancer cells is likely to be bidirectional
for all metastatic sites. However, the net flow will generally be in

Figure 4. Pathway diagrams showing top 30 two-step pathways emanating from breast (pink ring). Nodes are classified as a “spreader” (red) or
“sponge” (blue) based on the ratio of the incoming and outgoing two-step probabilities (spreader and sponge factor listed in respective
ovals). (a) All patients’ pathway diagram representing 79.8% of total pathways, (b) ER+/HER2− pathway diagram representing 83.0% of total
pathways, (c) ER− /HER2− pathway diagram representing 81.9% of total pathways, and (d) HER2+ pathway diagram representing 85.5% of
total pathways.
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the direction from spreader sites to sponge sites. Although
therapeutic interventions such as radiotherapy and hormonal
therapy may have the ability to impact trafficking of tumor sites,
the model did not incorporate differential effects of therapy into
the model and the gradient of metastatic growth is modeled
based on the population average and standard-of-care
interventions. An understanding of the impact of therapeutics
on the spreader and sponge characteristics of local sites requires
further investigation.

Metastatic relapse data
It is interesting to go further out in the pathway diagrams.
Figure 1a shows that after developing a metastatic tumor at the
bone site, the two most probable second metastatic sites are
lung/pleura, and liver, both representing roughly equal sector
widths (around 10%). But the future prognoses associated with
those two groups of patients are quite different. In the case of the
49 patients who follow the breast–bone–lung path, the probability
of transitioning to the “deceased” state is small (roughly 0.02). The
highest next transition is to liver for this group (transition
probability roughly 0.55). By contrast, the group who follow the
breast–bone–liver pathway’s highest next transition probability is
“deceased” (roughly 0.35), occurring on average roughly 2 years
later. The most probable next transition for this group is to distant
lymph nodes, with probability 0.31.

Of note, very few of these patients underwent pulmonary or
hepatic resection or radiotherapy directed at a single organ site.
We suspect that the more likely cause of this difference may be
the spreader/sponge characteristics of these tumor types in
metastatic breast cancer patients. If one examines subgroups, it is
noted that for all groups except the triple-negative population, the
liver is a more powerful sponge than the lungs, with smaller
transition probabilities for liver than lung in the ER+ and/or HER2+
groups. It is within the ER+ and HER2+ groups that there is a low
probability of transition from lung metastasis to death, whereas in
the triple-negative group, where the transition probability is
higher for liver than for lungs that we see an increased risk of
death following development of a lung metastasis. Although in
the absence of a second validation data set, it is possible that
these findings are artifactual, they raise the possibility that organs
that are more “sponge-like” relative to other affected organs are
the anatomic sites at highest risk for organ failure leading to
death. This is particularly true for visceral sites. Interestingly,
regardless of immunohistochemistry characteristics of a given
tumor or overall survival, all deceased patients died after an
average of four metastatic sites.

Temporal distributions
To link the discrete Markov time step “k” to the data, the temporal
distributions are shown in the panel in Figure 6. Figure 6a shows

Figure 5. Spreader/sponge diagrams for all patients showing one-step transition probability from (a) bone, (b) chest wall, (c) LN (mam), (d)
lung/pleura, (e) LN (dist), and (f) liver to the top nine sites in the network. Sites are ordered in decreasing order, clockwise, with the spreader/
sponge in question located at 12:00. Outer pink ring represents primary breast cancer and shows the percentage of total transition probability
it represents. dist, distant; LN, lymph node; mam, mammary.
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the average time from diagnosis to first metastatic site, 5.30 years.
The histogram is well modeled by a two-parameter Weibull
distribution. Figure 6b shows the average time to the second
metastatic site from diagnosis, 7.58 years. Figures 6c–f show the
average times to a bone metastasis (6.53 years), chest wall
metastasis (6.02 years), lung metastasis (6.92 years), and liver
metastasis (7.72 years). All are well modeled by Weibull
distributions. See the website http://kuhn.usc.edu/breast_cancer/
for temporal distributions associated with different subgroups.

DISCUSSION
Analyzing longitudinal data in terms of its combined spatiotem-
poral characteristics is an important step in building a compre-
hensive, robust, and predictive cancer progression model that can
serve as a framework for statistical forecasting. There are several
key points that are brought out in the current model worth
reiterating. The first metastatic site very strongly influences future
prognosis, even as much as ER/HER2 status of the patient. Second,
the spreader–sponge classification of the metastatic sites is an

important characteristic, with bone, mammary lymph nodes, and
chest wall being the main spreaders for breast cancer, and distal
lymph nodes, liver, and brain being sponges. However, the
spreader–sponge character does depend on ER/HER2 status; the
main example would be that lung/pleura are sponges for
HER2− , but spreaders for HER2+. Whether or not this is because
of differing treatments for these two groups is not clear.
Although most clinicians will, from experience, know that

certain anatomic distributions of disease are associated with
worse outcomes, the model presented here suggests that there is
significant interplay between organ distribution and hormone-
receptor status. Inclusion of therapeutics into the model,
along with patient characteristics such as age, performance status,
and genomic data has a potential to increase its complexity as
well as predictive power. Although highly attuned physicians
may have the capacity to replicate the predictive ability of the
model, we anticipate that the performance of individual
physicians to predict patient outcomes will be variable. For non-
oncologists, a model such as this one may provide superior
accuracy from the standpoint of prognosis. Moreover, noting that

Figure 6. Histograms showing average time from diagnosis to (a) first metastatic site, (b) second metastatic site, (c) bone metastasis,
(d) chest wall metastasis, (e) lung metastasis, and (f) liver metastasis. Graphs are color coded for specific metastases (a and b) or met relapse
number (c–f). A two-parameter Weibull distribution is used as a curve fit.
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despite immunohistochemistry subgroups, nearly all patients
approach death after four sites of metastatic disease may be
clinically useful.
Additional efforts to refine the model in the future should

include incorporation of therapeutic effects and the impact of
prior therapy on the overall patterns of spread. Another limitation
in the current model is an understanding of disease volume and
the impact of disease volume of the course of patients. Refining
the model to this higher level would require incorporation of raw
radiography data. Although such complexity is beyond the current
level of model development, future understanding of the role of
disease volume in cancer spread is a necessary factor for future
development.
The full data used to develop the model described in this

paper are quite comprehensive and are available for graphical
user-controlled viewing on the website: (http://kuhn.usc.edu/
breast_cancer/).
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