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Abstract: Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder aris-
ing in infants and young children. The origin of this neoplasm is attributed to an early deregulation
of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is
notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell trans-
plantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic
approaches with small epigenetic molecules have recently entered the stage and show surprising
efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test
novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate
JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have
largely failed in the past. Several research groups have previously generated patient-derived JMML
IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities
to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell
types, JMML IPSCs are a promising resource to advance the development of treatment modalities
targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML
stem/progenitor cells, related clinical applications, and the challenges involved.

Keywords: JMML; leukemia; reprogramming; IPSC; differentiation; hematopoietic cells

1. Introduction

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm mainly
affecting infants and young children [1–5]. The disorder results from constitutive genetic
activation of the Ras signal transduction pathway, leading to excessive formation of dif-
ferentiating leukemic cells along the myelomonocytic and red cell lineage [1,6,7]. The
clinical presentation and course of JMML is heterogeneous and strongly depends on the
particular Ras pathway driver gene [6,8,9]. Driver mutations in one or more genes interfer-
ing with Ras signaling occur in a monoallelic form in the germline (NF1 or CBL; almost
always accompanied by secondary somatic loss of heterozygosity in leukemic cells) or as a
monoallelic somatic lesion acquired in hematopoietic cells (PTPN11, NRAS or KRAS) [1].
Secondary genetic alterations can also occur including mutational events in the EZH2,
ASXL1, SETBP1, or JAK3 genes [1,8,10,11]. In addition to the genetic profiling, JMML can
be classified based on changes in DNA methylation [1,3,5]. Epigenetic treatment using the
DNA methyltransferase-inhibiting agent azacitidine has now emerged as an important part
of the therapeutic arsenal [12–14]. However, approximately one-third of JMML cases run a
fatal course despite azacitidine and/or allogeneic hematopoietic stem cell transplantation
(HSCT) [9]. Consequently, improving the treatment options for JMML remains a necessity.
A major limiting factor for in-depth studies of JMML pathobiology is its rare incidence
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(1 to 9/1,000,000 based on orphanet) [15], making it difficult to collect large amounts of
primary research material. In addition, unlike acute leukemia, JMML cell populations do
not exhibit a maturation arrest [16], which makes it almost impossible to generate stable
immortalized cell lines. Long-term maintenance of JMML cells in culture is hampered
by rapid differentiation and apoptotic behavior [17]. Over the past two decades, human
induced pluripotent stem cells (IPSCs) have rapidly become a valuable source for safely
generating highly differentiated cells in unlimited quantities for basic science, as well for
diverse clinical applications. Hence, IPSCs hold the promise to be a realistic alternative to
overcome all of these limitations. It is encouraging that five research studies have already
succeeded in generating IPSCs from JMML cells and differentiating these into hematopoi-
etic cells [18–22]. The added value of IPSC technology for studying JMML pathogenesis
and its potential as drug development platform will be the focus of this feature paper.

2. Previous Strategies of Modeling JMML
2.1. In Vitro Approaches

Maintaining patient-derived primary cells in a dish is appealing to every researcher.
Starting as early as 1974, cells derived from bone marrow (BM) and peripheral blood (PB)
of patients diagnosed with JMML were cultured in semisolid media. The experiments
uncovered a characteristic capacity of JMML progenitor cells for excessive formation of
monocyte-macrophage colonies in vitro [23]. This feature was repeatedly observed in
the context of different studies [24–27]. Cultures in semisolid media were also instru-
mental in elucidating the hypersensitive response of JMML progenitor cells to several
hematopoietic cytokines, specifically the granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) [28,29], tumor necrosis factor α [30], and interleukin-1 [31]. Other studies
were geared toward inhibiting the proliferation and the colony formation of JMML cells,
with the ultimate goal to find a potential therapy for the disease [32–35]. For example, the
inhibition of the above factors by interleukin-10 resulted in decreased colony formation
and cell viability [36].

Immortalized cells that have been manipulated to proliferate indefinitely may also be
envisioned as a potential source for modeling JMML. The generation of such cell lines re-
quires ectopic expression of oncogenes, telomerase reverse transcriptase expression, and/or
inactivation of tumor suppressor genes [37,38]. Keeping immature JMML progenitor cells
in culture poses a big challenge, as they tend to differentiate and undergo rapid senes-
cence [17]. At least, it is possible to maintain undifferentiated JMML cells for approximately
2 weeks in medium supplemented with stem cell factor, Fms-like tyrosine kinase 3 ligand,
thrombopoietin (TPO), and interleukin-6, which is sufficient for viral transduction and
reprogramming (unpublished own observations). The difficulties are illustrated by the
fact that not a single JMML cell line is included in a repertoire of 100+ leukemia cell lines
curated in a large academic collection of microorganisms and cell cultures [39]. Tradition-
ally, it is seen as an advantage of immortalized cell lines that they can be characterized and
standardized thoroughly, facilitating the comparison of discoveries made in different labs
and enhancing interaction between researchers. However, recent studies have highlighted
issues with uniformity and reproducibility in cell lines after manipulation and long-term
passaging, including transcriptomic and epigenomic variability [40–42].

2.2. In Vivo Approaches

The generation of mouse models that mimic the disease to the greatest extent possible
is an important contribution to the arsenal of research tools for JMML. An ideal animal
model would recapitulate salient JMML features such as hypersensitivity of hematopoietic
progenitors to GM-CSF, monocytosis, anemia, thrombocytopenia, hepatosplenomegaly,
and infiltration of peripheral tissues with leukemic cells [1]. Many efforts to this end have
already been made. The earliest studies used mice with genetically engineered deficiency
of the Nf1 gene [43,44], illustrating the central role of Nf1 in regulating the proliferation
and survival of hematopoietic progenitor cells in response to various cytokines [44]. Other
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models used knock-in strategies to manipulate the Ptpn11 [45,46] or Kras [47,48] genes.
Many models had limitations in recapitulating the characteristic picture of JMML due to
embryonic lethality, non-hematopoietic expression, or the emergence of lymphoma. A
recent study directed the expression of KrasG12D to multipotent progenitor cells, producing
JMML features such as prenatal KrasG12D expression, neonatal onset of leukemia, hep-
atosplenomegaly, and extramedullary organ infiltration [49]. KrasG12D progenitor cells
showed hypersensitivity to GM-CSF in colony-forming assays, which was reversible by
inhibition of the mitogen-activated protein kinase (MAPK) pathway [49]. Due to the het-
erogeneous nature of JMML driven by distinct Ras pathway mutations, comprehensive
modeling will require the generation of numerous mouse models to cover the spectrum of
driver mutations relevant to JMML.

A major problem of transgenic animal models lies in the monodimensional patho-
genesis of the tumors produced, leading to reduced complexity of the imitated human
neoplasia. An alternative approach is the expansion of human leukemia-initiating cells
in immunodeficient mice, which lack the capability of xenologous graft rejection. Several
papers reported the use of primary cells obtained from JMML patients for xenotransplanta-
tion [2,13,50–53]. It was demonstrated that JMML progenitor cells were capable of initiating
the disease in severe combined immunodeficiency mice after direct and serial transplanta-
tion [50], confirming their cancer stem cell properties. Engrafted mice were then used to
test potential therapies, including the induction of remission in JMML xenograft mice by
inhibiting GM-CSF [51]. More recently, our group generated a xenotransplantation model
on the background of Rag2–/–γc–/– mice, which was characterized by clonal expansion of
myelomonocytic progenitor cells in murine BM, spleen, liver, and lung. Phenotype and
engraftment kinetics were similar in secondary and tertiary recipients after serial retrans-
plantation, achieving long-term ex vivo leukemia cell propagation [2]. The model was
used to confirm the origin of aberrant epigenetic patterns in leukemia-initiating cells, and
to test DNA-hypomethylating therapy for JMML in vivo [2]. Shortcomings of xenotrans-
plantation relate to uneven reproducibility of engraftment and potential loss of valuable
sample material due to early death of experimental animals before full engraftment is
achieved. Moreover, PB is an unreliable source to monitor engraftment, since PB kinetics
only insufficiently reflect the development of leukemia in the BM. In addition, the use of
xenotransplantation to model JMML requires animal welfare precautions and involves
issues of expense and manpower.

Disease models used to investigate JMML are summarized in Figure 1.
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3. IPSCs as an Emerging Approach to Model Human Disease

Fifteen years after the first successful reprogramming of somatic cells into induced
pluripotent stem cells [54,55], a countless number of IPSC lines have been generated [56].
Similar to embryonic stem cells (ESCs), IPSCs possess unlimited self-renewal capac-
ity [54,55], retain the potential to differentiate into cell types of the three germ cell lay-
ers [54–58], and can be maintained and expanded in large amounts [56]. IPSC technology
has since become more mature and safe, paving the way for the feasible use of personalized
cell therapy, regenerative tissue therapy, or drug discovery via large-scale screening. For
example, IPSC technology has entirely opened up new insights and experimental possibili-
ties in the field of cardiac dysfunction [59–61]. When IPSC-derived cardiomyocytes were
used to model the risk of cardiac arrhythmia induced by sotalol, individual changes in
cardiac repolarization correlated strongly with those observed clinically in the patients
from which each IPSC line was generated [62]. It was also demonstrated that IPSC-derived
cardiomyocytes from breast cancer patients at the cellular level reflected the individual
susceptibility to doxorubicin-induced impairment of mitochondrial function, calcium han-
dling, and antioxidant activity, and hence the patient-specific risk of developing clinical
cardiotoxicity [63].

3.1. Methods Used for Reprogramming

Forcing ectopic expression of only four basic transcription factors (POU domain class
5 transcription factor 1 [Pou5f1], sex determining region Y-box 2 [Sox2], myelocytomatosis
[Myc], and Kruppel-like factor 4 [Klf4]), Kazutoshi Takahashi and Shinya Yamanaka
succeeded in converting differentiated somatic mouse, and later also human, cells into
pluripotent stem cells closely resembling ESCs [54,55]. Simultaneously, James Thomson’s
group successfully reprogrammed primary human fibroblasts to human IPSCs using
POU5F1, KLF4, SOX2, and LIN28 [58]. Since that time, a wide range of viral [64–70]
and nonviral [71–76] reprogramming techniques were developed and applied. Almost
all variations use at least one of the original Yamanaka transcription factors, notably
the pluripotency master regulator Pou5f1/POU5F1. However, some recent studies have
revealed that POU5F1 is not indispensable for reprogramming under specific environments
or in the presence of small molecules that have the potential to control its endogenous
expression [77,78].

According to the genomic integration capacity of each particular system, the re-
programming tools can be divided into integrative (retrovirus, lentivirus, piggyBac
transposons) and non-integrative (adenovirus plasmid DNA, minicircle DNA, episomal
DNA) [79]. So-called next-generation reprogramming does not use any DNA material,
thus ensuring a high degree of safety with an added benefit of better efficiency [80].
Sendai viruses represent the most widespread tool of this new generation, having rapidly
advanced to become the de facto standard for straightforward and safe reprogramming.

In 2013, the Mitchell Weiss laboratory in Philadelphia was the first to report the
generation of IPSCs from mononuclear BM cells of two JMML patients with somatic
heterozygous PTPN11 p.E76K mutations [18]. To date, various viral reprogramming
methods have been applied to patient-derived JMML cells, including STEMCCA lentivirus
expressing doxycycline-regulated POU5F1, SOX2, MYC, and KLF4 [18,20], retroviral pMXs-
based vectors expressing the factors separately [19,22], and Sendai virus encoding the same
transcription factors [21] (Table 1).
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Table 1. Summary of the literature on JMML-derived IPSC studies. Abbreviations: HSC, hematopoietic stem cell; MNC, mononuclear cell; BM, bone marrow; PB, peripheral blood; IPSC,
induced pluripotent stem cell; JMML, juvenile myelomonocytic leukemia; GM-CSF, granulocyte-macrophage colony-stimulating factor; NS, Noonan syndrome; MPD, myeloproliferative
disorder.

Study Reprogrammed
Cells Mutations Reprogramming

Technique
HSC Differentiation

Protocol Cytokine Combination Remarks Reference

Gandre–Babbe
et al., 2013

Ficoll-purified MNCs
from BM or PB

n = 2

Somatic
heterozygous

missense mutations
in PTPN11

STEMCA lentivirus
expressing

doxycycline-
regulated POU5F1,
SOX2, MYC, and

KLF4

Embryoid bodies and
adherent monolayer

culture with
supplementation of

cytokines

� 25 ng/mL BMP4
� 50 ng/mL VEGF
� 50 ng/mL SCF
� 50 ng/mL TPO
� 50 ng/mL Flt3
� 20 ng/mL bFGF
� 10 ng/mL IL-3
� 5 ng/mL IL-11
� 2 U/mL EPO
� 25 ng/mL IGF-1

First generation of IPSCs from
JMML cells.
In vitro differentiation of
JMML-IPSCs produced myeloid
cells with leukemic features
including high proliferative
capacity, activation of GM-CSF,
and enhanced STAT5/ERK
phosphorylation. The inhibition
of MEK kinase in IPSC-derived
JMML cells reduced their
GM-CSF hypersensitivity

[18]

Mulero–Navarro
et al., 2015

Skin fibroblasts
n = 2

Germline mutations
causing NS/MPD

Separate retroviruses
expressing human

POU5F1, SOX2,
MYC, and KLF4

Embryoid bodies and
cytokine

supplementation

� 25 ng/mL BMP4
� 50 ng/mL VEGF
� 50 ng/mL SCF
� 50 ng/mL TPO
� 50 ng/mL Flt3
� 20 ng/mL bFGF
� 10 ng/mL IL-3
� 5 ng/mL IL-11
� 2 U/mL EPO
� 25 ng/mL IGF-1

NS/MPD-IPSC-derived myeloid
cells carrying a PTPN11
mutation exhibited an
upregulation of miR-223 and
miR-15a, similar to BM
mononuclear cells harboring
PTPN11 mutations. Normal
myelogenesis was reestablished
via reducing miR-223’s function
in NS/MPD IPSCs

[19]

Tasian et al., 2019
Ficoll-purified MNCs

from BM or PB
n = 2

Germline CBL,
somatic PTPN11

STEMCA lentivirus
expressing

doxycycline-
regulated POU5F1,
SOX2, MYC, and

KLF4

Embryoid bodies and
cytokine

supplementation

� 25 ng/mL BMP4
� 50 ng/mL VEGF
� 50 ng/mL SCF
� 50 ng/mL TPO
� 50 ng/mL Flt3
� 20 ng/mL bFGF
� 10 ng/mL IL-3
� 10 ng/mL GM-CSF

MEK, JAK, and PI3K/mTOR
inhibitors resulted in different
reactivity of IPSC-derived
hematopoietic progenitors and
signaling aberrations,
depending on the driver
mutation

[20]
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Table 1. Cont.

Study Reprogrammed
Cells Mutations Reprogramming

Technique
HSC Differentiation

Protocol Cytokine Combination Remarks Reference

Shigemura et al.,
2019

PB T cells
n = 1 PTPN11

Sendai virus vector
encoding the human
transcription factors

POU5F1, SOX2,
MYC, and KLF4

Co-culture system
with stroma cells

� 40 ng/mL BMP4
� 40 ng/mL VEGF
� 50 ng/mL SCF
� 10 ng/mL TPO

Mutant IPSC colonies generated
significantly more CD34+ and
CD34+ CD45+ cells compared to
non-mutant IPSC colonies.
The PTPN11 mutation seems to
govern hematopoietic
differentiation in JMML

[21]

Pearson et al.,
2020

Skin fibroblasts
n = 2 NS/MPD

Separate retroviruses
expressing human

POU5F1, SOX2,
MYC, and KLF4

Embryoid bodies and
cytokines

supplementation

� 20 ng/mL BMP4
� 10 ng/mL bFGF
� 5 ng/mL activin A
� 10 ng/mL bFGF

and VEGF
� 25 ng/mL insulin

growth factor-1
� 2 U/mL EPO
� 10 ng/mL

interleukin-11,
bFGF, VEGF,
interleukin-3,
interleukin-6

� 50 ng/mL
SCF, TPO

Establishment of proteomic
screen in NS-derived IPSCs.
Demonstration of additive
effects of two drugs (JQ1 as
differentiation enhancer and
CBL0137 as apoptosis inducer)
on NS/MPD cells.

[22]
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3.2. Types of Reprogrammed Cells

Theoretically, all of the approximately 220 human somatic cell types are repro-
grammable [81–83]. Indeed, a vast array of cell types have been reprogrammed success-
fully [84], including fibroblasts [55,57,85], PB cells [86,87], neuronal progenitor cells [88],
keratinocytes [89], B cells [90], T cells [91], and hepatocytes [92]. In order to generate
disease models for cancer, several groups reprogrammed different types of primary
neoplastic cells including leukemia. Reports comprise the establishment of IPSCs from
primary myeloblasts and T cells of patients with acute myeloid leukemia (AML) [93],
from BM mononuclear cells of patients with chronic myelogenous leukemia (CML) [94],
from BM cells of a T-cell acute lymphoblastic leukemia mouse model [95], from BM
mononuclear cells of PTPN11 and CBL JMML patients [18,20], from skin fibroblasts of
JMML patients with NS [19,22], and from blood T cells of a healthy individual and a
patient with PTPN11-mutated JMML [21]. However, it is not uncommon for leukemic cells
to be refractory to reprogramming, resulting in a lack of patient-derived IPSCs for many
genetic subtypes. In addition, differentiating long-term repopulating hematopoietic cells
from IPSCs is a notoriously difficult and inefficient process [96].

4. Differentiation of IPSCs to Hematopoietic Cells

Procedures to differentiate IPSCs into various cell types are available in the literature,
including cardiomyocytes [62], neurons [97], adipocytes [98], endothelial cells [99], and
hematopoietic cells [86–88,100–102]. In fact, the first in vitro production of hematopoietic
cells from human ESC in co-culture with murine stroma cells dates back no less than
20 years [101]. Early protocols for in vitro differentiation of hematopoietic stem cells were
mostly based on 2D flat co-culture procedures with or without murine BM-derived OP9
cells [102–104]. On the one hand, the feeder cell system is robust and has the advantage of
obviating the need to add exogenous cytokines. On the other hand, OP9 cells are sensitive
to variation in maintenance environments, including medium source and serum lot, which
can disturb their capacity to efficiently support hematopoietic differentiation [102]. The use
of classical 2D flat culture systems involves particular restrictions regarding cell expansion,
differentiation efficacy and stability of differentiation [105]. However, 3D systems using
multicellular embryoid bodies (EBs) are now established and overcome these limitations to
a great extent. The spheroid aggregates are easily generated from IPSCs in a suspension
system and provide a peculiar physiological microenvironment not achieved by 2D culture
systems [106,107]. Using the EB approach, in vitro blood cell differentiation is now easy to
accomplish by continuous or intermittent use of a palette of different hematopoietic growth
factors [18–22,108,109]. Bone morphogenetic protein 4 (BMP4) modulates the prolifera-
tive and differentiative potential of hematopoietic progenitors [110–113] and promotes
hematopoiesis from ESCs [114]. Vascular endothelial growth factor regulates hematopoietic
stem cell survival [115]. Stem cell factor (SCF) in combination with TPO, interleukin-6 and
interleukin-3 induce the proliferation of megakaryocytic progenitor cells [116–118]. FLT-3
ligand stimulates the proliferation of primitive hematopoietic progenitors [119]. Basic
fibroblast growth factor positively regulates hematopoiesis by acting on stromal cells and
hematopoietic progenitors and antagonizing the inhibitory effects of transforming growth
factor beta [120]. Interleukin-11 acts on pluripotent and erythroid progenitors by regulating
the early stages of hematopoiesis and many phases of erythropoiesis [121]. Erythropoietin
guides multipotent hematopoietic progenitor cells toward an erythroid fate [122]. Ac-
tivin A enhances the production of hematopoietic cells by promoting the induction of
mesoderm in combination with BMP4, SCF, and FLT-3 ligand [123]. Insulin-like growth
factor 1 stimulates erythrocytes and lymphocytes [124] and increases hematopoietic pro-
genitor cell cloning efficiency [125]. GM-CSF enhances the differentiation of granulocytes,
macrophages, and dendritic cells from hematopoietic progenitor cells [126]. Examples of
blood cell differentiation achieved with combinations of these cytokines include B lympho-
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cytes [109], T lymphocytes [127,128], myelomonocytic cells [18–22], natural killer cells [127],
and erythroid cells [100,129].

The JMML-derived IPSCs reported so far were differentiated into hematopoietic cells
via formation of EB as well through an adherent monolayer culture system. Since the
reprogramming efficiency of both systems turned out to be comparable, the subsequent
studies were based on the simpler EB system [19–22]. Interestingly, JMML-IPSC-derived
hematopoietic progenitor cells exhibited faster proliferation and higher proportion of
myeloid cells compared to those generated from healthy control [18–21]. Furthermore, an-
other study observed that IPSCs derived from Noonan syndrome (NS)/myeloproliferative
disorder (MPD) cells produce a considerably greater number of leukocytes (CD45+),
myeloid (CD33+) and erythroid cells (CD235a+) compared to both NS and wild-type
cells [22]. Except for two studies [18,21], where CD34+ cells were already detected at day 8,
most investigators observed the formation of hematopoietic cells between day 12 and 14
after initiation of differentiation.

Despite well-established procedures, in vitro differentiation protocols are not equally
efficient for all cell types [96,130]. Several studies have therefore investigated the ability of
IPSCs to generate hematopoietic stem and progenitor cells (HSPCs) under in vivo condi-
tions [131,132]. Human IPSCs gave rise to CD34+CD45+ populations and subsequently to
differentiated myeloid and lymphoid progenitors in immunocompromised mice [96,133].
Here, the differentiation protocols were based on the use of teratoma to provide a physio-
logical microenvironment. Furthermore, isolated HSPCs reconstituted a human immune
system when transplanted into immunodeficient mice. Subsequently, successful in vivo
generation of HSPCs from CRISPR/Cas9-edited IPSCs has been reported [134]. The au-
thors described that IPSC-derived HSPCs have hematopoiesis-reconstituting potential and
long-term engraftment capacity. However, despite relative simplicity, low cost, and lack
of need for exogenous growth factors, HSPCs obtained from teratomas have not yet been
developed for clinical application.

5. Role of Preexistent Genetics and Epigenetics on Leukemia Formation

It is expected that reprogramming of somatic cells is accompanied by a thorough
reset of the epigenetic landscape, leading to a whole new epigenome. Accordingly, histone
acetylation and DNA hypomethylation at regulatory regions of ESC-specific genes were
described, whereas the opposite occurs at tissue-specific genes [135,136]. At the same time,
IPSCs at low passage still harbor residual DNA methylation patterns of the somatic cell
of origin [137]. It is therefore thought that heterogeneous differentiation properties of
IPSCs are attributable to incomplete removal of somatic epigenetic marks, beside other
factors like chromosomal aberrations or gene mutations [138]. This phenomenon is referred
to as “epigenetic memory”. It was suggested that subsequent differentiation and serial
reprogramming washes out the epigenetic memory of the starting cells [139,140].

Various epigenomic investigations have highlighted the pivotal role of epige-
netic changes in the development and progression of myeloid neoplasia, especially
AML [141–144]. Consistent with the above concept, the reversion of AML cells to IPSCs
was accompanied by a universal reset of DNA methylation changes associated with
leukemic transformation [93]. It is therefore remarkable that cells differentiated in vivo
from AML-IPSCs still had high similarity in DNA methylation and gene expression
profiles to the primary leukemic cells [93]. However, it was also noted that the effect of
epigenetic memory on the phenotype of cells differentiated from AML-IPSCs was highly
dependent on the cell type context [93]. Since one or more genetic driver mutations were
maintained all the way through IPSC formation and were required (and sufficient) to
recreate the leukemic phenotype, it was concluded that neoplastic transformation to AML,
including the epigenetic changes associated with it, results from the activity of specific
gene mutations rather than preformed epigenetic alterations [93]. In contrast to AML,
IPSCs derived from CML cells are characterized by significantly diverse DNA methylation
in the presence of a uniform genetic driver (the BCR-ABL1 fusion oncogene). Despite
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this “epigenetic drift”, CML-IPSC-derived CD45+/CD34+ cells still retain the potential to
acquire myeloid and erythroid differentiation capabilities in vitro and in vivo and can give
rise to typical CML phenotypes, including CD15+/CD14+/GlyA+ [145].

The significance of epigenetic profiles during reprogramming and differentiation has
not yet been explored in JMML. Given the strong correlation of aberrant DNA methylation
with clinical outcomes in this disorder, such experiments appear particularly attractive.
They will provide valuable insight as to whether epigenetic memory influences stem cell
properties in JMML and identify key epigenetic modifications that accompany transforma-
tion to JMML.

6. Applications of JMML-Derived IPSCs

It is unsatisfactory that HSCT remains the only curative modality of treatment for most
children diagnosed with JMML, given its toxicity and high risk of relapse [146]. Hence,
there is an obvious need for preclinical development of new therapy strategies. In light
of the limitations of working with primary JMML material discussed above, the use of
JMML-derived IPSCs appears to be a viable and promising alternative approach.

Among other intracellular signaling molecules, mitogen-activated protein kinase
kinase (MEK) and janus protein tyrosine kinase 1/2 (JAK1/2) are hyperactive in
JMML [8,10,11]. Shilpa Gandre–Babbe and colleagues showed higher sensitivity of
JMML-derived IPSCs to the MEK and JAK1/2 kinase inhibitors PD901 and ruxolitinib than
IPSCs derived from healthy control cells [18]. Reduced colony-forming activity of JMML
progenitors, diminished colony size, normalized response to GM-CSF, and inhibition of
cytokine-independent formation of myelomonocyte colonies were in line with other studies
in Nf1- and Kras-mutant mice, where JMML-like MPDs were attenuated by treatment with
PD901 [147,148]. By contrast, the effect of ruxolitinib was rather weak, suggesting a minor
role of JAK1/2-mediated signal transduction in PTPN11-mutated JMML [18].

Aiming to identify targetable effector molecules within the Ras kinase cascade, Sarah
Tasian and colleagues generated IPSCs from PTPN11- and CBL-mutant JMML, character-
ized the differences between their signaling profiles, and examined the effect of various
kinase inhibitors [20]. The authors compared the size of myeloid colonies differentiated
from the two mutant IPSC types and control IPSCs and found that colonies originating
from either mutation were larger and more dispersed than controls. However, there was
no difference in colony formation and sensitivity to GM-CSF between the two mutants.
Phosphoflow cytometry was then used to describe distinct signaling profiles for both muta-
tional categories. The Ras/MAPK signaling pathway was hyperactive in PTPN11-mutant
IPSCs compared to CBL mutants, and vice versa for the JAK/signal transducer and acti-
vator of transcription (STAT) axis [20]. Different kinase inhibitors were then employed to
target these specific profiles. The analysis showed superior efficacy of the MEK inhibitors
PD0325901 and trametinib in PTPN11-mutant cells. Conversely, the JAK/STAT inhibitors
momelotinib and ruxolitinib were more effective in cells with a CBL mutation [20]. The
comparison of the phosphoinositide 3-kinase delta (PI3K δ) inhibitor idelalisib and the
mammalian target of rapamycin (mTOR) inhibitor rapamycin showed that both categories
of JMML IPSCs responded similarly to these agents. The authors advocated kinase in-
hibitors as potential candidates for further drug development in JMML. Moreover, they
suggested that rapamycin might be promising as a general therapy principle in JMML,
independently of the particular driver mutation [20].

A more recent study assessed the proteome of myeloid cells derived from IPSCs of one
healthy individual (wildtype, WT), one patient with NS and MPD, and one patient with
NS but no MPD [22]. The authors detected significant differences between the proteomes
of WT and both NS and NS/MPD, as well as between NS and NS/MPD. The expression of
integrin beta 2 and the calcium-binding protein S100-A4 was markedly increased in NS
compared to WT and even more increased in NS/MPD. In addition, the expression of the
tumor suppressor protein TP53 was decreased in both NS and NS/MPD-derived myeloid
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cells, and the expression of the nuclear factor kappa light chain enhancer of activated B
cells (NF-κb) inhibitor was increased in both NS and NS/MPD [22].

These results, including a transcriptome analysis highlighting the proto-oncogene
MYC as a key regulator [19], suggested an important role of the MYC, TP53, and NF-
κb signaling pathways for altered protein expression in JMML. To assess the therapeutic
exploitability of these pathways, three drugs were used on NS and NS/MPD IPSCs- derived
myeloid cells: CBL0137, which inhibits NF-κb; JQ1, which inhibits MYC; and Nutlin, which
destabilizes TP53 [149]. All three drugs had an effect, which was strongest in the case of
CBL0137. Specifically, the colony-forming capacity of NS and NS/MPD cells decreased
significantly with exclusive formation of myeloid colonies and the absence of erythroid
colonies [22].

Upregulation of micro-RNAs miR-223 and miR-15a was observed in myeloid cells
differentiated from IPSCs after reprogramming fibroblasts of 2 patients with germline
PTPN11 mutation [19]. This upregulation correlates with in vivo findings in primary BM
mononuclear cells of patients with germline or somatic PTPN11 mutations. However, the
increase in micro-RNA levels was heterogeneous among JMML patients with different
mutations. In addition, the genes coding for Ras-related protein Rab-12 and forkhead box
O3 were confirmed as bona fide targets of miR-223 by in vitro transcriptional regulation
studies using modified HEK293 cells [19].

The somatic tissue of origin deserves careful consideration when embarking on IPSC
experiments [150]. With respect to JMML, the field is too immature to compare IPSC
phenotypes depending on source cells. In each of the studies cited above, only one tissue of
origin was used, and side-by-side comparisons were not made. Other variations, such as the
driver mutation and the reprogramming kit, come into play. None of the studies recorded
epigenomic JMML IPSC data. At least, it is noteworthy that hematopoietic differentiation
of JMML IPSC modeled characteristic features of JMML (such as GM-CSF-hypersensitive
progenitor cells and expansion of the myeloid lineage) irrespective of whether IPSC were
derived from BM/PB [18,20,21] or fibroblasts [19,22].

Overall, studies to date demonstrate that JMML-derived IPSCs imitate several ele-
mentary cell biological properties of JMML (expansion of the progenitor cell compartment,
proliferation, response to cytokines). Functionally, these properties can essentially be linked
with the Ras-deregulating effect of the driver mutation. To what extent the gene transcrip-
tion patterns, protein expression profiles, and epigenetic landscape in JMML-derived IPSCs
also correspond to those of the original cells remains to be investigated.

7. Outlook: The Future of IPSCs in JMML Research

To date, at least five groups succeeded in reprogramming PTPN11-mutant patient-
derived JMML cells to IPSCs, and then re-differentiating these into JMML-like cells [18–22].
Encouragingly, the JMML-like cells generated in these experiments recapitulated central
features of JMML primary cells, including increased formation of myeloid colonies and
hypersensitivity to low doses of GM-CSF.

It will now be of interest to also model those JMML subtypes in IPSCs that are driven
by the other classic Ras pathway genes: KRAS, NRAS, and NF1. Their systematic evaluation
will permit side-to-side comparisons of oncogenic driver capacity not previously possible
with conventional progenitor cell cultures or ex vivo cell lysates. In addition, global
genetic profiling of JMML has uncovered secondary mutational events (including EZH2,
ASXL1, SETBP1, JAK3, and others) which correlate with a higher risk of progression and
poor clinical outcome [1,8,10,11]. IPSC technology forms an unprecedented basis for gene
editing experiments that imitate such secondary mutations in the environment of a faithful
cellular JMML model. Conversely, the correction of mutant PTPN11 in JMML-IPSCs via
gene editing was shown to decrease the output of CD34+ hematopoietic progenitor cells
to a level comparable with WT-IPSCs [21]. With a little imagination, these and similar
achievements can be viewed as prototypes for future targeted and personalized therapy
of JMML.
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