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Abstract: G-quadruplexes are secondary structures that may form within guanine-rich 

nucleic acid sequences. Telomeres have received much attention in this regard since they 

can fold into several distinct intramolecular G-quadruplexes, leading to the rational design 

and development of G-quadruplex-stabilizing molecules. These ligands were shown to 

selectively exert an antiproliferative and chemosensitizing activity in in vitro and in vivo 

tumor models, without appreciably affecting normal cells. Such findings point to them as 

possible drug candidates for clinical applications. Other than in telomeres, G-quadruplexes 

may form at additional locations in the human genome, including gene promoters and untranslated 

regions. For instance, stabilization of G-quadruplex structures within the promoter of MYC, 

KIT, or KRAS resulted in the down-regulation of the corresponding oncogene either in gene 

reporter assays or in selected experimental models. In addition, the alternative splicing of a 

number of genes may be affected for a therapeutic benefit through the stabilization of  

G-quadruplexes located within pre-mRNAs. It is now emerging that G-quadruplex structures 

may act as key regulators of several biological processes. Consequently, they are considered 

as attractive targets for broad-spectrum anticancer therapies, and much effort is being made 

to develop a variety of ligands with improved G-quadruplex recognition properties. Quarfloxin, 

a fluoroquinolone derivative designed to target a G-quadruplex within ribosomal DNA and 

disrupt protein-DNA interactions, has entered clinical trials for different malignancies. This 
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review will provide some hints on the role of G-quadruplex structures in biological processes 

and will evaluate their implications as novel therapeutic targets. 
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1. Introduction 

To date, many types of secondary non-B nucleic acids conformations have been identified. Among 

them are G-quadruplex (G4) structures which can form in guanine-rich nucleic acid sequences [1–4]. 

G4 structures are generated by a core of two or more π–π stacked G-quartets (Figure 1), which are stable 

planar arrangements of four guanine residues that are hydrogen-bonded via Hoogsteen pairings [1]. G4 

structures are held together by intervening sequences of variable length that form single-stranded loops 

which are arranged on the exterior of the core [5]. These structures are further stabilized by monovalent 

cations (e.g., Na+, K+) that occupy the central cavities between the stacks, neutralizing the electrostatic 

repulsion of inwardly pointing guanine oxygens [6]. 

Figure 1. Schematic representation of a G-quartet arrengment (a) and of G4 structures with 

an intramolecular hybrid-type 1 (b), hybrid-type 2 (c) and basket-type (d) conformation. 

M+: alkali metal. 

 

G4 structures may form under physiological conditions and show different topologies, the complexity 

of which depends basically on six variable parameters: (1) the oligonucleotide sequence; (2) the number 

of oligonucleotide strands (e.g., unimolecular, bimolecular, tetramolecular); (3) the directionality of 

strands (e.g., parallel, antiparallel, mixed); (4) the angles of the glycosidic bonds (e.g., syn, anti); (5) the 

size and type of intervening loops (e.g., diagonal loops, lateral loops and double chain reversal loops) 

and (6) environmental factors, such as the interacting alkali metals, the molecular crowding and the 

presence of binding ligands [6,7]. 
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Bioinformatics analyses have revealed that ~400,000 putative G4 forming sequences (PQS) are 

present in the human genome [6,7]. These sequences consist of at least four runs of guanines (G-tracts), 

which usually contain at least three guanine residues (e.g., [G≥3NxG≥3NxG≥3]≥4, where N is any nitrogen 

base). Other than in human telomeric DNA, the PQS are frequently located within the promoter 

regions of oncogenes, suggesting that G4 structures may play a pivotal role in the control of a variety 

of cellular processes, including telomere maintenance, replication, transcription and translation [6,7]. 

Similar to proteins, the folded state of which creates specific druggable sites, the highly polymorphic 

nature of G4 conformations would make it possible, at least in principle, to rationally design small 

molecules able to selectively and differentially recognize and stabilize them. The most common types 

of G4 binding by specific ligands occurs via stacking onto or intercalation into the structure. In addition, 

owing to the structural complexity of G4, the groove and loop regions offer additional binding sites for 

selective recognition [7]. 

Although the physiological role of G4 structures still need to be intensively investigated, a growing 

body of evidence (mainly related to the role of G4 in the maintenance of telomere architecture/function) 

points towards such non-B DNA conformations as attractive targets for broad-spectrum anticancer 

therapies, and several ligands able to interact and stabilize G4 structures have been described during 

the past decades [8]. 

2. Targeting G4 Structures within Telomeres 

Telomeres (from the Greek words telos- end and meros- part) are specialized DNA-protein 

structures located at the end of eukaryotic chromosomes. Human telomeric DNA consists of tandem 

repeated (TTAGGG)n sequences (3–15 kilobases) with a 150–200-nucleotide-long single-stranded 

terminus on the 3′-oriented strand (3′-overhang) [9]. Telomeres are bound directly or indirectly by a 

complex array of proteins, such as the six-protein complex shelterin, which includes the telomeric 

repeat binding factors 1 and 2 (TRF1, TRF2); the protection of telomeres (POT1); the transcriptional 

repressor/activator protein 1 (RAP1); the TRF1 interacting protein 2 (TIN2) and the POT1 and  

TIN2-organizing protein (TPP1) [9]. In addition to the shelterin complex, mammalian telomeres interact 

with other factors, including tankyrase 1 and 2, poly(ADP-ribose) polymerase 1 (PARP1),  

ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), as well as general DNA 

replication and repair/recombination factors [9]. Such a nucleoprotein structure protects the chromosome 

ends (telomere capping function) from being recognized as DNA double strand breaks and, consequently, 

from being aberrantly processed by multiple pathways, such as ATM- and ATR-dependent DNA damage 

response (DDR), non-homologous end-joining (NHEJ), homologous recombination (HR) and resection, 

that may in turn result in genetic instability [9]. 

Telomeres uncapping may occur as a consequence of excessive telomere shortening, in that telomeres 

are presumably no longer able to form the protective higher order structure or bind sufficient amounts 

of shelterin factors and/or telomere-associated proteins, or when binding proteins, mainly TRF2 or 

POT1, are delocalized from telomeres [9].  

In normal somatic cells, telomeres shorten with each round of cell division as a natural consequence 

of the inability of the DNA polymerase to completely replicate the chromosome ends (i.e., the end 

replication problem) [10]. Therefore, telomere erosion imposes in normal cells a finite number of cell 
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divisions, thus representing a cell autonomous mechanism to prevent excessive telomere shortening 

and, as a consequence, genomic instability and malignant transformation. 

Once a subset of telomeres become critically short (i.e., the Hayflick limit), cells cease to proliferate 

by entering a replicative senescence status. If inactivation of cell cycle checkpoints occurs, cells can 

escape replicative senescence and, after further telomere attrition, eventually enter a second growth 

arrest status (crisis). At this point, the occurrence of events like recombination and chromosome fusion 

may trigger genetic instability and often cell death. Occasionally, rare cells can emerge from this crisis 

and become immortalized by acquiring a telomere maintenance mechanism (TMM), an essential step 

during the transformation of most human cancer cells [10]. 

The most frequently reactivated TMM in human cancer is telomerase, an RNA-dependent DNA 

polymerase. The enzyme is composed of two core components: the hTR RNA subunit, which provides 

the template for the synthesis of telomeric DNA, and the TERT protein subunit, which possess a reverse 

transcriptase catalytic activity [11]. In addition, several other accessory proteins may regulate the 

enzyme biogenesis, the formation of functional holoenzyme complex and its cellular distribution [11]. 

Cancer cells that do not activate telomerase often rely on a recombination-based pathway for telomere 

maintenance known as alternative lengthening of telomere (ALT) mechanism [9]. The main features of 

ALT-positive cells are the presence of long and heterogeneous telomeres and of extrachromosomal 

linear and circular telomeric DNA fragments, the occurrence of spontaneous telomeric-localized DNA 

damage, as well as the presence of ALT-associated promielocytic leukemia bodies (APB), which are 

subnuclear bodies composed of telomeric DNA, shelterin factors and homologous recombination/DNA 

repair proteins [9].  

Pieces of evidence suggest that cell-type specific mechanisms can favor the activation of one or the 

other TMM but the precise engine governing ALT is still to be disclosed in detail. Epigenetic alterations 

have been reported to influence which TMM is activated in specific cancer types [12] and, more 

recently, a mutational basis for the ALT activation, involving ATRX and DAXX genes, has been also 

evoked [13].  

Since telomerase is activated in the vast majority of human cancer, but not in normal cells (except 

for germ cells, embryonic and stem cells) [14], the enzyme has been considered an excellent target for 

therapeutic interventions and several telomerase inhibitors have been described so far, thus contributing 

to validate the enzyme as a cancer-specific target [11]. However, telomerase and ALT may coexist in 

the same tumor [9]. Consequently, it is plausible that the use of telomerase inhibitors could exert a selection 

pressure leading to the emergence of sub-populations of ALT-positive cells refractory to telomerase 

inhibitors [9]. It has been recently reported that telomerase inhibition results in the acquisition of an 

ALT phenotype in a mouse model of T-cell lymphoma as well as in the overexpression/amplification 

of clue regulators of mitochondrial biology and function and of oxidative stress defense pathways [15]. 

In addition, the evidence that a significant fraction of solid tumors express ALT mechanisms instead 

of telomerase suggests that they will not likely be affected by any telomerase inhibitor [9]. However, 

due to the fragmentary knowledge concerning the molecular events governing ALT mechanism, inhibitors 

that specifically target this pathway have not been reported yet.  

In this regard, telomeric DNA has received much attention as the G-rich telomeric 3′-overhang can 

fold into tetraplexes. At the telomere level, G4 structures may play several biological roles [16]. Specifically, 

they may contribute to cap telomeres and pose a physical blockade for the access of telomerase to the 
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chromosomes ends. Furthermore, G4 structures may also act as a barrier for the execution of the early 

steps of recombination required for ALT mechanisms [16]. In this context, investigations of the telomeric 

3′-overhang architecture under physiological conditions have identified telomeric G4 as specific 

structural targets for the development of telomere-directed G4 therapies [17]. Therefore G4 stabilization 

is considered as an attractive strategy to fight cancer, independently of the operating TMM. 

The human telomeric G4 structures have been investigated by physico-chemical approaches under 

physiologically relevant conditions and diverse topologies have been described [18], although a detailed 

characterization of human telomeric G4 structures is still urgently needed for a better structure-based 

rational drug design. Among the different topologies described thus far, the hybrid-type intramolecular 

conformations seem to be the major forms of human telomeric G4 in solution in the presence of K+ [18]. 

It has been reported that telomeric sequences can form in vitro two related hybrid-1 and hybrid-2 

structures (Figure 1), that are in equilibrium in K+ solution, both containing three G-tetrads linked with 

mixed parallel/antiparallel-G-strands, which differ in their loop arrangements, strand orientations, 

tetrad arrangements and capping structures, thus providing specific drug binding sites [18]. It has been 

also suggested that such a structure polymorphism and dynamic equilibrium are intrinsic properties of 

human telomeric sequences and that the low energy barrier between the different forms may provide a 

means for specific protein recognition [18]. Several proof-of-concept experiments have confirmed G4 

stabilization as a useful strategy for pharmacological intervention. In addition, the resolution of the 

crystal structure of human telomeric DNA in complex with different ligands [19,20] provided useful 

hints for the rational design of small molecules characterized by improved selectivity towards telomeric 

G4 structures.  

The very first proof-of-principle was reported by Sun et al. [21] who showed that the stabilization 

of telomeric G4 structures by a 2,6-diamidoantraquinone resulted in the inhibition of telomerase activity 

in vitro. This encouraging result led to intensive screening for G4 stabilizing agents and, until now, 

several small molecules able to stabilize telomeric G4 structures have been described [22]. These 

compounds (Figure 2), belonging to a variety of chemical classes (e.g., cationic porphyrins, antraquinones, 

perylenes, fluoroquinolones (norfloxacin, ciprofloxacin), piperazines, pentacyclinacridinium salts, 

fluoroquinophenoxazines, ethidium derivatives, isoquinoline and benzylisoquinoline alkaloids, 

naphthalene diimides, bisquinolinium compounds, carbazole derivatives), share common features,  

such as the presence of a flat aromatic surface, of cationic charges as well as the ability to stack on or 

intercalate in targeted G4 structure. 

Due to the great potential of the G4-based therapy there is a growing interest in the design and 

development of G4-stabilizing agents. In this context, comparative searches within the database of U.S. 

Food and Drug Administration-approved compounds and the literature to find molecules with the 

potential to bind G4 DNA have identified more than 750 telomerase inhibitors acting through G4 

stabilization [23]. Subsequent evaluation of these compounds lead to the development of theoretical 

models able to discriminate the new G4 binders. Six compounds were predicted to bind to the human 

telomeric G4. Fluorescence resonance energy transfer (FRET) revealed that prochloroperazine, 

promazine, and chloropromazine stabilized the G4 structure. These compounds showed selectivity for 

the G4 structure over duplex sequence. Amitriptyline, imipramine, and loxapine were less efficient but 

also did bind to the G4 [23].  
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Figure 2. Chemical structures of historical telomeric G4-stabilizing agents. 
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In addition, the combined use of molecular modeling, biophysical methods and click chemistry has 

generated a useful toolbox for the identification/design of optimized and more selective G4 targeting 

compounds. In this context, available databases of structural and biological data are used to perform 

high throughput in silico screenings for potential G4 interacting pharmacophores. For instance, virtual 

screenings represent a useful tool for the identification of promising candidates for their ability to 

interact with telomeric G4 [24]. Specifically, based on the assumption of a relationship between chemical 

structure and biological function, ligand- and structure-based approaches combined with tools for the 

prediction of the molecular properties have been used to select new pharmacophores on the basis of 

their similarity to known active drugs, and to discard compounds with unfavorable pharmacokinetic 

properties. Subsequently, the selected compounds have been submitted to docking simulation on all the 

characterized G4 conformations of human telomeric sequence and the resulting top ranked molecules 

were subsequently analyzed by conventional biophysical assays for their ability to bind and stabilize 

telomeric G4 structure [24]. By these methods, a new psoralen scaffold has been identified among an 

impressive number (~2.7 million) of compounds [24]. This evidence clearly underscores the importance 

and usefulness of such computational approaches, before going further into extremely expensive 

biological screenings.  

One of the most active and selective G4 ligand is the polyheteroaromatic molecule telomestatin, a 

natural compound derived from Streptomyces anulatus, with unique ability to stabilize G4 structures in 

the absence of monovalent cations. Telomestatin is the most potent telomerase inhibitor reported thus 

far [25,26]. The drug has been shown to greatly stabilize telomeric G4 and to preferentially bind to 

intramoleuclar G4, with a 70-fold higher selectivity for G4 over duplex DNA [25]. Telomestatin showed 

promising anticancer properties in several in vitro and in vivo models of human cancers, whereas it 

seems to not affect normal cells [27]. Other than causing telomerase inhibition, the drug may trigger 

telomere uncapping, as a consequence of the rapid delocalization of shelterin components as well as  

3′-overhang degradation, eventually leading to an ATM-dependent DDR and cancer cell death [25]. 

The ligand showed also activity towards SV40-transformed ALT-positive human lung fibroblasts and 
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caused delocalization of the Topoisomerase IIIα/Bloom helicase/TRF2 complex from telomeres, 

disrupted APB bodies and induced telomere-located DNA damage [28].  

Another promising and deeply investigated telomeric G4 ligand is the pentacyclic acridine  

(3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2,-kl]acridinium methosulfate, RHPS4. It is characterized 

by high selectivity for G4 DNA and inhibits telomerase activity in the submicromolar range [25]. The 

long-term exposure to subtoxic concentrations of RHPS4 resulted in a marked impairment of cancer 

cell growth accompanied by telomerase activity inhibition without appreciable telomere shortening. A 

deeper investigation of its mechanism of action revealed that the drug caused telomere dysfunctions, 

resulting in telomeric fusions, occurrence of polynucleated cells and telophase bridges [25]. 

Salvati et al. showed that RHPS4 is able to induce an ATR-dependent DDR at telomeres in melanoma 

cells as well as to cause replication stress [29]. When challenged on different human tumor xenografts 

in mice RHPS4 was shown to be very efficient in reducing tumor growth and metastasis compared to 

conventional antitumor drugs [30]. The compound showed also a high therapeutic index, in that it was 

well tolerated and did not cause general toxicity or body weight loss in mice, even though a marked 

but reversible hypotension was observed [30]. 

A large number of telomeric G4 ligands have been reported thus far, but remarkably few have been 

progressed to the point of being lead candidates in cancer drug discovery programs [31]. Among these 

ligands naphthalene diimide (NDI) represent promising scaffolds. Indeed, crystallographic analyses of 

the complexes between NDI and human telomeric DNA have provided a starting-point for rational 

optimization of these compounds. Modification of the NDI scaffold has been reported to increase the 

specificity for G4 over double-starnded DNA and to lead to better recognition between different G4 

structures [31]. Recently, Doria et al. developed tri- and tetrasubstituted NDI composed of core tethered 

with quinone methides. These novel derivatives showed to selectively bind human telomeric G4 and to 

impair the growth of different human cancer cells following the induction of telomere dysfunctions 

and telomerase activity inhibition [32]. With the aim of enhancing telomeric G4 affinity and selectivity, 

the NDI BMSG-SH-3 (N,N′-bis(3-(4-methylpiperazin-1-yl)propylamino)-2,6-bis(3-(4-methylpiperazin-

1-yl)propylamino)-1,2,5,8-naphthalenetetracarboxylic acid diimide), has been also recently designed 

by using molecular modeling on the basis of crystallographic data [31]. This compound showed  

sub-micromolar cell growth and telomerase inhibitory activity in a panel of pancreatic cancer cell 

lines. In addition, the compound demonstrated significant anti-tumor activity in an in vivo pancreatic 

cancer xenograft model [31]. Micco et al. recently reported the enhancement of the pharmacological 

properties of earlier NDI compounds using structure-based design. Crystal structures of three complexes 

with human telomeric intramolecular G4 demonstrated that two of the four strongly basic N-methylpiperazine 

groups can be replaced by less basic morpholine groups with no loss of intermolecular interactions in 

the grooves of the G4. The new compounds retain high affinity for human telomeric G4 and showed a 

10-time increase in the cytotoxic activity when tested in pancreatic cancer cells. In addition, the lead 

compound triggered cell senescence and induced a dose-dependent modulation of the expression of 

genes involved in the DNA damage response (CDKN1A, DDIT3, GADD45A/G, PARP1, PPM1D) 

and in telomere maintenance (hPOT1) [33]. 

Carbazole derivatives able to stabilize telomeric G4 DNA have been designed and synthesized. 

Among them, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) showed a potent inhibitory 

effect on telomerase activity. In a long-term setting, non-small cell lung cancer cells exposed to 
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BMVC showed the typical hallmarks of senescence, including morphologic changes, senescence-

associated beta-galactosidase activity, and decreased bromodeoxyuridine incorporation. Such a drug-

dependent senescence phenotype was accompanied by progressive telomere shortening and induction 

of DNA damage. In addition, BMVC also impaired cell migration, colony-forming ability, and anchorage-

independent growth and affected the tumorigenic potential of non small cell lung cancer xenografts  

in vivo [34]. 

Additional small molecules have been described for their selectivity toward G4 over double-stranded 

DNA, including pyridostatin, BMVC4 and phenanthroline derivatives. However, even though initially 

characterized as telomeric G4 ligands, several data indicate that they may interact with G4 structures 

located in different genomic loci thus suggesting that the reported antitumor effects may be the 

consequence of a more complex mechanism of action [35,36]. 

The influence of ligand-mediated G4 stabilization on cancer cell fate suggests that the observed 

responses may depend on several factors, including the type of cancer cell, the genetic background as 

well as the operating TMM. However, as schematically reported in Figure 3, a dual mechanism of 

action for telomeric G4 ligands has been consistently proved. 

Figure 3. Schematic representation of the dual mechanism of action of telomeric G4 

ligands. Possible resistance mechanisms that enable tumor cells to cope with telomeric  

G4-ligand-mediated detrimental effects have been also reported. 

 

Specifically, G4-stabilizing agents may inhibit telomerase activity by locking the single-stranded 

telomere substrate into a G4 structure, resulting in long-term effects. Due to the inability of telomerase 

to extend a G4 folded telomeric substrate, G4-interacting agents were first evaluated as telomerase 

inhibitors and, in agreement with the initial paradigm for telomerase inhibition, long term exposure of 

human cancer cells to subtoxic doses of G4 ligands induces progressive telomere shortening and 

eventually replicative senescence. However, there is ample evidence that G4 ligands may also trigger 
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short-term effects as a consequence of telomere uncapping and the subsequent rapid activation of a 

DDR, which overall may lead to any form of cell death or premature senescence. Finally, different G4 

ligands have shown to be active in vivo as single agents and to act synergistically both in vitro and  

in vivo when combined with conventional (e.g., platinum compounds, taxanes and topoisomerase I 

inhibitors) or targeted (e.g., imatinib and PARP1 inhibitors) anticancer drugs [27]. 

Similarly to other therapeutic agents, it is plausible that even G4 ligands can undergo events  

of innate or acquired resistance. However, a few studies have reported to date resistance mechanisms 

dealing with the multidrug-resistance phenotype. In this context, it has been shown that the 

2,4,6‐triamino‐1,3,5‐triazine derivative, 12459, and the pyridodicarbxamide 360A may be recognized 

by efflux pumps, even though with low affinity [37]. 

Taking into account the dual mode of action of G4 ligands, attempts aimed at isolating cell sub-lines 

showing a resistant phenotype to G4 ligands have been pursued. Specifically, the JFA2 cell line obtained 

after the exposure of lung cancer cells to progressively increasing concentrations of 12459 showed to 

be resistant to the drug-mediated induction of senescence and cross-resistant to telomestatin [37]. The cell 

line showed also a resistant phenotype to short-term exposure to 12459 but not to the 3,6,9-trisubstituted 

acridine BRACO-19 and telomestatin, whereas no cross-resistance to conventional anticancer agents 

(e.g., doxorubicin, etoposide and topoisomerase I inhibitors) was observed [37]. This evidence highlights 

the occurrence of a selective mechanism of resistance to G4 ligands. By contrast, JFD cell sub-lines 

obtained after short-term exposure to high concentrations of 12459 showed cross-resistance to others 

triazine derivatives and to mitomycin C but not to BRACO-19 or telomestatin, indicating that such a 

resistance phenotype is restricted to 12459 and other triazine analogs as well as to DNA-damaging 

agents [37]. Strikingly, these resistant sub-lines were characterized by overexpression of TERT transcript, 

which was paralleled by enhanced telomerase activity, increased telomere length and presence of telomere 

capping alterations (e.g., increase expression of POT1) [37]. In this context, it should be taken into 

account that POT1 promotes the resolution of G4 structures in vitro acting in concert with Bloom 

helicase [38] and that its suppression by RNA interference leads to the loss of telomeric 3′-overhang, 

induces senescence, apoptosis and chromosomal instability [39]. Moreover, the overexpression of the 

antiapoptotic factor BCL2 has been reported to contribute to the resistance to apoptosis induction 

following the short-term exposure of A549 cancer cells to 12459. However, its overexpression does 

not affect the outcome observed (i.e., senescence induction) after the prolonged treatment with the  

G4 ligand [37]. 

Overall, these findings suggest that telomere length and status, the expression of telomerase 

components as well as the unbalance in the expression levels of factors involved in apoptosis may 

represent determinants of resistance to G4 ligands. However, more general cell defense pathways have 

been evoked as mechanisms activated by cells in their attempt to cope with the detrimental effects of 

telomeric G4 ligands. It has been recently reported that the exposure of melanoma cells to an 

anthracene-based G4 ligand resulted in the induction of autophagy, the inhibition of which resulted in 

the enhancement of the cytotoxic activity of the ligand. These data represented the first evidence of 

autophagy as a safeguard mechanism activated by cancer cells to counteract G4 ligand-mediated cellular 

stress [40]. 

An additional example of the relevance of G4 structures at telomeric level emerged from the 

discovery of the telomeric repeat-containing long non-coding RNA (TERRA) molecules, which originate 
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following the transcription of telomeric DNA [41]. Due to the heterochromatic state of human telomeres 

and their low gene density, chromosome ends were considered for a long time as transcriptionally silent 

genomic loci. To date, telomeric transcripts have been reported in several organisms, including humans [41]. 

Mammalian TERRA molecules comprises (UUAGGG)n sequences that are heterogeneous in length, 

ranging from approximately 100 bases up to more than 9 kilobases [41]. 

To date, several information has been gathered about TERRA biogenesis, which seems to be mainly 

regulated by the heterochromatic state of the telomeres [41,42], whereas the actual knowledge concerning 

the functions exerted by TERRA in human cells is almost negligible. Biochemical in vitro assays have 

suggested that TERRA may regulate telomere length by acting as a natural telomerase inhibitor, likely 

through competitive base-pairing to the template region of hTR [43]. TERRA seems also to interact 

with the catalytic subunit TERT of the enzyme independently of the RNA moiety [43]. In addition, TERRA 

nuclear localization and enrichment at telomeres indicate that the molecule might regulate several 

aspects of telomere structure and replication. In fact, it may interact with different telomere-associated 

proteins. Other than the shelterin components, TERRA has been indeed reported to interact with 

dyskerin, DNA-dependent protein kinase catalytic subunit, PARP1, RecQ helicase, topoisomerase I as 

well as heterogeneous ribonucleoproteins (hnRNPs) [44]. In particular, the hnRNPA1 protein, which 

specifically binds UAGGGA/U repeat-containing RNA molecules, might function as a molecular 

bridge between telomeric DNA and TERRA [45]. 

The hypothesis that TERRA can antagonize telomerase-dependent telomere maintenance along  

with the observation that telomerase-positive tumor cells have decreased TERRA levels compared to 

ALT-positive cancer cells [46], suggests that TERRA may have clinical relevance and could represent 

a novel target for the development of specific anticancer therapeutic interventions. It has been indeed 

recently reported that larynx and colon cancers as well as B-cell lymphoma have lower TERRA levels 

compared to their normal counterparts [47]. In addition, TERRA expression levels have been reported 

to inversely correlate with the presence of telomerase activity in astrocytoma and it is associated with 

an unfavorable prognosis [48]. Conversely, higher TERRA levels, which positively correlated with the 

proliferative index, were found in stomach, lung and colon cancer specimens compared to matched 

normal tissues [49].  

Interestingly, TERRA molecules bear the same sequence as the 3′single-stranded telomeric overhang 

DNA. This evidence along with the observation that TERRA physically associate with hnRNPA1, 

which in turn is able to unwind G4 structures [50], has led to hypothesize that TERRA may fold into 

G4 structures. Biophysical assays have demonstrated that TERRA is able to form parallel G4 structures 

in Na+ or K+ solutions [51] as well as a hybrid-type parallel G4 in association with telomeric DNA [52]. 

In addition, it has been shown that the r(UAGGGUUAGGGU) TERRA sequence form a very compact 

structure consisting of two tandem stacked G4 structures each containing three G-tetrad layers [53]. 

Moreover, by means of synthetic TERRA-like probes functionalized with pyrene moieties at both the 

5′ and 3′ ends, it has been demonstrated that human TERRA RNA is able to form a parallel G4 structures 

in living HeLa cells, thus providing evidence for the presence of G4 structures in native TERRA 

transcripts in human cells [54]. 

To date there are a few studies showing the stabilization of G4 within TERRA by small molecules, 

consequently we are still far away from the validation of TERRA as a novel target for G4-mediated 

stabilization. However, a screening of small molecules for their ability to discriminate between 
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telomeric DNA and RNA G4 has been performed [55]. Specifically, data showed that the 2′-OH 

groups of the RNA represent an important constraint for ligand-mediated stabilization of G4 RNA [55], 

in that it may hinder the interaction between the ligand side-chains with the G4 loops. In fact, of four 

ligands tested (i.e., BRACO-19 and three different naphthalene diimide (NDI) derivatives) for their 

capability to interact with G4, only one NDI derivative showed a comparable binding affinity for both 

telomeric DNA and TERRA G4, whereas the BRACO19 and the other two NDIs preferentially 

interacted with telomeric DNA [55], suggesting that dissimilarities in G4-ligand binding affinities may 

be the result of different side-chain functionalities.  

In a recent work, the crystal structure of a 12-nucleotide long telomere RNA sequence complexed to 

a triazole-acridine ligand has been reported [56]. Specifically, a 2:2 molecular interaction resulted in 

the generation of a bimolecular G4. Specifically, the ligands are stacked on each other to form the 

boundary between the G4, whereas the loops—which play an active role in binding the acridine—are 

held in specific arrangements by multiple hydrogen bonding involving the 2′-hydroxyl groups [56]. 

Taken together, these data highlight the importance of assessing the effect of hydroxyl groups on the 

interaction between small molecule ligands and RNA-compared to DNA-based G4 when evaluating 

new scaffolds as selective G4 interacting compounds. 

Overall, whereas synthetic oligonucleotides have been used to demonstrate G4 formation in TERRA 

sequence, proof of G4 structures in native TERRA transcripts in vivo and details of their functional 

significance are still in need of robust experimental support [3]. However, the available information 

open new landscapes for a deeper understanding of native TERRA G4 architecture, for the future 

design of agents able to selectively target it as well as for a detailed and unequivocal characterization 

of the biological responses resulting from the possible stabilization of G4 within TERRA in human 

cancer compared to normal cells. 

3. Targeting G4 Structures in Gene Promoters and Messenger RNAs 

Nowadays, there is compelling evidence that G4 structures play a prominent role in the modulation 

of the different steps of the flow of genetic information (Figure 4) [57]. The first and clearest evidence 

for a role of G4 structure in the regulation of gene transcription came from studies carried out on the  

v-myc avian myelocytomatosis viral oncogene, homolog (MYC), a transcription factor that regulates 

the expression of a variety of genes and is one of the most prevalent oncogenes found to be altered in 

human cancer, being deregulated in about 50% of tumors [58]. The transcriptional regulation of MYC 

is tightly controlled by a complex mechanism involving four promoters (P1–P4), different transcription 

start sites (TSS) and nuclease hypersensitive elements (NHE). In particular, the NHE III1, located just 

upstream the promoter P1 is responsible for the great majority of MYC transcriptional activity. It is 

composed of five consecutive runs of the sequence (G/A)G(G/A)AGGGGT that may form a G4 structure as 

well as an i-motif on the complementary, pyrimidine-rich strand [59]. As a consequence, the 

possibility to inhibit MYC transcription through G4 stabilization has been actively pursued in several 

human cancer models using specific small molecules [59]. 
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Figure 4. Schematic representation of G4-mediated regulation of the flow of genetic 

information. TSS: transcription start site; UTR: untranslated region. 

 

The most studied MYC G4 stabilizer is the cationic porphyrin tetra-N-methylpyridyl porphyrin 

molecule (TMPyP4), which was firstly evaluated as a telomerase inhibitor due to its telomeric G4 

stabilizing capabilities. It showed to potently stabilize MYC G4 structures in different cancer cell lines, 

resulting in a decrease of MYC gene transcription and protein expression and, consequently, to affect 

the expression of factors controlled by MYC, including TERT [60]. This evidence suggests that TMPyP4 

acts with a dual mechanisms of action converging on telomerase-dependent telomere maintenance:  

(i) it prevents the access of telomerase to telomeres due to the stabilization of telomeric G4 and (ii) it 

decreases TERT expression levels owing to the stabilization of G4 within the promoter of MYC. 

The regulation of MYC gene transcription is based on a fine interplay between transcription factors 

and dynamic consequence of transcriptionally induced negative superhelicity [61]. The elucidation of 

how such a complex transcriptional machinery works has provided the first-in-class example of a 

novel level of complexity in gene transcription as well as the very first evidence of the existence  

of G4-protein interactions in living cells. In particular, one of the main features to turn on/off  

MYC transcription deals with the formation and dissipation of G4/i-motif structures within MYC 

promoter, a process that is tightly controlled by nucleolin and NM23H2, which act concertedly with 

transcription-induced negative superhelicity [61]. 

Nucleolin is 100-kDa multifunctional nucleolar phosphoprotein that plays a role in a variety of  

cell functions. Because of its modular structure, it is able to interact with non-conventional forms of 

RNA and DNA. In particular, it has been reported that nucleolin selectively binds and stabilizes the 

parallel-stranded MYC G4, resulting in the inhibition of Sp1-induced MYC transcriptional activation [61]. 

In this context, the fluoroquinolone quarfloxin (CX-3543) has been demonstrated to indirectly affect 

MYC transcription, according to such a regulatory mechanism involving nucleolin. Specifically, the 

drug concentrates in the nucleolus where it binds and stabilizes a G4 within a ribosomal DNA resulting 

in the disruption of nucleolin/G4 complexes. This event causes the redistribution of nucleolin within 
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the nucleoplasm where it eventually binds to the NHE III1, thus facilitating the formation and stabilization 

of the MYC G4, resulting in the prevention of gene transcription and induction of apoptosis [61]. 

NM23H2 is a member of the non-metastasis 23 family of proteins, able to bind the NHE III1 and 

promote the transcription of MYC [61]. The enzyme was found to bind the purine/pyrimidine-rich 

single stranded DNA but not the duplex. This evidence has led to propose that the protein may take 

advantage of the dynamic nature of the G4/i-motif structure of MYC and favor its unfolding [61]. 

Interestingly, it has been demonstrated that TMPyP4-mediated stabilization of G4 within MYC promoter 

impairs the binding and, consequently, the unwinding activity of NM23H2, thus contributing to the 

inhibition of MYC gene expression [61]. 

Additional ligands have been investigated for their ability to stabilize G4 within MYC promoter. 

For instance, the quindoline compound (a derivative of the natural product cryptolepine) has been shown 

to stabilize the G4 formed in the MYC promoter and to inhibit the expression of the oncogene in a 

hepatocellular carcinoma cell line [62]. In addition, the GQC-05 analogue of ellipticine was recently 

shown to bind with high affinity and selectivity the G4 structure within the NHE III1 region of MYC in vitro 

and caused down-regulation of MYC mRNA expression levels in a Burkitt’s lymphoma cell line [63]. 

A G-rich region located at −22 and −90 nucleotides from the TSS within the telomerase reverse 

transriptase (TERT) promoter contains 12 consecutive G-tracts of three or more guanine residues, 

embracing three Sp1 binding sites, and has the potential to fold into G4 conformations [64]. Biophysical 

investigations carried out on the full-length TERT G-rich sequence revealed that the core promoter 

adopts a tandem G4 structure composed of two intramolecular G4, a standard parallel and a hybrid-type 

G4 structure, with a 26-nucleotide long middle loop. A mutational study on the middle loop suggests 

that it forms a hairpin structure, which plays an important role for the stability of the G4 [64]. The 

formation of such a tandem G4 structure results in the sequestration of all Sp1 binding sites, thus 

preventing Sp1 binding to the TERT core promoter and, consequently, exerts an inhibitory effect on 

the promoter transcriptional activity [64]. In addition, the tandem G4 within TERT promoter may 

provide binding sites for selective recognition by G4-interacting agents. In this context, using a Taq 

polymerase arrest assay a similar decrease in the levels of the full-length product was observed with 

TMPyP4 or telomestatin [64], but not with TMPyP2, a positional isomer of TMPyP4 with low affinity 

for G4 structures. In addition, experimental data indicated that TMPyP4 binds between the two tandem 

TERT G4, whereas telomestatin preferentially recognizes the external tetrads of the tandem structure, 

although evidence has been provided that both drugs may interact with minor G4 that may form in the 

TERT G-rich sequence [64]. 

The documented capability of TMPyP4 and, more recently, of an NDI-based G4 ligand [32] to 

simultaneously stabilize G4 structures within telomeres and the promoters of MYC and TERT has led 

to propose that the extent of promiscuity of a given ligand for different G4 structures (i.e., multi-hit 

targeting) may represent an advantage for the therapeutic exploitation of G4 stabilizers.  

Recently, it has been reported that the perylene derivatives PM2 and PIPER were able to induce G4 

formation both in telomeric DNA and TERT promoter region. Treatment of human lung cancer cells 

with these compounds resulted in the down-regulation of TERT mRNA expression levels and inhibition 

of telomerase activity. In addition, long-term treatment with sub-cytotoxic doses of these ligands led to 

telomere shortening, inhibition of cell proliferation and induction of senescence [65]. 
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The v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) proto-oncogene 

encodes for a tyrosine kinase receptor that plays a pivotal role in cell survival, proliferation and 

differentiation [66]. Driving mutations of KIT receptor have been implicated in the pathogenesis of 

several cancers and efforts have been made for the identification of effective inhibitors of its kinase 

activity. Despite some benefits have been obtained following the use of inhibitors, including imatinib, 

sunitinib, dasatinib, certain oncogenic mutations may account for primary or secondary resistance [66]. 

A proposed approach for defeating the resistance to tyrosine kinase inhibitors deals with the 

selective stabilization of G4 structures that may form within the promoter region of the gene. Human 

KIT promoter contains indeed two conserved PQS, located at −12/−33 (KIT1) and −64/−83 (KIT2) 

nucleotides upstream of the TSS that may form unimolecular parallel G4 structures under physiological 

conditions [67,68]. A series of six 3,8,10-trisubstituted isoalloxazines has been evaluated for their 

selective binding to KIT G4 and all ligands tested showed a binding preference for KIT2 [69]. The effects 

on gene expression were evaluated using the ligands proved to induce the more stable G4 conformation. 

The ligands were able to markedly inhibit KIT expression suggesting that this class of compounds 

could be promising G4 ligands to target KIT-expressing cancer cells [69]. In addition, a bis-indole 

carboxamide showed a high level of stabilization for KIT2 [70]. However, the effects on gene 

expression levels were not assessed [70]. Moreover, two benzo[a]phenoxazines that showed high stability 

in the binding to the G4 in the KIT core promoter, with a preference for KIT2 over KIT1, were able to 

down-regulate KIT gene expression in human gastric carcinoma cells [71]. 

The concept of multi-hit targeting through G4 stabilization has been also highlighted for KIT. 

Specifically, it has been demonstrated that an NDI derivative potently inhibited the growth of a 

patient-derived gastrointestinal stromal tumor cell line as a consequence of its ability to markedly 

stabilize both telomeric and KIT G4 [72]. No significant changes in KIT expression levels were 

observed using BRACO-19 and TMPyP4, likely as a consequence of their lower G4 stabilizing 

capability compared to the NDI. This evidence suggests that a threshold level of G4 stabilization may 

be required to efficiently affect gene transcription. 

An unexpected property of a triarylpyridine derivative, belonging to a class of molecules known for 

their selective interaction with G4 structures, deals with its ability to disrupt the structural integrity of 

the G-tetrads within KIT2 [73]. This event resulted in a marked increase in KIT expression levels 

when the molecule was administered to human cancer cells. This evidence suggests that the functional 

consequences of G4 interacting agents may depend on the specific mode of their interaction with the 

G4 structure, providing fundamental insights into the potential complexity of ligand/G4 interactions 

and how they might influence gene expression [73]. 

Another tyrosine kinase receptor that may undergo G4-dependent transcriptional regulation is the 

rearranged during transfection (RET) proto-oncogene, which is implicated in the initiation and progression 

of several human tumors [74] and represents a potential therapeutic target for the treatment of  

RET-associated cancers, such as thyroid cancers. A study of the transcriptional regulation of the RET 

proto-oncogene revealed that its promoter contains two GC boxes, located at −59 and −25 nucleotides 

from the TSS, which are essential for basal promoter activity [75]. In this region both DNA strands are 

extremely enriched in C- and G-containing sequences, which are very dynamic in nature and have the 

ability to adopt different non-B-DNA conformations [75]. Specifically, the polypurine-rich strand 
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within this region consists of five consecutive runs of guanines, dealing with the general motif capable 

of forming intramolecular G4 [75]. 

The capability of such a G-rich strand to form G4 structures in vitro was investigated. DNA 

polymerase stop assay carried out on a wild-type RET template containing five runs of guanines (I, II, 

III, IV, and V) showed that in the presence of K+ a significant amount of arrested synthesis product 

appeared at the 3′-end of guanine repeat I. The minor stop product at the 3′-end of guanine repeat II 

indicated the formation of a G4 by guanine repeats II–V. This data suggests that the four consecutive 

guanine repeats I–IV in the G-rich strand of the RET promoter form the major G4 in the presence of 

K+ [75]. Comparative circular dichroism (CD) and dimethyl sulfate (DMS) footprinting studies have 

revealed that this structure is a very stable parallel-stranded intramolecular G4 made by three planar 

tetrads formed by four runs of guanine [75] and that TMPyP4 and telomestatin are able to efficiently 

stabilize it in presence of K+ and Na+. Of note, the concentration of K+ required to stabilize the RET 

G4 structures in the presence of either ligands was much lower than that required to stabilize it in their 

absence. This evidence suggests that TMPyP4 and telomestatin might act synergistically with K+ in 

stabilizing the tetraplex structures by binding them through external stacking at the ends of the G4 

rather than through intercalation between the G-tetrads [75]. Recently, nuclear magnetic resonance 

analyses revealed that the core structure of RET G4 contains one G-tetrad with all syn G residues and 

two other with all anti-guanines. In addition, three double-chain reversal loops are also present, of 

which two are made of three GCG segments, whereas the remaining contains only one C. These loops 

interact with the core G-tetrads in a specific way that defines and stabilizes the overall RET G4 

structure [76]. Such a specific alignment indicates that the overall G4 structure has a distinct pattern of 

grooves in comparison with the all parallel-stranded G4 within the promoter region of MYC 

suggesting that it could be an attractive target for pathway-specific drug design [76]. Finally, CD and 

DMS footprinting analyses, carried out on a synthetic oligomer, demonstrated that the C-rich strand of 

RET may fold intramolecularly to generate an i-motif, the stability of which is dependent on pH [75]. 

This additional non-B DNA conformation may provide an alternative opportunity for selective drug 

targeting (further details on i-motifs are provided in another paper in the present issue). 

The activation of members of the rat sarcoma viral oncogene homolog (RAS) family of oncoproteins 

represents a key feature of malignant transformation for many cancers [77]. The three human RAS 

proteins (HRAS, NRAS and KRAS) function as GDP/GTP molecular switches for the control of 

several signaling networks involved in the regulation of cell proliferation, survival, differentiation and, 

more generally, gene expression [77]. Efforts to develop therapies to directly inhibit RAS oncoproteins 

have failed thus far. Conversely, progress has been made with inhibitors of RAS downstream signaling 

pathways, such as the RAF kinase inhibitor sorafeninb that has been approved for clinical use [77], and 

drugs aimed at blocking the mitogen-activated protein kinase/extracellular signal-regulated kinase 

kinase and the phosphatidylinositol-4,5-bisphosphate 3-kinase pathways, which are currently under 

clinical development [77]. Taking into account this scenario, drug-mediated G4 stabilization may hence 

represent a novel alternative for silencing the RAS signaling pathway. In this context, an NHE upstream 

from the major TSS has been identified in the human KRAS promoter. This polypurine/polypyrimidine 

sequence, located between −327 and −296 nucleotides, presents consecutive runs of guanines that may 

assume a parallel-stranded intramolecular G4 structure [78] able to interact with at least three nuclear 

proteins, of which hnRNPA1 displays G4 unwinding activity [79]. The folding topology of this 
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structure is assumed to be similar to that of MYC. In addition, it has been shown that TMPyP4 can 

stack to the external G-tetrad of this G4 and that drug-mediated G4 stabilization resulted in the 

inhibition of promoter activity in a gene reporter assay [78]. Recently, the synthesis and G4 thermal 

stabilisation effects of a series of indolo[3,2-b]quinolines mono-, di-, and trisubstituted with basic side 

chains have been reported. Specifically, among these derivatives, the trisubstituted compounds 3d and 

4d (bearing a 7-(aminoalkyl)carboxylate side chain) stand out as the most promising compounds 

showing high G4 thermal stabilisation and a 10-fold selectivity for G4 over duplex DNA. Morevoer, 

compounds 3d and 4d also decreased KRAS protein expression levels in colon cancer cells [80]. 

Two G-rich elements, hras1 and hras2 that fold respectively into an antiparallel and a parallel G4, 

have been identified within HRAS promoter [81], the activity of which was inhibited by the G4-ligand 

guanidium phthalocyanine in a gene reporter assay. In addition, the stability of such a G4 structure 

seems to be affected by the MYC-associated zinc finger protein (MAZ) transcription factor, which 

shows an unexpected G4 unwinding activity and acts as an HRAS transcriptional activator by binding 

to the unfolded conformation of hras1 and hras2 G4-forming elements. This evidence was further 

corroborated by a decoy strategy based on the use of HRAS G4 mimicking oligomers. Such G4-decoys 

repressed HRAS transcription, likely as a consequence of MAZ sequestration, and caused a strong cell 

growth inhibition and apoptosis induction in bladder cancer cells [81]. 

Programmed cell death is a well-orchestrated process regulated by multiple pro-apoptotic and  

anti-apoptotic genes. Deficiencies in the apoptotic pathway are a hallmark of cancer responsible for the 

limited effectiveness of anticancer drugs [82]. The B-cell CLL/lymphoma 2 (BCL2) is an anti-apoptotic 

factor which is overexpressed in several human cancers [82], where it contributes to resistance to treatment 

by conventional anticancer approaches. Small molecule inhibitors and peptides (i.e., BH3 mimetics) as 

well as antisense and gene therapy strategies have been widely used to counteract the antiapoptotic 

activity of BCL2 in different cancer models [83]. 

A 39 base-pair GC-rich region (Pu39) upstream of one of the two promoters of BCL2 gene has been 

shown to be critically involved in the regulation of gene expression [83]. Such a guanine-rich DNA 

strand has the potential to form multiple intramolecular G4 structures in vitro. Indeed, three separate 

DNA sequences within this region, which may form individual G4 structures, were characterized [84]. 

The most stable G4 forms within the middle four runs of guanines, in that it requires the least amount 

of K+ for stabilization in comparison with the 5′- and 3′-end runs [84]. The ability of TMPyP4 as well as 

of the core-modified porphyrin analogue, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26,28-diselenasapphyrin 

chloride (Se2SAP) and telomestatin to selectively interact and stabilize the three G4 structures was 

investigated [84]. The results revealed that TMPyP4 and Se2SAP did have a structural selectiveness 

for the different G4, whereas telomestatin had the ability to interact quite strongly with all sequences. 

These results suggest the possibility to selectively target, through the use of different G4 interactive 

molecules, the three constitutive G4 within the BCL2 promoter, which may result in different 

biological outcomes. Recently, three quindoline derivatives (SYUIQ-01, SYUIQ-F05 and SYUIQ-FM05) 

were tested for their ability to interact with G-rich sequences located within BCL2 promoter. Specifically, 

all tested ligands showed good binding selectivity for G4 DNA in surface plasmon resonance assay, 

even though compound SYUIQ-FM05 was the most selective molecule. In addition, the exposure of 

acute promyelocytic leukemia cells to SYUIQ-FM05 resulted in a pronounced inhibition of BCL2 

gene expression, cell growth arrest and induction of programmed cell death [85].  
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The hypoxia inducible factor 1 alpha (HIF1A) is a transcription factor that plays a critical role in 

mediating cellular responses to hypoxic conditions [86]. HIF1A protein, generally absent in most normal 

tissues, is overexpressed in many human cancers and represents an attractive target for therapeutic 

interventions [86]. A polypurine/polypyrimidine tract, located between −65 and −85 nucleotides upstream 

of the TSS has been identified within the proximal promoter region of HIF1A. The importance of this 

tract in the regulation of gene transcription has been confirmed by the observation that mutagenesis of 

this region results in lower basal HIF1A expression [87]. Electrophoretic mobility shift assay, CD, Taq 

polymerase stop assay, and DMS footprinting analyses performed on synthetic oligomers have revealed 

that this polypurine/polypyrimidine tract may form an intramolecular parallel-stranded G4 structure in 

the presence of K+ [87]. Furthermore, DNA polymerase stop assay showed that TMPyP4 and telomestatin 

were capable of binding to and stabilizing such a G4, whereas TMPyP2 did not. Recently, the 

naphthalene derivative CL67 has been reported to selectively interact with the HIF1A G4 and to cause 

down-regulation of HIF1A expression levels in renal cancer and osteosarcoma cells [88]. Whether this 

effect was related to the specific stabilization of HIF1A G4 or, alternatively, of other tetraplexes 

forming in PQS within the HIF1A pathway, still remains to be ascertained [88].  

Additional examples of gene promoters (e.g., MYB, VEGF, PDGFA, PDFGR-β) endowed with the 

ability to form G4 structures under physiological conditions and that may represent suitable targets for 

small molecule-dependent G4 stabilization have been recently identified [89]. 

One of the most promising G4 selective molecules is pyridostatin, which it has been recently shown 

to promote growth arrest in human cancer cells by inducing replication- and transcription-dependent 

DNA damage [90]. Specifically, chromatin immunoprecipitation sequence analysis of the DNA damage 

marker γH2AX provided the genome-wide distribution of pyridostatin-induced sites of damage, and 

revealed that the compound was able to target gene bodies containing clusters of PQS. Since local DNA 

damage within a genomic locus can trigger transcriptional inhibition in cis, the authors investigated 

whether pyridostatin affected the mRNA levels for MYC and the top ten γH2AX-positive genes 

containing the highest PQS densities identified in the previous analyses. In particular, they found that 

whereas the expression levels of control genes were not affected by pyridostatin treatment, all the 

γH2AX-positive targets analyzed, of which SRC (Schmidt-Ruppin A-2 viral oncogene homolog 

sarcoma) was the most strongly affected gene, were down-regulated after 8 h of drug treatment [90]. 

The SRC family kinases are the largest family of non-receptor tyrosine kinases involved in several cell 

processes. SRC is one of the oldest oncogene identified as well as one of deeply studied targets for 

anticancer therapy [91]. 

CD and NMR spectroscopy analyses showed that 23 out of 25 PQS within SRC gene body were 

able to adopt a stable G4 conformation and that pyridostatin selectively interacted with the G-quartet 

through a stacking mode, thus acting independently of G4 polymorphism [90]. In addition, 

pyridostatin-mediated down-modulation of SRC expression levels resulted in a marked impairment the 

in vitro motility of breast cancer cells as assessed by a wound healing assay. Moreover, a caged 

pyridostatin, obtained by introducing a photolabile aromatic group to the core of the molecule, showed 

to efficiently down-regulate SRC expression levels in SV40-transformed MRC-5 fibroblasts upon UV 

irradiation [92]. These results highlighted the possibility to obtain a spatiotemporal regulation of gene 

expression and paved the way for future consideration of G4-based photodynamic therapies [92]. 
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The observation that only up to 2% of the all transcribed RNA molecules are translated into 

proteins has contributed to highlight that the vast majority of RNA species produced within a cell are 

actually the cornerstone of the post-transcriptional regulation of gene expression [93]. In fact, other 

than mRNA processing events (e.g., capping, splicing and polyadenalytion), active transport, stability 

and translation, additional mechanisms to control RNA transcription/translation include trans-acting 

RNA species, among which microRNAs play a paramount role [93], as well as cis-acting regulatory 

factors, usually represented by highly ordered RNA structures that may form in either the 5′- or  

3′-untranslated regions (UTR) [3,93]. In this context, analyses based on computational approaches 

have revealed that a huge number of proteins coding RNAs are characterized by PQS located in their 

5′- and 3′-UTR [93]. This evidence suggests that the formation of G4 structures within specific region 

of mRNAs may represent an additional as well as tunable cis-acting device by which RNAs exert their 

control on gene expression (Figure 4). Specifically, several experimental findings support a pivotal 

role of G4 structures forming within 5′-UTR and associated trans-acting factors in both cap-dependent 

and -independent (i.e., internal ribosome entry sites) regulation of the translation of protein coding genes [3]. 

In principle, G4 structures forming within RNAs should be more thermodynamically fostered than 

their DNA counterpart, mainly because of the single-stranded nature of RNA, which is not subject to 

competition for the hybridization to a complementary strand. In addition, G4 RNA may be more stable 

compared to G4 DNA as the connecting loops are held in particular conformations by multiple 

hydrogen bonding involving 2′-C hydroxyl groups of the ribose [3,55,56].  

The early evidence of a G4 forming within an RNA molecule dates back to 1994, when an 

intramolecular G4 was evidenced in vitro in the 3′-UTR of the mRNA encoding for the insulin-like 

growth factor II [94]. Successively, several additional studies have tried to address the formation of G4 

within RNA and to elucidate their role in biological systems. For instance, a highly conserved PQS has 

been identified within the 5′-UTR of human NRAS proto-oncogene, able to form a stable intramolecular 

G4 structure, even in the absence of K+ [95]. Using a reporter gene assay in a cell-free translation 

system it has been demonstrated that such a G4 RNA was able to affect the cap-dependent protein 

translation [95], a finding that was successively corroborated by the observation of the inhibition of 

protein translation in living eukaryotic cells following the formation of a G4 structure within the 5′-UTR 

of the mRNA encoding for human Zic-1 zinc-finger protein [96] and, more recently, within the 5′-UTR 

region of TRF2 mRNA [97]. Additional genes the cap-dependent translation of which may be modulated 

by the formation of G4 structures in their 5′-UTR include the matrix metalloproteinase MT3-MMP, the 

estrogen receptor ESR1, the anti-apoptotic BCL2 and the α–secretase ADAM10 [3]. Whereas the role 

of G4 structures in the cap-dependent translation has been mainly associated to the repression of gene 

expression, gene reporter assays have shown that cap-independent translation of human fibroblast 

growth factor 2 and vascular endothelial growth factor is favored by G4 formation [3].  

Furthermore, evidence indicates a role of G4 forming sequence in the control of the alternative 

splicing, a regulated process by which multiple mRNA variants are produced from a single gene. In 

this context, it has been reported that the intron 6 of TERT pre-mRNA contains several G-tracts that 

can fold into a G4, which in turn may be stabilized by the triazine derivative 12459 [98]. Interestingly, 

short‐term exposure of lung adenocarcinoma cells to compound 12459 resulted in the down-regulation 

of telomerase activity as a consequence of a shift in the splicing pattern toward the production of a 

catalytically inactive form of TERT [98].  
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Recently, G4 structures have been demonstrated to form within the 3′-UTR of the low-density 

lipoprotein receptor-related protein 5 (LRP5) and the fragile X-related mental retardation autosomal 

homolog 1 (FXR1) genes [99]. Specifically, folding into such a G4 results in the increase of the 

efficiency of alternative polyadenylation sites and leads to the expression of shorter transcripts or, in 

the case of FXR-1 gene, in the interference with the microRNA-dependent negative regulation of gene 

expression [99]. 

The pivotal role of G4 structures in the control of mRNA translation as well as in any other aspect 

of RNA metabolism (e.g., alternative splicing) has been also pointed out by the identification of RNA 

associated factors, such as RHAU, DHX9, CBF-A and hnRNPA2 that, similarly to DNA helicases, 

show G4 unwinding/destabilizing activity [3]. 

Although many efforts are still to be made to rigorously validate RNA G4 as drug targets for therapeutic 

intervention, the evidence that small molecule G4 binding ligands (including pyridine-2,6-bisquinolino 

dicarboxamides, bisquinolinium compounds and alkyl derivatives of cationic porphyrin) can selectively 

target RNA G4 resulting in the translational repression of target genes opens up new avenues in the 

design of G4 RNA specific drug candidates [3]. 

4. Conclusions 

The recognition of the biological significance of G4 DNA has put a new wave of interest in the 

search and development of G4 interactive compounds. Targeting such a secondary DNA structures has 

represented an entirely novel approach to anticancer drug design and development during the last 

years. Nonetheless, there are still several hurdles that need to be brought down before these peculiar 

compounds will take part of the currently available armamentarium of anticancer agents. 

The high prevalence of G4 in the human genome may raise concerns about the specificity of  

G4-stabilising agents, even if the great structural variability of G4 structures stands for their potential 

selective recognition. Recent works have highlighted the conformational heterogeneity of human 

telomeric G4 structures depending on the experimental conditions [18,100]. As a consequence, the 

detailed knowledge of a given G4 structures represents an essential starting point to overcome the 

problem related to G4 ligand selectivity, even if attention should be paid when comparing structure 

information obtained through different biophysical methods and under variable experimental 

conditions [100]. The crystal structure of the complex made of a tetra-substituted NDI with human 

telomeric G4 has been reported [19]. Interestingly, after ligand addition the telomeric G4 topology did 

not change compared to the drug-free structure. Specifically, it persisted as parallel-stranded with 

external double-chain-reversal propeller loops with the ligand stacking onto G-tetrad surface as well as 

into TTA loops. This evidence has revealed the peculiar binding mode of such a compound, allowing 

for future scaffold optimization in terms of selectivity and enhanced affinity [19], that may be achieved 

by introducing onto the G4 ligand core structure (i.e., aromatic surface) specific side chains able to 

interact with G4 grooves and loops.  

Another point that still need to be addressed regards the in vivo existence of G4 structures, which 

has been a matter of debate for decades. The possible presence of G4 structures in vivo has been indirectly 

pointed out by the identification of a variety of proteins able to stabilize or promote the formation of as 

well as to destabilize or unwind the tetraplex DNA [101]. In this context, RNA selection methodology 
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was used to demonstrate that the FMRP (fragile X mental retardation protein) binds intramolecular  

G-quartets in target mRNAs, which suggested that G-quartets serve as physiologically relevant targets 

for FMRP [101,102]. Moreover, the regulation of FMRP expression was demonstrated to be dependent 

on the binding of the protein to its own mRNA through a G4 structure forming within the coding 

region [3]. Furthermore, evidence that defects in G4 metabolism may be connected with human genetic 

diseases has been provided [103]. 

However, the proof of G4 existence in vivo was obtained in ciliates by an RNAi-mediated approach 

showing that telomere end-binding proteins alpha and beta cooperate to control the formation of an 

antiparallel G4 DNA structure at telomeres in vivo [104,105]. In addition, an electron microscopy-based 

assay showed that G4 DNA formed within G-rich regions in transcribed plasmid genomes of 

Escherichia coli [106]. Morevoer, by using a click chemistry approach, a pyridostatin analogue 

(pyridostatin-α) was used to demonstrate the in vivo formation of G4 structures in a human 

osteosarcoma cell line stably expressing the nuclear isoform of human DNA helicase Pif1 (hPif1α) 

fused to a green-fluorescent protein. By the identification of overlapping signals between the ligand and 

the enzyme, results revealed a considerable overlap between the labeled small molecule and GFP-hPif1α 

foci, suggesting that the ligand and hPif1 target overlapping genomic structures in human cells. This 

study provided evidence also for the existence of pre-folded G4 structures at non-telomeric  

locations within human genomic DNA and suggested a role for hPif1 in the resolution of these 

structures in vivo [90]. More recently, clues for G4 formation in a cell cycle-dependent manner in the 

genome of mammalian cells have been provided [107]. The very recent development of G4  

structure-directed antibodies that allow to quantitatively visualizing G4 structures in human cells has 

undoubtedly represented a step of paramount importance in the G4 research field [107,108]. 

Interestingly, a five-time increase in the fluorescent signals was observed during the S phase of the cell 

cycle, when the double-stranded DNA undergoes melting [107]. However, other than at telomeric 

level, most of the fluorescent signal was detected throughout the genome, suggesting that such a 

recently developed tool is still far from the possibility to discriminate between G4 structures that may 

form at different genomic loci. In addition, the use of an engineered antibody able to enrich for DNA 

containing G4 structures coupled to a deep sequencing analysis revealed that plasmacytoma variant 

translocation 1 gene contains G4 structures within the transcribed region and that the expression level 

of the gene resulted strongly up-modulated in cancer cell treated with pyridostatin [108]. 

Since telomeres, proto-oncogene promoters and mRNAs are present not only in cancer cells but 

also in normal cells, an additional issue that needs to be addressed for G4 stabilizing agents deals with 

their therapeutic index. Nevertheless, it cannot be excluded that differences in promoter epigenetic 

modifications, cell proliferation-dependent transcriptional activity, presence of single nucleotide 

polymorphysms as well as protein composition at telomere could account for a lower susceptibility to 

G4-interacting agents of normal compared to cancer cells. Unfortunately, to the best of our knowledge, 

comparative evaluations of the biological activity of ligands based on their selectivity for G4 structures 

forming within promoters or RNA molecules in normal vs. tumor cells have not been reported yet. 

However, evidence showing that telomeric G4 ligands selectively impair the growth of cancer cells 

without affecting the viability of normal cells (mainly fibroblasts) points to these molecules as possible 

drug candidates for future clinical applications [27]. This evidence gains further support by the marked 

antitumor activity showed by some of these compounds in different in vivo models with no signs of 
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general toxicity or body weight loss [30]. Nevertheless, it is worth to underline that following the 

evaluation of the in vivo activity of telomeric G4 ligands, the differences in telomere biology between 

humans and mice should be taken into careful consideration. 

Although different ligands have been documented to exert at a preclinical level good antiproliferative 

and antitumor effect, as a consequence of the stabilization of G4 structures, none of these compounds 

is currently under clinical development. The only exception is quarfloxin, a G4 stabilizer that entered 

phase I/II clinical trials for the evaluation of safety, tolerability and efficacy in patients with solid 

tumors (http://clinicaltrials.gov/). 

In spite of the high number of ongoing studies on G4 ligands, there is a need for careful consideration 

of the experimental conditions and their unification/standardization to enable comparison of data and 

to make proper conclusions in terms of characterization of the biological responses and the observed 

phenotypes (e.g., resistance phenomena), as a function of the different tumor models. Once these aspects 

will be properly faced, such class of molecules will likely turn out into effective anticancer drugs. 
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