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A B S T R A C T   

This study aimed to characterize the metabolic profile of Salmonella enteritidis (S. enteritidis) in chicken matrix 
and to identify metabolic biomarkers of S. enteritidis in chicken. The UHPLC-QTRAP-MS high-throughput tar-
geted metabolomics approach was employed to analyze the metabolic profiles of contaminated and control group 
chickens. A total of 348 metabolites were quantified, and the application of deep learning least absolute 
shrinkage and selection operator (LASSO) modelling analysis obtained eight potential metabolite biomarkers for 
S. enteritidis. Metabolic abundance change analysis revealed significantly enriched abundances of anthranilic 
acid, l-pyroglutamic acid, 5-hydroxylysine, n,n-dimethylarginine, 4-hydroxybenzoic acid, and menatetrenone in 
contaminated chicken samples. The receiver operating characteristic (ROC) curve analysis demonstrated the 
strong ability of these six metabolites as biomarkers to distinguish S. enteritidis contaminated and fresh chicken 
samples. The findings presented in this study offer a theoretical foundation for developing an innovative 
approach to identify and detect foodborne contamination caused by S. enteritidis.   

1. Introduction 

S. enteritidis is an important zoonotic pathogen that seriously 
threatens animal husbandry and human health (Regalado-Pineda, 
Rodarte-Medina, Resendiz-Nava, Saenz-Garcia, Castaeda-Serrano, & 
Nava, 2020). The contamination caused by S. enteritidis has become the 
main cause of bacterial food poisoning in China and even in the world 
(Castro-Vargas, Herrera-Sánchez, Rodríguez-Hernández, & Rondón- 
Barragán, 2020). According to the Global Burden of Disease, Injury and 
Risk Factor Study (GBD), S. enteritidis caused 95.1 million cases of 
illness, 3.1 million labour force losses, and 50,771 deaths in 2017 
(Parisi, Stanaway, Sarkar, & Crump, 2020). The European Union esti-
mates annual losses from Salmonella at more than three billion euros. 

Chicken, characterized by high protein, low fat, low cholesterol, and 

low calories, has developed into the world’s largest meat consumer 
product (Chen et al., 2023). Due to the impact of H7N9 influenza on 
poultry, live poultry trading has been restricted or banned in Asian 
countries in recent years (Zhang et al., 2021). Policies such as targeted 
slaughtering, cold-chain transport and the marketing of fresh chilling 
have been implemented (Wang et al., 2022). Importantly, fresh chicken 
is considered to be one of the major exposures of humans to S. enteritidis 
(Antunes, Mourão, Campos, & Peixe, 2016), and approximately 30 % of 
foodborne salmonellosis may be related to poultry meat (Sandra et al., 
2017). To protect national safety, it is necessary to prevent S. enteritidis 
contamination of fresh chicken and meat products in the food chain to 
limit human transmission while extending the shelf life and reducing 
economic losses. Therefore, monitoring and conducting premarket 
detection for S. enteritidis contamination during chicken production is 
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essential. Currently, the detection methods of S. enteritidis mainly 
include the traditional conventional culture method, immunology, bio-
sensors, molecular biology technology, and other rapid detection 
methods. However, although the traditional culture method is the gold 
standard, it has high accuracy and strong selectivity, the inspection cycle 
is relatively long, and the operation is cumbersome, resulting in limited 
optimal detection time. Nonspecific adsorption of biosensors will affect 
the accuracy of detection results, immunoassays require specific anti-
bodies, and PCRs are always restricted by power, cost, space and other 
factors (Kamarudin, Cox, & Kolamunnage-Dona, 2017; Song, Li, Duan, 
Li, & Deng, 2014; Wu et al., 2014). Therefore, it is not easy to achieve 
rapid field detection of pathogens, which cannot meet the requirements 
of modern foodborne pathogen detection. 

Metabolomics is the study of all low-molecular-weight (<1500 Da) 
metabolites of tissues or cells in a certain physiological period (Bover- 
Cid, Izquierdo-Pulido, & Vidal-Carou, 2000). This technique has been 
widely used in clinical diagnosis, medicine, microbial metabolism, food 
science, animal husbandry, and other fields (Johnson, Ivanisevic, & 
Siuzdak, 2016; Lechtenfeld, Hertkorn, Shen, Witt, & Benner, 2015; Pinu 
et al., 2019; Slowinska, Sallem, Clench, & Ciereszko, 2018; Wen, Liu, & 
Yu, 2020). With the development of the economy and the continuous 
improvement of food quality standards, metabolomics has been devel-
oped to comprehensively evaluate the quality and safety of food and 
provide valuable information for the quality and authenticity of food 
(Jadhav et al., 2019). S. enteritidis can produce many low-molecular- 
weight metabolites after contaminating chickens. Hence, metabolomic 
assays can be used to analyse the metabolic profile of S. enteritidis and 
excavate biomarkers, laying the foundation for developing new detec-
tion methods (Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria, Dany-
luk, & Rodrick, 2009). For example, Xu et al. identified 17 metabolic 
markers using metabonomics and bioinformatics analysis to distinguish 
Salmonella typhimurium-contaminated pork from naturally deteriorated 
pork (Yun, Cheung, Winder, Dunn, & Goodacre, 2011). Based on 
metabonomics technology, Manuel et al. established a rapid detection 
method for Escherichia coli O157:H7 and Salmonella in beef and chicken 
(Manuel & Danyluk, 2011). 

High-throughput targeted metabolomics is a new metabolome 
detection technology that integrates the “universality” of nontargeted 
metabolomics and the “accuracy” of targeted metabolomics, featuring 
advantages of high throughput, high sensitivity, comprehensive 
coverage, absolute qualitative and quantitative. More abundant, precise, 
and effective metabolites can be mined using targeted metabolomics 
(Schrimpe-Rutledge, Codreanu, Sherrod, & Mclean, 2016). This study 
used the targeted metabolomics technique of UHPLC-QTRAP-MS to 
characterize the metabolic profile of S. enteritidis in the chicken matrix. 
Then, the orthogonal partial least squares discriminant analysis (OPLS- 
DA) model and LASSO were employed to examine the differences in 
metabolites between fresh chicken and S. enteritidis-contaminated 
chicken samples, thereby identifying potential metabolite biomarkers of 
S. enteritidis in chicken. The ROC analysis was used to identify and 
evaluate the reliability of potential metabolite biomarkers. This result 
provides a theoretical basis for developing new methods for rapidly and 
accurately detecting S. enteritidis-contaminated chicken. 

2. Materials and methods 

2.1. Materials and reagents 

Acetonitrile (CAS: 75–05-8), methanol (CAS: 67–56-1) and aqueous 
ammonia (CAS: 631–61-8) were all of chromatographic purity grade and 
were provided by CNW Technologies Co., Germany. Ammonium acetate 
(CAS: 631–61-8) was analytically pure and was purchased from Sigma- 
Aldrich in the USA.; LB broth medium and xylose lysine desoxycholate 
agar were obtained from Hopebio Corp. (China); a high-speed refriger-
ated centrifuge (Thermo Fisher Corp., USA), an ACQUITY UPLC H-Class 
instrument (Waters Corp., USA), and a 6500 plus QTRAP triple 

quadrupole mass spectrometer (AB Sciex, USA) were used in this study; 
an Atlantis Premier BEH Z-HILIC column (1.7 µm, 2.1 mm *150 mm, 
Waters Corp., USA) was also used. The deionized water used in the test 
was all prepared by Milli-Q system (Millipore, USA). 

2.2. Sample preparation 

Chilled chicken breast tissue was purchased from Jiangsu Sushi Meat 
Co., Ltd. and was refrigerated and transported to an ultraclean work-
bench in the laboratory in half an hour. In a sterile environment, the 
sample was immediately divided into an experimental and control 
group, each weighing 25 ± 0.2 g. Background bacteria in the chicken 
samples were removed using PBS cleaning + UV lamp irradiation, and 
each sample was then packed into sterile plastic bags. The experimental 
group samples were inoculated with 1 mL (2–3 log CFU/mL) of 
S. enteritidis suspension (General Microbiological Culture Collection 
Center, China), mixed well and sealed. Fresh chicken samples without 
inoculated liquid were used as the blank control group (BG). All samples 
were cultured in constant-temperature incubators (n = 10) immediately 
after sampling and numbering, quenched in liquid nitrogen for 10 min 
and stored at − 80 ◦C. 

2.3. Metabolite extraction 

Approximately 50 ± 0.2 mg of each chicken sample was weighed, 
and 1000 μL of acetonitrile/methanol/H2O (4:4:1, including internal 
isotope standard) extract solution was added and mixed with two 
magnetic beads. Samples were homogenized at 35 Hz for 4 min, soni-
cated in an ice-water bath for 5 min, repeatedly homogenized and 
sonicated 3 times, and incubated at − 40 ◦C for 2 h. Then, the samples 
were centrifuged at 12000 rpm and 4 ◦C for 15 min. A total of 800 μL 
supernatant of each sample was transferred to a new Eppendorf tube and 
dried with a centrifugal concentrator. Then, 160 μL of 60 % acetonitrile 
was added to the Eppendorf tube to reconstitute the dried samples. The 
Eppendorf tube was vortexed until the powder was dissolved, followed 
by centrifugation at 12000 rpm and 4 ◦C for 15 min. Finally, 100 μL 
supernatant of each sample was transferred to a glass vial for LC-MS/MS 
analysis. 

2.4. UHPLC-QTRAP-MS analysis 

LC separation was carried out using a UPLC System (H-Class, Waters) 
equipped with a Waters Atlantis Premier BEH Z-HILIC Column (1.7 µm, 
2.1 mm *150 mm). Mobile phase A was mixed with H2O and acetonitrile 
(8:2) containing 10 mmol/L ammonium acetate, and mobile phase B 
was composed of H2O and acetonitrile (1:9) containing 10 mmol/L 
ammonium acetate. Mobile phases A and B were adjusted to pH 9 with 
aqueous ammonia. The column temperature was set at 40 ◦C. The 
autosampler temperature was 8 ◦C, and the injection volume was 1 μL. 
The complete analysis contained 348 metabolites, mainly including 13 
classifications. The quantification of metabolites was carried out by the 
standard external method and corrected with the internal standard of 
the isotope. The stability and functionality of the system are quality 
controlled by instrument analysis (He et al., 2022). 

An AB Sciex QTRAP 6500 + mass spectrometer was applied for all 
multiple-reaction monitoring experiments for assay development. 
Typical ion source parameters were as follows: ionspray voltage, +5000 
V/-4500 V; curtain gas, 35 psi; temperature, 400 ◦C; ion source gas 1, 50 
psi; and ion source gas 2, 50 psi (Zhang, Mu, Shi, & Zheng, 2022). 

2.5. Quality control (QC) 

The testing process uses the solution of all samples mixed in equal 
amounts as the QC sample. One QC sample was inserted every ten 
samples to ensure the stability and repeatability of the testing and 
analysis process. When an internal isotope standard with the same 
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concentration is introduced into QC samples, the response difference 
should be less than 15 % (Sangster, Major, Plumb, Wilson, & Wilson, 
2006). 

2.6. Linearity and range 

Linearity is usually expressed using a linear regression equation to 
obtain a correlation between analyte concentrations and test response 
values. In this experiment, the linear relationship between the eight 
concentration levels of the polar metabolites and the peak area was 
determined, and the linear regression of the concentrations was per-
formed using the least squares method with the mean peak area to 
obtain the linear regression equation and calculate the linear relation-
ship (R2). The standard curves for the metabolites were plotted ac-
cording to the linear regression equation, with the high and low 
concentration ranges being linear. 

2.7. Quantification of metabolites 

UHPLC-QTRAP-MS collected the original data and annotated all 
peaks to obtain qualitative and quantitative information. The standard 
curve method was used to calculate the abundance of each metabolite. 
All data were merged using an internal macro program in Microsoft 
Excel 2016 (Microsoft Corp, Redmond, WA, USA)(Leng et al., 2022). 

2.8. Data processing and multivariate data analysis 

First, ProteoWizard was used to convert the original data into 
mzXML format. XCMS software (version 1.0) was used for processing, 
including baseline correction, denoising, deconvolution, and peak 
alignment. Individual metabolites were filtered. Only metabolite data 
were retained with no more than 50 % empty values in one group or no 
more than 50 % empty values in all groups, and missing values were 
recorded in the original data (the numerical simulation method was 
filled with half of the minimum value). The preprocessing results 
generate a data matrix of retention time, mass-to-charge ratio (m/z) and 
peak intensity. The fold change (FC) for each metabolite between the 
groups of S. enteritidis-contaminated chicken and fresh chicken samples 
was calculated. The data matrix was imported into SIMCA software 
(V16.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden), and LOG 
conversion or par formatting was performed. After these trans-
formations, principal component analysis (PCA) was carried out to 
visualize the distribution. The grouping of the samples, OPLS-DA auto-
matic modelling analysis and Student’s t test were conducted to obtain 
variable importance in the projection (VIP) value and p value (Lindon, 
Holmes, & Nicholson, 2006; Trygg & Wold, 2002; Wiklund et al., 2008). 
To identify statistically significant metabolites, volcano plots were dis-
played for differentially abundant metabolites using univariate statisti-
cal methods (Xia & Wishart, 2016). 

A self-built R package (Version 3.6.3) was used to visualize metab-
olites. MetaboAnalyst 5.0, based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) metabolic pathway library, was used for pathway 
analysis of all statistically significant metabolites. As a machine learning 
method, the LASSO analysis refines the variable selection and regula-
rization from a large number of potential multicollinearity variables 
(Algamal & Lee, 2015; Dyar et al., 2012; Mceligot, Poynor, Sharma, & 
Panangadan, 2020; Soh & Zhu, 2022). Furthermore, a more relevant and 
interpretable LASSO model was generated using the LASSO algorithm to 
mine metabolite biomarkers (Chen, Feng, Dai, Xudong, Zhou, Chang 
Chun, Li, Ke Xin, Zhang, Yu Juan, Lou, Xiao Ying, Cui, Wei %J Gut: 
Journal of the British Society of Gastroenterology. (2022), 2022). he t 
test was used to assess the difference in the abundance of metabolite 
biomarkers between the two groups, with P < 0.05 as the significance 
criterion. ROC curve analysis was used to evaluate the sensitivity and 
specificity of metabolite biomarkers discriminant ability. 

3. Results and discussion 

3.1. Linearity and range 

The mixed standard solutions were diluted step by step. The peak 
areas of the target metabolites in the samples were detected and 
regressed against the injection volume using the peak areas. The results 
are presented in Table S1, showing the lower limit of quantification 
(LLOQ), the upper limit of quantification (ULOQ), the linear regression 
equation, and the R2 for the 348 metabolites. The R2 values of the 
standard metabolite curve were all greater than 0.99, indicating an 
excellent linear relationship (Schmidt et al., 2016). 

3.2. Metabolic profile and data analysis 

Based on the UHPLC-QTRAP-MS targeted metabolomics, the me-
tabolites of chicken samples from S. enteritidis-contaminated and blank 
control groups were studied. We compared the total ion flow diagrams 
of QC samples by overlapping the spectra. As shown in Fig. 1A, the 
baseline of the QC samples was stable. Each chromatogram peak’s cor-
responding intensities and retention times were the same, indicating 
that the variation caused by instrument error was small in the test 
process and that the data quality was stable and reliable. As shown in 
Fig. 1B, the total ion flow diagrams of samples from the S. enteritidis- 
contaminated group and the fresh control group are different, indicating 
differences in the composition of metabolites between the two groups 
(Zhang, Yang, Huang, & Gao, 2019). The quality control results are 
shown in Fig. 1C-D. The standard deviation of the samples was within ±
2 STD, and the correlations between QC samples were greater than 0.9. 
Moreover, the RSD value of the standard internal response in QC sam-
ples was less than 15 % (Table S2). The above results indicated that the 
instrument system is stable and that the obtained experimental data are 
reliable. SIMCA software was used to reduce the dimension of the 
original complex data, and the feature that contributes most to the dif-
ference in the dataset was maintained for PCA automatic modelling 
analysis (A. E. Johnson, Sidwick, Pirgozliev, Edge, & Thompson, 2018). 
The PCA results of the S. enteritidis-contaminated group and the control 
group are shown in Fig. 1E. All samples were within a 95 % confidence 
interval, with the contribution rates of the first principal component 
(PC1) and the second principal component (PC2) being 67.9 % and 5.8 
%, respectively. Clustering samples from the same group indicates good 
repeatability between samples, while the distance between samples 
from different groups is relatively long, indicating significant 
differences. 

Qualitative and quantitative analyses were conducted on the me-
tabolites of chicken samples from the S. enteritidis contamination group 
and the blank control group. Three hundred forty-eight metabolites 
were identified and divided into 14 categories: amino acids, poly-
peptides and analogues, nucleosides and nucleotides and analogues, 
carbohydrates and carbohydrate conjugates, organic acids and organic 
acids and derivatives, biogenic amine and benzene (Table S3). 

Amino acids, polypeptides and analogues were the most abundant 
metabolites, with 101 observed, accounting for 29 % of all metabolites 
(Fig. 1F, Fig. 2A). The concentrations of l-pyroglutamic acid, 5-hydrox-
ylysine and n,n-dimethylarginine were significantly higher in the 
S. enteritidis-contaminated group than in the blank control group. Nu-
cleosides, nucleotides and analogues were the second most abundant 
metabolites, with 53 detected, accounting for 15 % of all metabolites 
(Fig. 1F, Fig. 2B). We found that metabolites associated with meat 
deterioration, such as inosine, inosine acid, and uridine, clearly clus-
tered the samples into two groups. Carbohydrates and carbohydrate 
conjugates were the third most abundant metabolites, with 46 detected, 
accounting for 13 % of all metabolites (Fig. 1F, Fig. 2C). We found that 
metabolites such as D-glucose, gluconic acid and gluconolactone clus-
tered the samples into two groups. Fig. 2 displays the abundance of the 
348 metabolites belonging to 14 categories across 20 samples. 
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3.3. Identification of differentially abundant metabolites (DAMs) 

DAMs were identified using fold change > 1 and P value < 0.05. The 
DAMs between the control and S. enteritidis-contaminated groups were 
visualized by a volcano plot (Fig. 3A). In total, 152 DAMs were identified 
by comparing S. enteritidis-contaminated samples vs. blank control 
samples, including 115 upregulated and 37 downregulated metabolites. 

3.4. OPLS-DA 

We constructed an OPLS-DA model to identify potential metabolite 
biomarkers for S. enteritidis contamination in chicken samples. OPLS-DA 
can remove irrelevant information after orthogonal signal correction, 
which is helpful for sample classification and irrelevant noise informa-
tion in the dataset (Chang, Wu, Kan, Lin, & Liao, 2021). As shown in 

Fig. 3B, the OPLS-DA score plot separated the two groups of samples 
(R2X = 0.572, Q2 = 0.983), indicating that Salmonella contamination 
significantly altered the metabolic profile of the samples. A 200 per-
mutation test was carried out to evaluate the validity of the OPLS-DA 
model (Zhou et al., 2022). The results show that, as shown in Fig. 3C- 
D, a high R2Y of 0.998 and a Q2 of 0.983 were achieved. The slope of the 
regression line is large, the intercept of the fitted curve of Q2 on the Y- 
axis is less than 0, and R2Y is P < 0.05, indicating that the model is 
robust and has good stability and predictability. The results above 
indicated that the fitted OPLS-DA model has a goodness-of-fit and high 
prediction ability. According to the predicted VIP > 1, P < 0.05 and FC 
> 1, 152 DAMs were screened (Table 1). 

Fig. 1. Quality control of the experimental data, PCA of experimental samples and pie plot analysis of metabolite classification. (A) TIC plot of the QC sample, (B) TIC 
plot of the experimental samples, (C) Standard deviation of samples, (D) Correlation of QC sample, (E) PCA score plots, (F) Pie plots. 
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3.5. Metabolic pathway enrichment analysis of DAMs 

MetaboAnalyst 5.0 was used for pathway enrichment analysis. As 
shown in Fig. 3E, 152 DAMs were significantly enriched in eight meta-
bolic pathways, including alanine, aspartate and glutamate metabolism, 
vitamin B6 metabolism, arginine and proline, purine metabolism, 
glutathione metabolism, ascorbate and aldarate metabolism, phenylal-
anine, tyrosine and tryptophan biosynthesis and aminoacyl-tRNA 
biosynthesis. Amino acid metabolism is reported to be involved in 
chicken spoilage, while purine metabolism plays an important role in 
the degradation of raw meat and meat (Dario, Gaston, Robledo, & 
Susana. , 2018; Jadhav et al., 2018). We can infer that these eight 
metabolic pathways are more closely related to S. enteritidis- 

contaminated chicken meat and that l-hydroxylysine, melatonin and 
anthranilate are enriched in the amino acid metabolic pathway and may 
be important metabolites in S. enteritidis-contaminated chickens. 

3.6. LASSO analysis 

To differentiate S. enteritidis-contaminated chicken samples from 
control chicken samples, the experiments were analysed with LASSO 
using the cv. glmnet function from the glmnet package (version 4.1.8) 
with a minimum error lambda value of 0.000605 and a 1-SE value of 
0.001057, and after 200 iterations, eight independent effect metabolites 
were identified (Table S4). Fig. 3F-H shows that anthranilic acid, l- 
pyroglutamic acid, 5-hydroxylysine, n,n-dimethylarginine, 4- 

Fig. 2. Heatmap of the abundance of the 348 metabolites belonging to 14 categories across 20 samples.  
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hydroxybenzoic acid, menatetrenone, glycyl phenylalanine and 5- 
methyl-2′-deoxycytidine were the highest contributing factors, suggest-
ing that they might be crucial metabolite biomarkers of S. enteritidis 
contamination in chickens. 

3.7. Evaluation of metabolite biomarkers 

To better evaluate the metabolic patterns of significant differences in 
metabolites between the S. enteritidis and control groups, we calculated 
the Euclidean distance matrix for the quantitative value of 8 metabolite 
biomarkers and clustered the DAMs with the complete linkage method 
to display the DAMs with the heatmap (Chen et al., 2022; Nie et al., 
2022). As shown in Fig. 3I, the eight metabolite biomarkers showed 
distinct patterns between S. enteritidis-contaminated and control 
samples. 

The abundance of the eight metabolite biomarkers was visualized by 
violin plots (Fig. 4A-F). The results indicated that anthranilic acid, l- 
pyroglutamic acid, 5-hydroxylysine, n,n-dimethylarginine, 4-hydroxy-
benzoic acid, and menatetrenone were significantly upregulated (P <
0.001) in the contamination group samples. Lan et al. identified creat-
inine as one of the metabolite biomarkers of S. enteritidis-contaminated 
chickens by targeted and untargeted metabolomics (Chen et al., 2023). 
Xu et al. found that amino acids were detected in Salmonella 
typhimurium-contaminated pork samples, and their abundance was 
significantly higher than that of naturally spoiled pork samples (Yun 

et al., 2011). Glycylphenylalanine and 5-methyl-2′-deoxycytidine were 
downregulated considerably in S. enteritidis-contaminated chickens (P <
0.01) (Fig. 4G-H). It is well known that changes in the contents of amino 
acids, nucleotides and fatty acid metabolites directly reflect fresh meat’s 
physiological and biochemical reactions (Herranz, de la Hoz, Hierro, 
Fernández, & Ordóñez, 2005). It may be that bacteria preferentially 
utilize glycine-phenylalanine in a specific way, leading to a significant 
downregulation in its content (Yun et al., 2011). In the S. enteritidis- 
contaminated chicken group, glycyl phenylalanine and 5-methyl-2′- 
deoxycytidine were significantly lower than those in the blank control 
group, which may be the substrate consumed to meet the growth rate of 
bacteria. Compared with the control group, the contents of anthranilic 
acid, l-pyroglutamic acid, 5-hydroxylysine, n,n-dimethylarginine, 4- 
hydroxybenzoic acid, and menatetrenone were significantly upregu-
lated, which could be used as new metabolite biomarkers in S. enteritidis 
contamination of chicken. 

ROC curve analysis is a recognized method for evaluating marker 
performance (Junge & Dettori, 2018; Kamarudin et al., 2017). AUC 
values > 0.9 indicate excellent predictive power, and AUC < 0.5 sug-
gests a lack of predictive power (Fu & Peng, 2017). We used ROC curve 
analysis to evaluate the ability of the metabolite biomarkers to predict 
S. enteritidis contamination in chicken meat. The results showed that six 
single metabolite biomarker ROC analysis was > 0.9(Fig. S1, Table S5), 
combined ROC analysis of the six metabolite biomarkers obtained an 
AUC value of 0.99, a sensitivity of 0.99, and a specificity of 1(Fig. 4I). 

Fig. 3. Identification of metabolite biomarkers of S. enteritidis in chicken meat. (A) Volcano plots of differentially abundant metabolites between the two groups. (B) 
OPLS-DA score plots constructed based on UHPLC-QTRAP-MS data from two groups of chicken samples. (C) Permutation test plots constructed based on UHPLC- 
QTRAP-MS data, (D) Column plot of OPLS-DA model permutation test results (E) Pathway analysis plots of differentially abundant metabolites from S. enteritidis- 
contaminated and control samples. (F) Coefficient distribution of LASSO analysis (G) Plot of the mean squared deviation of the tests expressed as lambda values in the 
LASSO analysis. (H) Biomarker score plot in LASSO analysis. (I) Hierarchical cluster heatmaps of the metabolite biomarkers. 
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Table 1 
Potential biomarkers of S. enteritidis contamination group.  

Number Metabolite name Formula VIP P-value Fold Change 

1 Mannitol C6H14O6  1.434758069 9.383E-05 4.62054E-07 
2 Succinic acid C4H6O4  1.433737384 4.32979E-06 648365363.6 
3 Kynurenic acid C10H7NO3  1.433298154 2.37724E-06 24245.12764 
4 Maleic acid C4H4O4  1.432905427 0.001033698 346790.0871 
5 Menatetrenone C31H40O2  1.432790535 7.64555E-06 21005.16377 
6 Indole-3-butyric acid C12H13NO2  1.432193205 2.48811E-06 2473.96526 
7 Thymidine C10H14N2O5  1.43052051 0.000372438 1.62706E-05 
8 Trimethylamine N-oxide C3H9NO  1.43050612 2.5934E-05 4.09718E-05 
9 5-Aminoimidazole-4-carboxamide C4H6N4O  1.429971853 0.000112447 58808.17866 
10 Corticosterone C21H30O4  1.429398434 0.0001593 4486.586987 
11 D-Glucose C6H12O6  1.425240268 2.03082E-06 0.01983839 
12 Picolinic acid C6H5NO2  1.423599374 5.91611E-06 200.6568714 
13 N,N-Dimethylarginine C8H18N4O2  1.422633785 1.79952E-08 14.19138523 
14 Guanine C5H5N5O  1.421966991 2.28992E-06 48.26286024 
15 Uracil C4H4N2O2  1.420487757 0.006831353 2290186.659 
16 Ciliatine C2H8NO3P  1.418718217 0.01602183 33758.75049 
17 Nicotinic acid C6H5NO2  1.418152925 0.001130555 1871.269625 
18 L-Fucose-1-phosphate C6H13O8P  1.417795006 8.66793E-05 820.7622142 
19 7-Methylguanine C6H7N5O  1.41662534 3.48466E-06 152.8167077 
20 Glucaric acid C6H10O8  1.41444064 0.00399751 8544.458288 
21 L-Dopa C9H11NO4  1.413628814 3.00973E-05 81.95100516 
22 Anthranilic acid C7H7NO2  1.411228513 1.85525E-14 3.7645379 
23 L-Asparagine C4H8N2O3  1.410276146 6.24789E-06 0.009526239 
24 Pyridoxal C8H9NO3  1.407463069 0.000545954 27.36133198 
25 L-Citrulline C6H13N3O3  1.407021099 2.82439E-05 63.26718028 
26 Riboflavin C17H20N4O6  1.406139456 2.93416E-07 13.6896795 
27 N,N-Dimethylguanosine C12H17N5O5  1.405163035 1.57163E-06 27.23855236 
28 Glycerophosphoric acid C3H9O6P  1.403798129 1.36605E-05 10.95715355 
29 gamma-Glutamylmethionine C10H18N2O5S  1.403459402 1.05116E-06 11.75580276 
30 Pyridoxamine C8H12N2O2  1.403412808 0.000361946 58.46075333 
31 5-methyl-2′-deoxycytidine C10H15N3O4  1.402640292 7.56459E-08 0.001366096 
32 L-Aspartic acid C4H7NO4  1.402390133 0.002091645 0.006696876 
33 Adenosine-5′-diphosphate C10H15N5O10P2  1.401339576 0.000183895 45.27943081 
34 L-Ornithine C5H12N2O2  1.396920606 6.30389E-05 32.36678766 
35 Mevalonic acid C6H12O4  1.396030878 2.47575E-05 25.0418326 
36 Pyridoxine C8H11NO3  1.395754036 0.000221665 49.83611861 
37 Spaglumic acid C11H16N2O8  1.395001021 0.00129327 34.43073183 
38 Inosine diphosphate C10H14N4O11P2  1.394520753 0.002204953 44.14924643 
39 Creatinine C4H7N3O  1.393373063 1.81653E-08 4.86851132 
40 N-Acetylserine C5H9NO4  1.393182868 1.95569E-06 6.966278905 
41 5-Hydroxylysine C6H14N2O3  1.392356367 1.14738E-09 3.759987963 
42 N-Acetyl-Neuraminic Acid C11H19NO9  1.37903078 1.98045E-08 3.994479534 
43 Glycylphenylalanine C11H14N2O3  1.375654961 5.22938E-09 0.220003373 
44 N-Acetyl-L-alanine C5H9NO3  1.37435207 5.66992E-08 4.026751306 
45 Hypoxanthine C5H4N4O  1.373119668 1.65315E-08 4.051638779 
46 gamma-L-Glutamyl-L-valine C10H18N2O5  1.371000259 0.010598432 260.6230856 
47 Tyramine C8H11NO  1.370563256 4.01234E-05 54069.88222 
48 Chenodeoxycholic acid C24H40O4  1.368833179 0.000112818 14.97926016 
49 N-Acetyl-L-glutamic acid C7H11NO5  1.368041933 0.000105327 325.0126189 
50 Xanthosine C10H12N4O6  1.36304167 0.000398997 12.09654928 
51 Adenine C5H5N5  1.362985781 0.000105068 20.46051063 
52 Prostaglandin D1 C20H34O5  1.362401459 0.000661823 67.30760544 
53 1-Methyladenosine C11H15N5O4  1.362200554 0.003364024 114.6457176 
54 Hydroxyisocaproic acid C6H12O3  1.36034664 0.04932906 172.9809165 
55 4-Hydroxybenzoic acid C7H6O3  1.359998418 3.92907E-07 7.144825543 
56 NAD+ C21H27N7O14P2  1.351932717 0.000510424 0.022093005 
57 L-Pyroglutamic acid C5H7NO3  1.349434881 1.2891E-10 2.69907268 
58 Glycylproline C7H12N2O3  1.34833503 1.09692E-06 3.173735866 
59 D-Mannosamine C6H13NO5  1.347892537 0.000400063 0.012350917 
60 Ethanolamine C2H7NO  1.347814745 3.3224E-05 5.354511638 
61 Uridine C9H12N2O6  1.346738358 1.00503E-06 0.045440861 
62 Leucyl-Valine C11H22N2O3  1.343813595 7.07839E-06 0.323558675 
63 Cytidine C9H13N3O5  1.343652511 9.56044E-07 0.085597858 
64 Pseudouridine C9H12N2O6  1.342818607 7.97279E-06 9.713380701 
65 N-Acetyl-D-Glucosamine C8H15NO6  1.339855243 2.36985E-07 0.224939005 
66 N-Acetylcadaverine C7H16N2O  1.339714908 0.036171832 173.1874555 
67 4-Aminobutyric acid C4H9NO2  1.337506595 0.026217497 213.3049981 
68 Choline C5H14NO+ 1.337374043 7.89115E-05 5.21793706 
69 2′-Deoxyuridine C9H12N2O5  1.336473018 7.97011E-07 0.144828822 
70 N-Acetyl-L-aspartic acid C6H9NO5  1.33553154 0.002146278 12.71727739 
71 7-Ketocholesterol C27H44O2  1.334338097 5.22493E-06 6.140109129 
72 N-Acetyl-S-(3-hydroxypropyl)cysteine C8H15NO4S  1.330297992 4.55937E-07 1.828757848 
73 Glycyl-L-Leucine C8H16N2O3  1.328651144 1.57729E-05 0.179921162 
74 L-2-Aminobutyric acid C4H9NO2  1.327511216 0.005533768 18.63456763 

(continued on next page) 
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Table 1 (continued ) 

Number Metabolite name Formula VIP P-value Fold Change 

75 alpha-Linolenic acid C18H30O2  1.326139842 0.000112417 4.926472116 
76 Flavin adenine dinucleotide C27H33N9O15P2  1.323627133 0.000205276 4.896391962 
77 L-Cystathionine C7H14N2O4S  1.319942263 1.93189E-09 2.654535012 
78 Cinnamoylglycine C11H11NO3  1.315949867 2.75489E-06 2.994511028 
79 O-Phospho-L-Serine C3H8NO6P  1.313452879 3.11581E-06 2.96771749 
80 3-(Methylthio)propionate C4H8O2S  1.313208211 0.000998876 6.241782977 
81 Histamine C5H9N3  1.309563346 0.00183763 65.48478845 
82 N-Formyl-L-methionine C6H11NO3S  1.307848137 2.39777E-05 4.218938896 
83 L-Glutamic acid C5H9NO4  1.30301518 1.29335E-08 1.762414764 
84 2-Hydroxyadipic acid C6H10O5  1.300481551 0.000827077 5144.858879 
85 Melatonin C13H16N2O2  1.297420121 2.12188E-05 1008.863952 
86 L-Leucine C6H13NO2  1.296630553 2.77688E-09 2.261888702 
87 L-Norleucine C6H13NO2  1.296426981 6.20588E-09 1.940082859 
88 UDP-D-glucose C15H24N2O17P2  1.290602171 0.00635958 0.000328085 
89 Cyclic guanosine monophosphate C10H12N5O7P  1.290044756 0.000136796 135.1091414 
90 L-Valine C5H11NO2  1.28852505 1.85284E-07 1.889381293 
91 2′-O-methylguanosine C11H15N5O5  1.283941459 7.16523E-05 3.745936119 
92 1-Aminopropan-2-ol C3H9NO  1.282458248 0.032329825 71.56939308 
93 Xylulose 5-phosphate C5H11O8P  1.278931895 1.25124E-09 0.243036319 
94 Threonylphenylalanine C13H18N2O4  1.276975226 1.3845E-07 0.404544673 
95 Nicotinamide mononucleotide C11H15N2O8P  1.272930899 0.003418342 0.084017464 
96 3-Indoleglyoxylic acid C10H7NO3  1.268300011 0.007820213 45.71521261 
97 Glutathione Disulfide C20H32N6O12S2  1.253499529 0.000451134 3.819581596 
98 Acetylcysteine C5H9NO3S  1.248707988 4.28237E-08 2.093919506 
99 S-Adenosylmethionine C15H22N6O5S  1.247159206 0.000215715 0.21241555 
100 L-Cysteine C3H7NO2S  1.23124655 1.84451E-07 2.842135749 
101 Adipic acid C6H10O4  1.22630239 2.30237E-05 125.311738 
102 5-Aminovaleric acid C5H11NO2  1.221094373 0.024657977 81.03820863 
103 Propionyl-CoA C24H40N7O17P3S  1.214146485 7.42522E-07 1.647377151 
104 Glutaric acid C5H8O4  1.210209036 1.09544E-06 3.48239048 
105 L-2-Aminoadipic Acid C6H11NO4  1.207558998 0.000219151 4.063538278 
106 D-Alanyl-D-alanine C6H12N2O3  1.205759343 0.000173184 0.430366857 
107 N-Acetylputrescine C6H14N2O  1.199884851 0.048642962 27.10070181 
108 2′-Deoxyguanosine-5′-diphosphate C10H15N5O10P2  1.199674943 0.001288208 4.667291634 
109 2-Methylcitric acid C7H10O7  1.197969529 0.004120988 12.09301017 
110 Gluconolactone C6H10O6  1.196233846 0.000154923 0.393434536 
111 L-Sorbose C6H12O6  1.195844474 0.003710147 0.292961785 
112 Inosinic acid C10H13N4O8P  1.188574802 1.80515E-06 0.187904916 
113 Xanthine C5H4N4O2  1.188407068 0.001110893 5.601663038 
114 gamma-Carboxyglutamic acid C6H9NO6  1.187740368 0.000136218 2.263953602 
115 Prostaglandin E2 C20H32O5  1.184632101 0.000268224 3.642569556 
116 3-Methyl-2-oxovaleric acid C6H10O3  1.182886759 0.019010194 99.23381336 
117 Glutathione C10H17N3O6S  1.182707611 0.005808601 0.183629752 
118 L-alpha-Aspartyl-L-phenylalanine C13H16N2O5  1.180942208 7.69868E-05 1.77661208 
119 1,5-Anhydro-D-Glucitol C6H12O5  1.176266411 1.06779E-05 0.445648701 
120 5-Methoxytryptophan C12H14N2O3  1.167915489 0.004907338 2215.208993 
121 Thymidine-5′-phosphate C10H15N2O8P  1.144910687 3.45438E-05 0.439154638 
122 N6,N6,N6-Trimethyl-L-lysine C9H20N2O2  1.138600632 0.002315363 3.522309034 
123 L-Homoarginine C7H16N4O2  1.137605993 0.002474977 3.62451569 
124 2′-Deoxyadenosine-5′-monophosphate C10H14N5O6P  1.137486158 0.001892718 6.557383588 
125 S-Adenosyl-L-homocysteine C14H20N6O5S  1.133398033 6.49611E-05 0.03271776 
126 Thymidine-5-triphosphate C10H17N2O14P3  1.127122701 0.000357749 0.129901022 
127 L-Malic acid C4H6O5  1.121798158 0.003454427 2.087745128 
128 L-Phenylalanine C9H11NO2  1.121361061 5.24317E-05 1.609935281 
129 L-Tryptophan C11H12N2O2  1.114002345 8.71431E-05 1.660924263 
130 GDP-L-Fucose C16H25N5O15P2  1.106374937 3.60223E-05 0.319173493 
131 L-Methionine sulfone C5H11NO4S  1.106187086 0.000942763 1.848219367 
132 Acetyl coenzyme A C23H38N7O17P3S  1.105913524 0.000544672 3.063719073 
133 4-(Trimethylammonio)butanoate C7H15NO2  1.105244256 0.000716847 1.894689877 
134 Uridine diphosphate glucuronic acid C15H22N2O18P2  1.103506325 0.001247134 0.292348798 
135 Fumaric acid C4H4O4  1.096822657 0.008593126 3.315426393 
136 N-Acetyl-L-phenylalanine C11H13NO3  1.095609098 1.23816E-06 8.775150616 
137 Purine C5H4N4  1.094707577 1.01475E-05 27.62362716 
138 Glyceraldehyde C3H6O3  1.087326495 1.12887E-05 0.362495542 
139 alpha-Cyano-4-hydroxycinnamic acid C10H7NO3  1.084740073 0.038191128 29.74697165 
140 L-Tyrosine C9H11NO3  1.080427694 7.42493E-06 0.361817265 
141 Myristic acid C14H28O2  1.060094679 0.004592455 2.155386068 
142 2-Hydroxybutyric acid C4H8O3  1.04696474 0.045677417 10.6794078 
143 6-Hydroxyhexanoic acid C6H12O3  1.042530969 0.000446796 2.163025171 
144 L-Rhamnose C6H12O5  1.038134132 0.000378924 2.328031551 
145 Inosine C10H12N4O5  1.031180242 0.000492776 0.275470809 
146 Xylitol C5H12O5  1.028537322 0.000285402 1.413444405 
147 4-Pyridoxic acid C8H9NO4  1.02491205 0.00372022 133.0608095 
148 Fructose-6-phosphate C6H13O9P  1.02466824 0.006414825 0.291892954 
149 Imidazoleacetic acid C5H6N2O2  1.021874572 0.0155894 3.6977364 
150 Diethanolamine C4H11NO2  1.014419281 0.000329209 0.395715998 

(continued on next page) 
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The results showed that the combination of six metabolite biomarkers 
had an excellent predictive ability to identify S. enteritidis-contaminated 
chicken samples. 

4. Conclusion 

Using UHPLC-QTRAP-MS-based targeted metabolomics, this study 
successfully identified 152 DAMs between chickens from S. enteritidis- 
contaminated groups and control groups. Subsequently, employing 
LASSO analysis, metabolite abundance change analysis and ROC curve 
analysis, anthranilic acid, l-pyroglutamic acid, 5-hydroxylysine, n,n- 

dimethylarginine, 4-hydroxybenzoic acid and menatetrenone were 
identified as metabolite biomarkers for S. enteritidis-contaminated 
chicken meat. In conclusion, the six metabolite biomarkers identified in 
this study provide valuable information for developing a rapid, efficient 
and quantitative approach to controlling S. enteritidis contamination of 
raw meat and meat products. 
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Table 1 (continued ) 

Number Metabolite name Formula VIP P-value Fold Change 

151 N-Acetylglycine C4H7NO3  1.012551275 0.000915519 13.9272037 
152 D-Galacturonic Acid C6H10O7  1.008584916 0.045422198 117.3735304  

Fig. 4. Assessment of the stability of potential metabolite biomarkers of S. enteritidis in chicken meat (A-H) Violin plot quantitative analysis of potential metabolite 
biomarkers. (I) The combined ROC curve was constructed by 10-fold cross-validation of six metabolite biomarkers. 
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