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B-cell activation plays a crucial part in the immune system and is initiated via interaction

between the B cell receptor (BCR) and specific antigens. In recent years with the help

of modern imaging techniques, it was found that the cortical actin cytoskeleton changes

dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton

reorganization regulates BCR signaling in different stages of B-cell activation, specifically

when stimulated by antigens, and also how this reorganization is mediated by BCR

signaling molecules. Abnormal BCR signaling is associated with the progression of

lymphoma and immunological diseases including autoimmune disorders, and recent

studies have proved that impaired actin cytoskeleton can devastate the normal activation

of B cells. Therefore, to figure out the coordination between the actin cytoskeleton

and BCR signaling may reveal an underlying mechanism of B-cell activation, which has

potential for new treatments for B-cell associated diseases.
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INTRODUCTION

B cells are an important set of immunocompetent cells. They have two main functions: 1. to
participate in the immune response directly by humoral immunity (antibody production) (1),
and 2. to participate in the T-cell immune response as specific antigen presenting cells that
selectively capture and present antigens to T cells (2, 3). These two functions of B cells are
achieved through activation of the surface BCR. Just like the TCR/CD3 complex, the BCR is also a
complex of oligomers (4). It has been verified that the BCR is composed of the surface membrane
immunoglobulin (mIg) including IgM and IgD in the naive B cell and IgG in the memory B cell,
which functions as the antigen-binding part, and the signaling components consisting of non-
covalently associated Igα and Igβ (CD79a and CD79b) heterodimer (4, 5). Both mIg and Igα/β
contain transmembrane heavy chains with the cytoplasmic tails extending into the cell cortex (6).
The length of the cytoplasmic tail of the antigen-binding part differs according to its isotypes. The
cytoplasmic domain of mIgM and mIgD contain three amino acids, while in mIgG, the length
is nearly 28 amino acids (4). The cytoplasmic tail of the signaling part contains immunoreceptor
tyrosine-based activation motifs (ITAMs) (5, 7, 8), but there is no intrinsic kinase activity in BCR,
and thus recruitment of the tyrosine kinase is necessary for BCR signaling.
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Both multivalent soluble antigens (sAg) and membrane-bound
antigens (mAg) can be recognized by BCRs (9), while the mAg
has a lower threshold for B-cell activation. This is consistent with
the mode of in vivo antigen recognition which is mainly through
antigen-presentation by dendritic cells, follicular dendritic cells,
and macrophages (10, 11). It has been observed that monovalent
mAg but not monovalent sAg can induce B-cell activation (9,
12, 13). Different from the T cell, the MHC molecular on the
antigen presenting cell is not required by B cell during antigen
recognition (7), so new models should be built to understand
how the mAg is given the priority compared with the sAg. After
effective stimulation of antigens, the tyrosines of ITAM in the
BCR are phosphorylated by tyrosine kinase Lyn, one of the Src
family proteins, and the spleen tyrosine kinase (Syk) (14–18). The
interaction between BCR-associated Src-family kinase and CD19
results in CD19 and PI3K phosphorylation (7, 17). Signaling
molecules including PLC γ and Vav are also phosphorylated and
recruited through Syk (16, 19, 20). Under the catalysis of PLCγ,
phosphatidylinositols releases IP3 which is important for Ca2+

release, and DAG which promotes the activation of PKC (21).
GTPases including Ras and Rap1 are activated, and participate in
the activation of MAP kinases such as JNK, Erk, and p38 (22).
Activation of the BCR finally leads to B-cell proliferation and
antibody production.

Disorders of BCR signaling can lead to immunological
diseases. Studies have proved several diseases related with the
dysregulation of the actin cytoskeleton, including the Wiskott-
Aldrich syndrome (WAS), an immunodeficiency disease resulted
from the deficiency of WAS protein (WASP), an important
actin regulator in haematopoietic cells, or WASP interacting
protein (WIP) (23–26). Diffuse large B cell lymphoma (DLBCL)
has been showed highly associated with unusually high levels
of phosphorylated actin binding proteins Ezrin-Radixin-Moesin
(ERM) (27). The studies indicate the potential role of actin
in both up-regulation and down-regulation of BCR signaling.
Recent studies using biochemical or microscopy technologies
have showed during B-cell activation, awell-regulated actin-
cytoskeleton reorganization is required to achieve processes
including receptor clustering, signaling-molecule recruitment,
and B-cell morphological changes, which is in turn accurately
controlled by BCR signaling. In this review, firstly we provide
a glance of the structure of the actin cytoskeleton in B-cell
cortex. BCR dynamics on a nanoscale is also introduced on a
nanoscale. Then we discuss the potential role of actin in the
initiation of BCR triggering. Later we introduce how the actin
cytoskeleton participates in the formation of BCR microclusters
and the immune synapse. Finally we talk about the regulation of
BCR signaling on actin-cytoskeleton reorganization.

STRUCTURE OF THE CORTICAL ACTIN
CYTOSKELETON

The cortical actin cytoskeleton also known as the cell cortex is
a thin network just beneath the plasma membrane, and exists
in most animal cells. It is the dominating actin structure in B
cells, so the actin cytoskeleton we talk about in this review refers

to the cortical actin cytoskeleton. The cortical actin cytoskeleton
contains over a hundred actin-binding proteins (ABPs) (28). It is
connected to the plasma membrane through several membrane-
cytoskeleton linkers including myosin 1 and ERM proteins which
contain three conserved and related proteins (ezrin, radixin and
moesin) (28, 29), and is pulled on by myosin-2 which provides
contractile stresses and thus produces the cortical tension (30,
31). Dynamic changes of actin filaments are required to achieve
cell morphological changes. These processes are mediated by
actin binding proteins including F-actin nucleators, regulators of
actin assembly and disassembly, and actin crosslinkers (28, 32). F-
actin nucleators include formins which nucleates and lengthens
the linear F-actin (33), and the actin-related protein 2/3 (ARP2/3)
complex which promotes the formation of branched F-actin
(28, 34). The nucleators are important in regulating cortical
elasticity and cortex tension through controlling the length of
actin filaments, which allows cells to adapt to environments
with different mechanical properties (30, 35). Regulators of actin
assembly and disassembly include the capping proteins that can
inhibit the growth of F-actin through binding to its barbed
end. The actin-assembly promoting protein profilin, and the
actin severing protein cofilin (28, 32, 36). The combined actions
of these actin binding proteins produce different membrane
protrusion structures (31, 37, 38), for example, lamellipodia, a
sheet-like protrusive structure, is composed of branched F-actin,
and filopodia which looks like a finger, is composed of linear
F-actin (39, 40). Through controlling dynamic morphological
changes, the actin cytoskeleton is crucial in the polarization,
adhesion as well as migration of the B cell (41–44).

BCR DYNAMICS DURING B-CELL
ACTIVATION

The technique of classicial biochemistry helps us to gain
the information of interactions between individual signaling
molecules and provides with the basis to investigate B-cell
activation. However, to clarify the mechanisms underlying B-
cell activation, more information of molecular dynamic changes
under the correct cellular context is needed. Fortunately, new
technologies combined of high or super-resolution imaging
methods and fluorescence probes have provided us with a
more detailed and quantitative description of the spatiotemporal
dynamics of BCRs on B cell (45–47).

There have been methods to follow the lateral diffusion of
membrane molecules, such as single particle tracking (SPT),
which has been used as the total internal reflection microscopy
(TIRFM) developed in recent years (48–50). Studies have showed
that BCRs do not diffuse freely on the surface of the B cell,
but were restricted within discrete confinement zones with a
diameter of 40∼200 nm (51, 52). The average diffusion coefficient
of IgM-based BCRs is ∼0.03 µm2/s (9, 47, 53). Besides, using
direct stochastic optical reconstruction microscopy (dSTORM),
it was demonstrated BCRs in the resting state existing in
nanometer sized clusters called the “protein island” or the
“nanocluster,” which differ in size as well as numbers of single
BCR molecules (47, 54). IgM and IgD BCRs actually localize
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in different compartments which are class-specific, though the
molecular mechanism underlying the distribution is little known
(47, 55, 56). Under the restriction of BCR diffusion, only antigen-
independent tonic signaling which is much lower than antigen-
induced one is allowed (51, 57).

Upon the engagement of the membrane-associated antigen,
the radius of the BCR nanoclusters increases, which seems to
be in accordance with the growing number of the BCR in
the cluster, while the density of BCR nanoclusters decreases
(49, 54). Besides, BCR nanoclusters become more dispersed and
the lateral mobility increases with an average speed of 0.05
µm2/s when stimulated by mAg (9, 53), leading to collisions
between nanoclusters, which results in the formation of BCR
microclusters which are composed of 50 ∼ 500 single BCRs
including both IgM and IgD BCRs (54, 58). Minutes after mAg
stimulation, the B cell begins to spread on the antigen-associated
membrane, which lasts for 5–10min (59), at the same time, more
BCR microclusters form and these microclusters move toward
the center of the contact area (18), with an average speed of∼0.01
µm/s (59, 60). Then along with the followed B-cell contraction
(59–61), the microclusters together form a central suprmolecular
activation cluster (cSMAC) which is characterized as the core
of immune synapse (IS) (61–63). As microclusters coalesce with
each other, the lateral mobility of single BCR molecules in
clusters decrease to 0.02 µm2/s, an average speed (53), similar
with BCRs within nanoclusters before stimulation. The mature
immune synapse takes about 10min to assemble and is followed
by BCR-antigen-complex internalization and antigen processing
(64).

Multivalent sAg can induce similar dynamics of BCRs as
induced by mAg. Both of the two-type antigens induce the
formation of central clusters. However, the central cluster of
BCRs forms at one pole when stimulated by sAg, while it forms
at the center of the area contacting with antigen-associated
membrane when stimulated by mAg. Besides, the morphological
changes of B cell contracting after its spreading particularly
take place in mAg-stimulated B-cell activation, and sAg can
only induce protrusion structures at the area of BCR central
cluster (41). The two-phase response is recognized as the basic
morphological event during B cell activation stimulated by mAg
(59, 60).

THE ACTIN CYTOSKELETON
POTENTIALLY PARTICIPATES IN B CELL
ANTIGEN RECEPTOR TRIGGERING

There are more than 100,000 BCR complexes expressed on the
surface of a mature B cell (47). How these BCRs keep inactive
and how they are triggered by antigens is a key question in
B cell researches, but so long hasn’t been well-understood. In
recent years, several new models have been raised about this
question. All of them focus on BCR conformation and BCR-
BCR interactions which seem different between BCRs within
nanoclusters and those within antigen-induced microclusters.
The conformation induced oligomerization model (CIOM)
suggests that in resting B cells, the majority of BCRs exists as

monomers, and the activation is inhibited due to interactions
between themselves which leads to blocking of the ITAMdomain.
Antigen-binding induced conformational changes expose the
ITAM domain to recruit signaling molecules and allow BCR to
form signaling-active oligomers (9, 49). This model may provide
explanation for the signaling attenuation during the formation of
BCR central cluster (later discussed), since both resting BCRs and
BCRs within central clusters have similar lateral mobility which is
controlled by the actin cytoskeleton (later discussed), suggesting
the potential role of the actin cytoskeleton in the switch of
BCR state between inhibition and activation. Other explanations
include the dissociation activationmodel (DAM), which supports
BCRs mainly existing as self-suppressed oligomers in resting
B cells. The binding of antigen promotes dissociation of BCR
olignomers and leads to BCR activation (13, 56, 65). During this
process, BCR dissociation from oligomers and aggregation into
larger clusters are considered as events happened at different level
of size as well as time point. It was found treating B cells with only
Lat-PLA induced the dissociation between BCR oligomers (Reth
M. et al. unpublished data) (66), suggesting that it’s likely that the
disruption of the actin cytoskeleton results in BCR dissociation at
the initiation of BCR activation.

THE ACTIN CYTOSKELETON REGULATES
THE FORMATION OF BCR
MICROCLUSTERS AND THE IMMUNE
SYNAPSE

BCR microclusters can also be defined as the
“microsignalosomes” as they recruit intracellular signaling
molecules and adaptors such as Lyn, Syk, Vav, PLC-γ 2, and
CD19, and thus mediate signal transduction (18, 19, 67, 68).
Later BCR microclusters together with the associated antigens
aggregate into a central cluster. The central cluster acts as the
core of the immune synapse and the region where the later
antigen extraction takes place (59). The level of BCR signaling
and the quantity of antigens which are later presented to T
cells depend on the process of BCR-microcluster and immune-
synapse formation (61), and the extent of B-cell activation is thus
determined. To achieve maximized activation in response to
different antigens, the formation of BCR microclusters and the
immune synapse differs according to different antigen properties
including density, valency, affinity, mobility, and the stiffness
and topography of the antigen-binding substrates (49, 69–71).
The mechanism underlying this adaptive capacity of B cells is the
regulation of actin cytoskeleton.

Regulation on BCR Mobility
As we have mentioned, in resting B cells, the mobility of BCRs is
restricted. It has been showed that the cortical actin cytoskeleton
acts as a barrier to confine BCR diffusion. The efficiency of
the restriction on BCR diffusion depends on the cytoplasmic
domain of Igβ on a large scale (51). Observations showed the
mobility of BCRs is negatively related to the density of F-actin
in the plasma membrane (51). Treating B cells with Latrunculin
A leads to the disruption of the actin network, which can
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increase BCR diffusion (46, 51, 72). Furthermore, studies using
high-speed dual-view acquisition TIRFM to observe the BCR
as well as actin and ezrin simultaneously showed that ezrin
together with actin formed the network which confines BCRs
in nanoscale compartments. In resting B cells, ezrin in an open
active conformation is associated with the actin cytoskeleton as
well as integral membrane proteins through Csk-binding protein
(Cbp), thus confine the diffusion of membrane proteins (73). The
expression of ezrin with abnormal construct (Ez-DN) which is
not able to bind to actin cytoskeleton can increase BCR mobility
(53).

When BCRs bind to antigens, the actin cytoskeleton firstly
undergoes a transient depolymerization (53, 58). At the same
time, there is an increase in BCR diffusion (51). The disassembly
of actin cytoskeleton is induced by cofilin-mediated severing
and ezrin-dephosphorylation-mediated dissociation between
F-actin and plasma membrane (53, 58). The disassembly
of F-actin frees BCRs, both antigen-bound, and unbound
ones from the barriers, which permits BCR nanoclusters to
collide and interact with each other to form microclusters
(53), thus amplify signaling (74). Recent studies found that
lipopolysaccharide and CpG DNA, both of which are Toll-like
receptor ligands, enhance BCR signaling through increasing
cofilin activation (75). Increased BCR mobility primes B cells
for more rapid microcluster formation when encountering
antigens, which lower the threshold for B-cell activation.
Soon after actin disassembly, there is a rapid reassembly
of F-actin, while the structure becomes more dynamic and
polarized than the pre-actived one. It’s indicated that the flow
of actin driven by myosin also promotes BCR microcluster
formation (76). F-actin can be pushed into aster-like structures
by myosin, which influences the diffusion of its binding
proteins and potentially promotes them into clusters (77–
79). Besides, during B cell activation, linear BCR movements
at the periphery of filopodia which is defined as an actin-
rich area have been observed (9), suggesting the diffusion
of BCR clusters may be influenced by different F-actin-based
structure.

Increased BCR mobility induced the interaction between the
BCR and its co-receptor CD19. In resting B cells, the protein
islands of BCR and CD19 are located in separated compartments,
and the interaction between them is inhibited (46, 47, 80). In
contrast to BCRs, the mobility of CD19 is not affected by the
disruption of the actin cytoskeleton apparently. Instead, the lack
of CD81 increases CD19 mobility when the actin cytoskeleton is
disrupted (46, 47), indicating that the immobilization of CD19
was due to its existence in protein islands organized by CD81
on a large scale. A recent study has found WIP influenced
CD19 diffusion through regulating CD81 expression rather than
actin reorganization (81). Though the mobility of CD19 is
limited, disruption of the actin cytoskeleton can initiate CD19
signaling pathway (47). These observations suggest that the actin
cytoskeleton inhibits the interaction between BCRs and CD19 in
the resting state mainly through the restriction of BCR mobility
(64, 78, 82). The break of the barrier and the increase in BCR
mobility allow the access of BCR to CD19, and thus induce CD19
signaling (47).

Regulation on B Cell Morphology
As we have mentioned, the B cell undergoes a two-phase
morphological change in response to mAg. The two-phase
change depends on actin cytoskeleton remodeling. Upon
antigen stimulation, breakdown of the cortical cytoskeleton
is concomitant with assembly of branched F-actin at the
cell periphery (58, 59). Filopodia firstly appears to contact
the antigen-associated membrane. Soon after the stimulation,
F-actin accumulates at the contact area particularly in the
peripheral region to generate filopodia and lamellipodia which
make dynamic changes between extension and contraction (41).
These dendritic actin structures promote B-cell spreading which
extends the contact zone between the B cell and the antigen-
associated membrane. When the filopodia and lamellipodia
extend, new BCR microclusters form, often at the tip of
these structures, and newly formed BCR microclusters are
pushed inward when the filopodia and lamellipodia contract
(41, 60). Simultaneously with the formation of the dendritic
actin structure, the MTOC and microtubule networks undergo
reorganizations toward the contact area, which promotes BCR
microclusters aggregating into the center cluster (83). This
process needs the participation of dynein motor protein
and IQGAP1 which can link the microtubule and the actin
cytoskeleton (84), and depends on cofilin-mediated actin
severing and actin-mediated B cell spreading (85). The contact
area between the B cell and the antigen-associated membrane
keeps increasing as actin accumulates, during a several-minute
timescale which is concerned with the nature of antigens (59). F-
actin accumulation is followed by a decrease in the region nearby
merging BCR clusters, while the level of F-actin maintained
at the periphery of the contact area (41, 58, 74). At the
same time, there is a reduction in B cell membrane dynamics,
accompanied with contraction rather than extension of the
filopodia and lamellipodia. These finally result in the contraction
of the contact zone, during which the retrograde flow of actin
and the mechanical force provided by contraction leads to the
aggregation of BCRmicroclusters and finally the formation of the
BCR center cluster (59, 60).

The regulation of actin cytoskeleton on B cell morphological
changes produces both positive and negative effects on BCR
signaling. During B cell spreading, the B cell contacts with
the antigen-associated membrane to recognize and combine as
many antigens as possible, and promotes the formation of new
BCR microclusters, which amplifies BCR signaling. During B-
cell contraction, BCRmicroclusters as well as the bound antigens
merge into the central cluster (59). This coalescence is associated
with BCR signaling attenuation at B cell surface, which can be
inhibited by blocking B cell contraction (60), suggesting BCR
central cluster formation promoted by the actin cytoskeleton is
a mechanism for the down-regulation of BCR signaling.

Regulation on the Interaction Between
Signaling Molecules
The actin cytoskeleton regulates the interaction between
signaling molecules through its influence on the diffusion
of membrane molecules. The transient disassembly and later
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assembly of the actin cytoskeleton apply distinct influence in
different stage of BCR signaling. Dissociation of the actin
cytoskeleton increases the mobility of proteins and thus
promotes collisions between them (80). As mentioned above, the
reorganization of the actin cytoskeleton induces the interaction
between CD19 and BCRs by increasing BCR mobility. Besides,
the function of the negative co-receptor CD22 on BCR is also
regulated by the actin cytoskeleton. Different from CD19, the
regulation is through CD22 itself, which seems be associated with
a sialic acid-binding domain which was found closely correlated
with CD22 lateral mobility and nanocluster organization (46).
CD22 performs its inhibitory function through the recruitment
of SH2-domain-containing phosphatase-1 (SHP-1) and the
inositol phosphatase SHIP, downstream signaling molecule of
FcγRIIB which is a negative co-receptor of BCRs, to its immune-
receptor tyrosine-based inhibitory motifs (ITIMs) after BCR
activation (82, 86, 87). Studies have proved that during BCR
activation led by the disruption of the cortical actin, the lateral
mobility of CD22 is increased and resulted in a relatively low
level of BCR signaling compared with BCR crosslinking (41, 46),
suggesting that the negative function of CD22 on BCR signaling
is partly inhibited by the actin cytoskeleton. Besides the co-
receptor of BCRs, the actin cytoskeleton regulates dynamics
of lipid rafts through the actin-binding protein ezrin (72, 73),
and thus influence the interaction between BCRs and various
signaling molecules anchored to or associated with lipid rafts.
In resting B cells, BCRs are separated from lipid rafts and there
is little affinity between them (72). The binding of antigens to
BCRs which induces a transient ezrin dephosphorylation leads
to a detachment of lipid rafts from the actin cytoskeleton, and
promotes the interaction between BCRs and lipid rafts (18, 73)
where downstream molecules such as Src family kinases are
anchored (72). Soon after the transient dephosphorylation, there
is a rephosphoryation of ezrin, leading to the reassembly of the
actin cytoskeleton (53). Reassembly of the actin cytoskeleton
stabilizes the interaction between BCR and other signaling
molecules through trapping and stabilizing the raft-localized
signaling complex (53, 72).

Besides, downstream signaling molecules can interact
indirectly with the actin cytoskeleton and the recruitment of
these molecules to BCR clusters can be promoted by actin
associated proteins. For example, Grb2, the BCR signaling
adapter, can be recruited through WASP, and promotes BCR
signaling (88). The recruitment of molecules through actin
cytoskeleton also down-regulates BCR signaling. As we have
discussed earlier, BCR central-cluster formation is accompanied
with the attenuation of BCR signaling. Themolecularmechanism
underlying this process has not been clearly understood, but
a possible explanation is that actin regulators or adapters
promote the inhibitory signaling molecules being collected to
BCR clusters. From our unpublished data, it was found that
during BCR signaling attenuation, neural WASP (N-WASP),
an actin nucleation promoting factor, and the actin adapter
protein Abp1 are recruited to BCR microclusters. Abp1 was
found negatively regulate T-cell signaling through recruiting
HPK1, a negative signaling molecule, to the immune synapse
of T cell (89). Besides, N-WASP was found promoting the

localization of SHIP to F-actin in poxviruses (90). To conclude
these findings, it’s supported that actin regulators involved in
the signaling attenuation stage are likely to promote inhibitory
signaling-molecule recruitment and down-regulate signaling.

BCR SIGNALING REGULATES ACTIN
REMODELING

During these processes of B-cell activation, the actin cytoskeleton
undergoes dynamic, directional, and coordinated reorganization,
which needs to be precisely regulated in response to extracellular
clues. The polymerization of actin has been detected where the
formation of BCR microclusters take place (41, 60, 74), and
tyrosine kinase inhibitors could block actin remodeling induced
by antigen stimulation (51), suggesting the regulation of the actin
cytoskeleton actually depends on BCR signaling (Figure 1).

BCR Signaling Regulates the
Disassociation of Actin Cytoskeleton From
the Plasma Membrane
BCR signaling firstly induces the disassociation between
the cortical actin and the plasma membrane through the
regulation of the ERM proteins (53, 73, 91). ERM proteins
interact with the plasma membrane through a common FERM
region within the N -terminal domain and bind to F-actin
through the actin-binding domain within the C terminus (42,
92). The phosphorylation of the critical threonine residue
in the C terminal domain of ERM proteins induces the
opening and exposure of the FERM structure and the actin-
binding domain, and enables ERM proteins binding to both
cortical actin cytoskeleton and plasma membrane. While the
dephosphorylation in this domain leads to a closed conformation
which both of the N- and C- terminal ends are engaged in
an intramolecular association (93, 94), and results in ERM
proteins uncoupling with F-actin and the plasma membrane.
The conformational changes are controlled by phospholipids
and kinases-mediated phosphorylation (29, 91). PIP2 promotes
the recruitment of ERM to the membrane and the exposure
of threonine residues within the C terminal domain which are
phosphorylated by other signaling protein kinases including
myotonic dystrophy kinase-related Cdc42-binding kinase, Rho-
associated protein kinase (ROCK), protein kinase C, Nck
interacting kinase, and lymphocyte-oriented kinase (LOK) (95–
100). Activation of PLC γ which transforms PIP2 to IP3 induces
the closed conformation of ERM proteins and disassociation
of ERM proteins from the plasma membrane (101). Decreased
level of PIP2 resulted from increased PLCγ activity was found
enough to induce ERM dephosphorylation (102) (Figure 2).
The following model of the regulation of ERM proteins during
B-cell activation is suggested: during B cell activation by
antigen stimulation, BCR signaling firstly induces a transient
dephosphorylation of ERM, which increases themobility of BCRs
and lipid rafts by the disruption of spatial confinements (53).
Followed BCR clustering and interaction with lipid rafts amplify
tyrosine phosphorylation, and the continuous BCR signaling
leads to rephosphorylation of ERM (53).
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FIGURE 1 | Overview of BCR signaling molecules involved in actin remodeling. CD19, PIP2, PLCγ2,PKC, the Rho family, and Rap GTPase, Btk, calcium, and WASP

are major BCR signaling molecules involved in actin remodeling. These signaling molecules as well as their regulators form a network to participate in

actin-cytoskeleton reorganization during B-cell activation.

BCR Signaling Regulates F-Actin Severing
The transient dephosphorylation of ezrin is accompanied with a
decrease of F-actin induced by actin severing proteins (58, 72).
The severing of pre-existing F-actin produces barbed ends and
enough actin monomers for the formation of new branches of F-
actin. Cofilin, one of the actin-severing proteins, takes a major
part in actin severing during the activation of the B cell (58).
In resting B cells, its actin-binding activity is inhibited due to
phosphorylation of the serine 3 residue. The dephosphorylation
at this region through Slingshot phosphatase (SSH) (103), which
is inhibited by 14-3-3 protein-mediated sequestration, leads to
the activation of its F-actin severing ability. BCR signaling
molecules including GTPase Rap1 and the Rho family are
suggested to participate in regulating cofilin activity. RhoA can
inhibit the activity of cofilin through ROCK1which activates LIM
domain kinase 1 (LIMK1) which directly phosphorylates the ser
3 residue (104), while Rac and CDC42 activate the kinase PAK1
which also induces the phosphorylation of LIMK1 (105). In the
contrast, GTPase Rap1 has been found to directly promote cofilin
dephosphorylation (58). The mechanism underlying cofilin
dephosphorylation induced by Rap has not been made clear.
Since cofilin is phosphorylated mainly by LIMK1 which is not
reduced by BCR signaling, the activation of cofilinmay be a result
of increased activity or release of SSH through various effector
proteins of Rap1 GTP (58). Studies have proved that during B
cell activation, the regulation of Rap on cofilin is crucial in B-
cell spreading and BCR-microcluster formation, and also in the

regulation of both actin and microtubule network at the immune
synapse (58, 85). Besides, it is showed that dephosphorylation
of cofilin relies on cytoplasmic Ca2+ in different types of
cell (105, 106). Increased level of intracellular Ca2+ promotes
cofilin activation through direct or indirect interactions with the
calcium-dependent phosphatase calcineurin. In B cells, the level
of cytoplasmic Ca2+ has been found to directly correlate with
the generation and disruption of the protrusive actin structures,
and was implicated indispensable in both B cell adhesion and
spreading to antigen-presented surface (106). The increase of
Ca2+ induces the depolymerization of F-actin in the membrane
protrusions, while the sequestering of Ca2+ leads to the growth
of F-actin. The regulation of Ca2+ on cofilin may be one of the
molecular mechanisms underlying the link between cytoplasmic
Ca2+ and actin dynamics (106, 107) (Figure 2).

BCR Signaling Regulates Actin
Polymerization
Regulation of BCR signaling on actin polymerization is mainly
mediated by the actin-nucleation promotion factor WASP
and WASP-family verprolin homologous protein WAVE
(43, 78, 108) which are directly regulated by the Rho family
GTPase (109). WASP binds to and activates Arp2/3, and
thus induces actin polymerization (110). WASP contains the
CDC42/Rac-interactive (CRIB) and the C-terminal verprolin
homology/cofilin-homology/acidic (VCA) region. The two
regions interact with each other and lead to a basely inactive
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FIGURE 2 | Regulation of BCR signaling on the actin cytoskeleton. The association of the actin cytoskeleton with the plasma membrane is mediated by activated

ERM proteins. The ERM proteins are first recruited to the plasma membrane by PIP2, and then phosphorylated by PKC, LOK, and effector proteins of RhoA, CDC42,

and Nck. PLCγ2 induced inactivation of the ERM proteins through its down-regulation on PIP2. Activation of cofilin induces F-actin severing, which is regulated by the

Rho family and Rap1 GTPase, and also intracellular calcium. BCR signaling regulates actin polymerization mainly through the actin-nucleation promotion factor WASP

and WAVE, both of which can promote the nucleation effect of Arp2/3. Profilin and DIAPH1, which are regulated by RAP1 and RhoA, respectively, are suggested to

participate in actin polymerization during B-cell activation. BCR signaling also influences contraction of the actin cytoskeleton through the regulation of RhoA on

myosin.
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auto-inhibitory conformation of WASP (110), and the binding
of WIP to the WASP homology 1 region (WH1) stabilizes
this inactive conformation (23, 24). When BCR is stimulated,
activated CDC42 binds to the CRIB region and PIP2 combined
with the basic region of WASP, inducing conformational
changes. The changes allow the conserved tyrosine and serine of
WASP be phosphorylated by the Src family kinases, which can
further stabilize its open conformation. Opening and activated
WASP binds to G-actin and Arp2/3 via the VCA region, and
leads to the branching of F-actin (110). WASP deficient B cells
showed impaired formation of central clusters, internalization
of antigen and increasing BCR signaling (60). Additionally,
N-WASP which is 50% homologous with WASP also functions
in B cells (111, 112). Studies showed that deficiency of both
WASP and N-WASP resulted in more severely disrupted B
cell spreading and BCR microcluster formation compared
with WASP-deficient only B cells (113, 114). However, the
influence on the amount of F-actin was opposite in WASP
and N-WASP-deficient B cells, suggesting redundancy but also
distinct functions of WASP, and N-WASP (113). The binding
of WIP stabilizes WASP and protects it from degradation,
and thus participates in actin reorganization. Besides, WIP
directly binds to and promotes polymerization of F-actin in a
WASP-independent way (81, 115). It was found that binding of
WIP to actin influences CD19 diffusion through the regulation
of CD81 expression (116, 117). In T cells, WIP acts as a bridge
to bring dedicator of cytokinesis protein 8 (Dock8), a GEF for
CDC42 to WASP and actin, and may be another mechanism for
the regulation of WIP on the actin cytoskeleton in B cells (118).

BCR signaling molecules Btk and SHIP-1 play an important
role inWASP regulation. During B cell activation, Btk is recruited
to the plasma membrane and is phosphorylated, which requires
PI3K activation (CD19 signaling pathway), and kinase Lyn or
Syk (119, 120). Phosphorylated Btk later activated PLCγ2 and
triggers Ca2+ signaling (20, 61). Besides, Btk acts as the scaffold
which brings PIP5KI to the plasma membrane and thus leads to
the production of PIP2 (121, 122). Btk has been confirmed as
an important signaling molecule in promoting WASP activation
via Vav and PIP2 (123) or through direct interaction with
WASP (124). It was found that Btk is indispensible in BCR
cluster formation and B cell spreading. The activation of Btk
is inhibited by SHIP-1 (120, 125), and participates in BCR
central cluster formation and BCR signaling attenuation (60).
There exists a balance between CD19-Btk and FcγRIIB-SHIP
mediated signaling (60). Abnormal changes of the signal strength
is concerned with immunological diseases. It has been found
that BCR signaling molecules including Dock8, Mst1, andWASP
positively regulate cd19 transcription (116, 126, 127). Deficiency
of these proteins all leads to decreased CD19-Btk signaling,
which results in reduced BCR clustering and B cell spreading on
antigen-associated membrane. These findings provide with new
mechanisms for the symptoms of immunodeficiency diseases
(116, 117, 126–128).

The WAVE complex is combined of five subunits in B
cell, including specifically Rac-associated protein 1 (Sra1), Nck-
associated protein 1-like (NCKAP1L), ABL interactor 1 (ABI1),
WAVE2, and hematopoietic stem/progenitor cell protein 300

(HSPC300) (129). This complex undergoes changes from inactive
to active state during the stimulation of BCR. When stimulated,
the binding of Rac-GTP to Sra1 of theWAVE complex potentially
induces the conformational changes and permits access ofWAVE
to the Arp2/3 complex and G-actin, which leads to actin
polymerization, and thus the WAVE complex participates in the
formation of membrane protrusion during B cell mobility (130,
131). The Rac-GTP contains Rac1 which is universally expressed
and Rac2 which is expressed only in the hematopoietic system.
Both of them are activated during BCR signaling. It was found
that Rac2 rather than Rac1 plays an important role in both B-cell
adhesion to ICAM-1 and immune-synapse formation during B-
cell activation, and Rac2-deficient B cells exhibit impaired actin
polymerization (43). Rac1 and Rac2 can compensate each other
to some extent, but either of their deficiency can lead to failure
in B-cell maturation (132). The different functions as well as
the redundancy between these two Rac proteins need further
studies.

Other proteins involved in BCR signaling mediated actin
polymerization include profilin which can be recruited through
GTP Rap1 effector proteins RIAM andAF-6 (22). The Rho family
member RhoA is suggested to promote actin polymerization
through its effector diaphanous homolog 1 (DIAPH1) which
takes a part in regulating dynamics of F-actin (133). Besides,
RhoA regulates the flow of F-actin through ROCK which
increases levels of phosphorylated myosin light chains (MLCs)
(134) which binds to and stimulates contraction of the ends of
F-actin (Figure 2).

CONCLUDING REMARK

In vivo, B cells are activated mainly by membrane-associated
antigens which differ in various properties including density,
distribution, mobility, valence as well as the topography
and stiffness of the presenting membrane, and thus require
exquisite regulation to adjust to different environment. The
cooperation between BCR signaling and the actin cytoskeleton
is the mechanism underlying this innate regulation of B
cells (71). During B cell activation, the actin cytoskeleton
undergoes reorganization which is essential for changes in BCR
mobility, B cell morphology and molecular interaction, and
thus influences the formation of BCR microclusters and the
immune synapse, which are important for BCR signaling and
antigen accumulation. The dynamic of the actin cytoskeleton
is in turn modulated by BCR signaling, and thus forms a
feedback loop. In the network composed of BCR signaling
molecules, different molecules may have similar effects on the
cytoskeleton, while one molecule may have opposite functions
through regulating different actin-binding proteins, and there
exists regulatory relationship between these molecules, which
makes it difficult to study the specific regulating mechanism
underlying the entire process of B cell activation. Besides, it
needs to be explored in the future whether or how the actin
cytoskeleton participates in triggering BCR signaling initiation
and in the distinct response to antigens of different B cell
subsets, and how the actin cytoskeleton is influenced by the
milieu of stimuli. Understanding of the cooperation between
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the actin cytoskeleton and BCR signaling will help us to find
new mechanisms and targets in B-cell related immunological
diseases.
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NOMENCLATURE

Ag, antigen; BCR, B cell receptor; Btk, Brutons tyrosine kinase

CD19, cluster of differentiation 19; Cdc42, cell division control
protein 42; ERM, ezrin-radixin-moesin; F-actin, filamentous

actin; FcγR, Fc gamma receptor; Igα, immunoglobulin α chain;

Igβ, immunoglobulin β chain; IgM, immunoglobulin M; IgG,

immunoglobulin G; ITAM, immunoreceptor tyrosine-based
activation motif; Lyn, LYN proto-oncogene; Src family tyrosine

kinase; mAg, membrane-associated antigen; MHC, major
histocompatibility complex; Erk, phosphorylated extracellular
regulated protein kinases; PKC, protein kinase C; PI3K,
phosphatidylinositol 3-kinase; PLCγ, phospholipase C gamma
2; pSHIP, phosphorylated SH2-containing inositol phosphatase;
Syk, spleen tyrosine kinase; TIRFm, total internal reflection
fluorescent microscopy; TCR, T cell receptor; Vav, vav guanine
nucleotide exchange factor; WASP, Wiskott-Aldrich syndrome
protein.
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