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Abstract

Ecological control of blackflies (Simulium damnosum) can be an alternative or additional

tool to enhance onchocerciasis elimination efforts. However, limited research is conducted

on the ecology of blackflies in Ethiopia. In this study, we determined the habitat preference

of blackfly larvae and their relationship with aquatic macroinvertebrate predators in the Omo

Gibe river basin of southwest Ethiopia. Environmental and biological data were collected

from 150 sampling sites during both dry and wet seasons in 2019. Generalized Linear Mod-

els (GLMs) were used to identify factors affecting the occurrence and abundance of S. dam-

nosum larvae. Canonical Correspondence Analysis (CCA) was used to investigate the

relationship between environmental and biological variables and the abundance of S. dam-

nosum larvae. The findings of this study indicated the abundance of S. damnosum larvae

increased with increasing turbidity, alkalinity and altitude, but decreased with increasing

concentrations of five-day Biological Oxygen Demand (BOD5), orthophosphate and magne-

sium ion. Both the presence and abundance of S. damnosum larvae decreased with the

increasing abundance of stonefly larvae (Perlidae). Simulium damnosum larvae were found

less likely in the presence of mayfly larvae (Baetidae) and were less abundant where Chiro-

nomidae are abundant. In conclusion, the findings of this study showed that the habitat pref-

erence of S. damnosum larvae is determined by environmental factors and that the

presence and abundance of the larvae are affected by macroinvertebrate predators. It is

essential to establish buffer zones as a part of watershed management to retain pollutants

and prevent them from entering directly into water courses to improve water quality and the

assemblages of macroinvertebrate predators and enhance biocontrol of blackflies.
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Introduction

Blackflies are insects of medical and veterinary importance whose immature stages are exclu-

sively aquatic [1]. The family Simuliidae comprises about 26 genera and more than 2000 spe-

cies, most of which are hematophagous [2]. Simuliids have a holometabolous development

cycle [3]. The immature stages of blackfly inhabit lotic water bodies which are the sessile filter-

feeding larvae and they are often forming a large proportion of the benthic biomass [3, 4].

They are confined to well-oxygenated sections of streams, rivers, waterfalls and spillways since

adult fly prefers these habitats for laying eggs and in addition, it is a suitable environment for

larval development [5]. There is a worldwide distribution of simuliid and the taxon is found in

most rivers extending from the tropics to the Arctic Circle, even in desert ecosystems and in

high polar latitudes, and coral islands [6]. Simuliids are found attached to various substrates in

freshwater streams and exhibit a peculiar selection of breeding habitats [7]. Adult female

blackflies require a blood meal to reproduce [8]. In view of this, human settlements close to

rivers and streams are usually more affected by the biting nuisance and infection [9, 10].

Adult female blackflies of the genus Simulium are known for transmitting a filarial worm

Onchocerca volvulus, the causative agent of onchocerciasis or river blindness [11]. In Ethiopia,

two blackfly species have been identified to be vectors of O. volvulus. Simulium damnosum
sensu lato (s.l.), the major vector of O. volvulus, has a wide distribution throughout endemic

and non-endemic areas of the country. Simulium ethiopiense, which has a restricted distribu-

tion in the smaller rivers of the southwestern midlands and the highlands and which is often

sympatric with S. damnosum s.l., is suspected to play a secondary role [12]. Onchocerciasis is

one of the most important neglected tropical diseases and it is the world’s second-leading

infectious disease causing blindness, after trachoma [13]. Globally, an estimated 37.2 million

people are infected with onchocerciasis and approximately 1 million people are blind or visu-

ally impaired and another 120 million people are at risk of infection [14]. It is estimated that

99% of the cases are found in Africa [15]. The disease is also endemic in Yemen and certain

Americas countries [16]. In Ethiopia, about 20 million people live in the surveyed endemic

areas and 3 million people are infected with onchocerciasis [17].

The Federal Ministry of Health of Ethiopia developed a Master Plan and Roadmap to elimi-

nate onchocerciasis by the end of 2020 and to be certified free from onchocerciasis by 2025

[18]. Ivermectin is a safe and highly potent microfilaricidal drug that has assumed a major role

controlling or eliminating onchocerciasis [19]. Despite the use of Ivermectin for many years,

the transmission of onchocerciasis in many districts remained unabated [20]. The main chal-

lenge experienced in eliminating onchocerciasis is the possibility that Ivermectin resistance is

emerging [21–23]. There are reports of O. volvulus responding poorly to the anti-fecundity

effect of Ivermectin in Ghana [24, 25] and Cameroon [26, 27]. Therefore, there is a need for an

alternative or additional tool to reduce the current reliance on the chemotherapeutic approach

using Ivermectin for the successful elimination of onchocerciasis.

Ecological control of immature blackflies can be an alternative or additional tool to enhance

onchocerciasis elimination efforts [28]. Therefore, knowledge of the ecology of target species is

crucial to consider ecological control of immature blackflies as a component of an integrated

onchocerciasis elimination program [5, 29]. Previous studies have reported that the habitat

preference of blackflies is determined by a wide range of environmental factors including

water temperature, pH, turbidity, dissolved oxygen, biological oxygen demand, electrical con-

ductivity, total suspended solids, total dissolved solids, nitrate, orthophosphate, alkalinity,

hardness, riparian vegetation cover, canopy cover, stream flow velocity, stream flow rate, alti-

tude and others [5, 7, 29–37]. In addition, ecologists have revealed that biotic factors such as

predation [38, 39] and competition [40] are important drivers of the blackfly population.
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Several aquatic macroinvertebrates in the Hemiptera, Trichoptera, Plecoptera, Odonata, Ephe-

meroptera and Coleoptera orders have been reported as potential biocontrol agents of blackfly

larvae [29, 41–46]. The co-occurrence of blackfly larvae and their potential macroinvertebrate

predators is what is expected of organisms that exercise mutual population regulation in

aquatic environments [7, 47]. In this context, aquatic macroinvertebrate predators could be

used as potential biocontrol agents of immature blackflies, implying this strategy can manage

Ivermectin resistance to enhance onchocerciasis elimination efforts. Because of environmental

heterogeneity among ecological regions, it is essential to understand the ecology of blackflies

at the local level. Except for a few studies by Ambelu et al. [29], little is known about the ecol-

ogy of blackflies in Ethiopia.

Therefore, this study aimed to determine the habitat preference of blackfly larvae and their

relationship with aquatic macroinvertebrate predators in the Omo Gibe river basin of south-

west Ethiopia. The findings of this study provide valuable information that can be used to

identify preferred habitats by blackfly larvae and design biocontrol of blackflies as a potential

alternative or additional tool to support the efforts to eliminate onchocerciasis.

Methods

Study area

This study was conducted in the Omo Gibe river basin in southwest Ethiopia (Fig 1). The

Omo Gibe river basin lies between latitudes 4˚25051.6"N and 9˚22028.05"N and longitudes 33˚

0024.4"E and 38˚24042.24"E. The total area of the catchment is about 79,000 km2 with a length

of 550 km and an average width of 143.64 km [48]. The area is drained by some of the major

rivers of the country, such as the Omo, Gilgel Gibe, Gojeb, and their numerous tributaries.

These have created the dissected terrain. Nearly half of the country’s remaining natural forests

are found in this region [49]. It is an enclosed river basin that flows into Lake Turkana in

Kenya, forming its southern boundary. The western watershed ranges from hills and

Fig 1. Map of the study area and locations of the sampling sites in the Omo Gibe river basin, southwest Ethiopia.

https://doi.org/10.1371/journal.pone.0264750.g001
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mountains that separate the Omo Gibe basin from the Baro-Akobo basin. To the north and

northwest, the basin is bounded by the Blue Nile basin with a small area in the northeast bor-

dering the Awash basin [48].The mean annual rainfall and temperature of the basin are 1425

mm and 19.2˚C, respectively [50].

Spatial mapping of sampling sites

A Digital Elevation Model (DEM) data and Sentinel-2 images of the study area were downloaded

from the United States Geological Survey website (https://earthexplorer.usgs.gov) from which

altitudinal difference and Land Use/Land Cover (LULC) were computed. Sentinel-2 images with

a spatial resolution of 10 m were used to assess LULC of the study area through Earth Resource

Data Analysis System (ERDAS) 2015 image processing software. Images used dated from the dry

season of 2019. Prior to image analysis, initial processing on the raw data was carried out to cor-

rect for any distortion due to the characteristics of the imaging system and conditions. In pre-

processing of images; layer stacking (band composite), mosaic of different swath images and

sub-setting of an image to the study area were done using ERDAS image 2015 to form a different

combination of red, green, blue color composition. Supervised classification was carried out for

identifying LULC types in the study area. Among different algorithms in the supervised classifi-

cation, maximum likelihood, which assumes that each spectral class can be described by a multi-

variate normal distribution, was utilized. For this supervised image classification, training areas

were established based on the ground control point taken during fieldwork. The map templates

of different LULC types were computed from these satellite images. The catchment landscape

(LULC around sampling sites) was classified into five categories, including forest, shrub, wet-

land, farmland and settlement area based on the guideline of the Food and Agriculture Organi-

zation (FAO) [51]. Forest are areas with trees reaching 5 m in height, greater or equal to 0.5 ha

in area and a canopy cover of>10% without other land use. Shrub are areas covered with dense

or scattered grasses and wood, shrubs and trees. Wetland is plain land along rivers characterized

by the presence of emergent aquatic plants. Farmland are areas characterized by the presence of

any agricultural crops and bare ground that had been prepared for planting crops. Dispersed

rural settlements and homesteads were classified as settlement areas [51].

To assess the classification accuracy, a confusion matrix was employed. Accuracy of the

classified LULC maps was assessed using a combination of overall accuracy, producer’s accu-

racy, user’s accuracy, errors of commission and omission [52] and kappa coefficient [53].

Hence, the overall accuracy of satellite image classification in the study area is 87.33% with a

Kappa index agreement of 0.8492.

The study area and LULC were mapped and visually digitized using the satellite image in

the Geographic Information System (GIS) software packages ERDAS 2015, ArcGIS 10.7 and

validated by ground truth points. The DEM image of the study area derived from Advanced

Spaceborne Thermal Emission and Reflection Radiometer of 30 m re-sampled to 10 m spatial

resolution is given in Fig 2.

Both environmental (physico-chemical water quality parameters and ecological habitat

characteristics) and biological (blackfly larvae and aquatic macroinvertebrate predators) data

were collected during both dry (April) and wet (November) seasons in 2019. Data were col-

lected from 150 sampling sites in the Omo Gibe river basin of southwest Ethiopia. Sampling

sites were selected according to their accessibility and the presence of water flow.

Environmental variables

Measurements of environmental variables were carried out both in the field and in the labora-

tory. Physico-chemical water quality parameters, such as water temperature, dissolved oxygen,

PLOS ONE Habitat preference of blackflies in Omo Gibe river basin of southwest Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0264750 March 4, 2022 4 / 17

https://earthexplorer.usgs.gov/
https://doi.org/10.1371/journal.pone.0264750


pH and electrical conductivity, were measured onsite using a portable Multi-Probe Meter

(HQ40d Single-Input Multi-parameter Digital Meter; Hach Company, Loveland, USA). Water

turbidity was measured using a Turbidity Meter (Wag-WT3020; Halma PLC Company, Amer-

sham, UK). Total dissolved solids were measured using a Palintest (Palintest Photometer 800

Field Kit; Camlab Limited, Wigan, UK). A water sample (2000 ml) was collected from each

sampling site in polyethylene bottles and transported to the laboratory using an ice cooler

box for analysis of other physico-chemical parameters. A water sample (250 ml) was filtered

through a 0.45 μm filter paper and then analyzed for concentrations of alkalinity, total hard-

ness, nitrate, ammonia, orthophosphate and ions such as chloride, calcium and magnesium.

An unfiltered water sample was used to determine the concentrations of total suspended sol-

ids, five-day Biological Oxygen Demand (BOD5) and total phosphorus. These analyses were

carried out according to the standard method [54] at the laboratory of Environmental Health

Sciences and Technology of Jimma University.

Ecological habitat characteristics such as water depth, water body width, flow velocity and

flow rate were determined at each sampling site using a standard protocol [55]. Water depth

was determined with the aid of a labeled rod dipped vertically into the stream until the stream-

bed was reached, thereafter withdrawn and then the reading was recorded. Meter tape was

used to measure the width of the water body. A cork and a timer watch were used to measure

surface water flow velocity; the time taken for a cork to move one meter in the distance was

used to determine the velocity [56]. Water flow velocity, water depth and water width mea-

surements were used to estimate the flow rate. Classification of riparian vegetation cover

(open, brush, and forest), canopy cover (none, partial and complete) and dominant streambed

particle size (silt, sand, gravel, cobble, boulder and bedrock) were made following the protocol

by McCreadie et al. [56].

Fig 2. Digital Elevation Model (DEM) image of Omo Gibe river basin (southwest Ethiopia) indicating locations of

the sampling sites.

https://doi.org/10.1371/journal.pone.0264750.g002
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At each sampling site, altitude and point coordinates (latitude and longitude) were taken

using a hand-held global positioning system instrument (GPS 72H; Garmin Ltd., Olathe, Kan-

sas, USA).

Sampling and identification of S. damnosum larvae

Blackfly larvae were sampled using a standard hand-held rectangular drag (20×30 cm) with a

mesh net of 300 μm [57]. A stretch of 10 m distance of the stream flow was sampled for

approximately 10 min. Blackfly larvae were collected from all available substrates by hand

using fine forceps. Specimens were preserved in Carnoy’s solution (acetic acid: ethanol, 1:3)

and transported to laboratory for taxonomic identification. Only the matured larvae (showing

dark gill spots) were morphologically identified at species level using a stereomicroscope (10x)

and taxonomic identification keys for larvae of the African Simulium [58].

Sampling and identification of blackfly predators

Aquatic macroinvertebrates (other than blackfly larvae) were sampled from the same habitat

where blackfly larvae were sampled. The macroinvertebrate sampling was carried out using a

standard hand-held rectangular drag (20×30 cm) with a cutting metal frame covered with a

mesh net of 300 μm according to the method described by Gabriels et al. [57]. Collected speci-

mens were sorted in the field, preserved in 80% ethanol and transported to laboratory for taxo-

nomic identification. In the laboratory, the macroinvertebrates were identified at a family level

using a stereomicroscope (10×) and identification keys [55]. Macroinvertebrate families

including Chironomidae [43, 46, 59], Hydrometridae [39], Hydropsychidae [44, 45], Perlidae

[42], Gomphidae, Aeshnidae, Libellulidae, Coenagrionidae [41, 45, 46], Baetidae [46] and

Dytiscidae [46] have been reported as potential predators of immature blackflies. Therefore, in

this study, the presence or absence (1/0) and abundance of these macroinvertebrate predators

were considered as biotic factors to assess the occurrence and abundance of blackfly larvae.

Data analysis

The abundance of S. damnosum s.l. (hereafter S. damnosum) larvae did not follow a normal

distribution (tested with Shapiro-Wilk Normality test). Therefore, a non-parametric Kruskal-
Wallis Analysis of Variance (ANOVA) was used to analyze the variation in the larval abun-

dance among ecological habitat characteristics (i.e., type of canopy cover, type of riparian vege-

tation cover and streambed particle size). If significant differences were observed in Kruskal-
Wallis ANOVA, a Wilcoxon post-hoc multiple comparison test was used to identify signifi-

cantly different pairs. The post-hoc test was Bonferroni corrected. A Wilcoxon Rank-Sum test

was also used to compare the abundance of blackfly larvae between seasons. In addition, the

measurements of environmental variables of habitats with blackfly larvae were compared with

those of habitats without blackfly larvae using a Wilcoxon Rank-Sum test.

Generalized linear model. Generalized linear models (GLMs) were applied to determine

the habitat preference of S.damnosum larvae based on environmental variables. In addition,

separate GLMs were applied to determine the influence of macroinvertebrate predators on the

occurrence and abundance of S.damnosum larvae. A GLM with logistic regression was applied

to predict the occurrence of S. damnosum larvae, while a GLM with negative binomial regres-

sion was employed to predict the abundance of S. damnosum larvae. In the initial step of devel-

oping the models, the dataset was explored to detect outliers and collinearity among all

predictor variables to decrease the uncertainty of the model [60]. To find a set of predictors

that do not contain collinearity, Spearman’s rank-order correlation coefficient was determined

to generate a matrix of pairwise correlations between all the predictor variables. As correlation
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coefficients only show pairwise correlations, we calculated Variance Inflation Factors (VIFs) to

assess which predictor variables are collinear and should be dropped before starting the analy-

ses. This procedure continued until no further collinearity existed [60].

A stepwise backward selection procedure was followed to build the model starting from the full

model. The model with the lowest Akaike Information Criterion (AIC) value was retained as the

optimal model [60]. The goodness-of-fit of the models was assessed using the relations between

the residuals (the differences between observations and predictions by the retained model) and

predictor variables. The normality of the residuals was tested using a QQ-plot (probability plot).

Retained models were only considered reliable if no relations between the residuals and the predic-

tor variables were visually observed and residuals were normally distributed [60]; the retained

models were rejected otherwise. An alpha value of p< 0.05 was considered statistically significant.

Data exploration and regression modeling were performed using R software (Version 3.5.2) [61].

Multivariate analysis. Relationships between the environmental and biological (S. dam-
nosum larvae and blackfly predators) data were examined using multivariate analysis with the

software program CANOCO for Windows version 4.5 [62]. Detrended Correspondence Anal-

ysis (DCA) was used to determine the appropriate response (linear or unimodal) for biological

data. The performed DCA yielded a length of gradient greater than 2 standard deviations,

implying that the biological data exhibit a unimodal type of response along environmental gra-

dients. Therefore, we used Canonical Correspondence Analysis (CCA) for data analysis. Prior

to data analysis, when two or more variables had a VIF greater than 5, one of these variables

was removed from the analysis. AVIF of 5 and greater has been identified as an indicator of

collinearity in multivariate analysis [63]. Biological and environmental data, except pH, were

log-transformed [(log (x + 1)] to improve normality and homoscedasticity.

A stepwise forward selection was employed to identify the smallest set of statistically signifi-

cant variables that contribute most to the explained variance in the response variables. The sta-

tistical significance of eigenvalues and taxa-environment correlations generated by the CCA

were tested using a Monte Carlo test with 999 permutations [62].

Results

Occurrence and abundance of blackfly larvae

The only blackfly species that was collected during the study period was S. damnosum. A total

of 5927 S. damnosum larvae were collected, of which 3345 (56%) individuals were collected in

the wet season and 2582 (44%) in the dry season. The number of S. damnosum larvae per sam-

pling site for all collections varied from 0 to 283 individuals.

Spatial distribution of blackfly larvae

The spatial mapping for sampling sites indicated that habitats of S. damnosum larvae were

distributed across all LULC types in the study area. Simulium damnosum larvae more likely

present in habitats near shrub, whereas less likely present in habitats near human settlement

(Fig 3). Highest abundance of S. damnosum larvae was collected from habitats with riparian

forest cover (p< 0.05). There was no statistically significant difference in the abundance of

S. damnosum larvae between seasons as well as among types of canopy cover and types of

streambed particle size (all p> 0.05).

Importance of environmental factors

A summary of environmental variables used to determine the habitat preference of S. damno-
sum larvae is given in Table 1. The concentrations of BOD5, total phosphorus and
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orthophosphate were higher at habitat without S. damnosum larvae compared to those with S.

damnosum larvae (p< 0.05). Statistically significant associations were observed between

nitrate and ammonia, between calcium ion and total hardness, between magnesium ion and

total hardness and between water width and flow rate all p< 0.05). Total hardness, nitrate and

flow rate were included in the model development as they have been reported as important

variables affecting the population of S. damnosum larvae [35, 64].

The results of the logistic regression analysis indicated the presence of S. damnosum larvae

was positively associated with electrical conductivity and altitude, whereas negatively associ-

ated with total hardness and water depth. According to the negative binomial regression analy-

sis, the abundance of S. damnosum larvae increased with increasing turbidity, alkalinity and

altitude, but decreased with increasing concentrations of BOD5 and orthophosphate. Habitats

characterized by boulders, cobbles and silty streambed particles supported abundant S. damno-
sum larvae (S1 Table).

Relationship between blackfly larvae and macroinvertebrate predators

A total of 10 families of potential macroinvertebrate predators of the blackfly larvae belonging

to 7 orders were collected (Table 2).

According to the output of the regression models, the presence and abundance of S. damnosum
larvae were negatively affected by the abundance of stonefly larvae (Perlidae). Simulium damnosum
larvae are less likely present in the presence of mayfly larvae (Baetidae) and were less abundant

where Chironomidae is abundant. In contrast, both the presence and abundance of S. damnosum
larvae were positively affected by the presence of caddisfly larvae (Hydropsychidae) (S2 Table).

Ordination analysis

The first and the second canonical axes explained 16.1% and 8% of the variances in the biologi-

cal data, respectively. The taxa-environment correlations of the first two axes were statistically

Fig 3. Spatial distribution of habitats of S. damnosum larvae in the Omo Gibe river basin, southwest Ethiopia.

https://doi.org/10.1371/journal.pone.0264750.g003
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significant in a Monte Carlo permutation test (p< 0.05). In this ordination, the taxa-environ-

ment correlation for the first two axes was 0.72 and 0.59, respectively. The first axis of the CCA

ordination revealed a gradient primarily associated with the season. The first axis of the CCA

Table 1. Descriptive statistics of environmental variables used to determine the habitat preference of S. damnosum larvae in the Omo Giber river basin, southwest

Ethiopia.

Environmental variable Unit Minimum Maximum Median Mean SD

Water temperature ˚C 12 28 23 22.6 3

Dissolved oxygen mg/l 5 8 7 6.9 0.6

Oxygen saturation % 63 110 97 94.4 9

BOD5 mg/l 0.1 7 2 2.2 2

pH - 6 10 7 7.2 0.5

Turbidity NTU 6 516 34 62.1 88

Electrical conductivity μS/cm 9 176 72 73 33

Total dissolved solids mg/l 6 120 50 53.8 22

Total suspended solids mg/l 0.8 723 44 67.6 91

Alkalinity mg/l 0 124 27 25.4 20

Nitrate mg/l 0 8 0.1 0.5 2

Ammonia mg/l 0 22 0.1 1.6 5

Orthophosphate mg/l 0.1 15 0.4 0.6 1

Total phosphorus mg/l 0.1 64 0.9 2.8 7

Chloride mg/l 2 40 11 11 7

Calcium mg/l 0 68 20 20 11

Magnesium mg/l 0 59 8 11.8 13

Total hardness mg/l 0 90 28 31.8 20

Water depth M 0.1 2.4 0.4 0.5 0.4

Water width M 0.1 50 2 5 8

Flow velocity m/s 0.1 2 0.6 0.7 0.4

Flow rate m3/s 0.1 24 0.4 2.3 5

Altitude M 1306 2198 1749 1752 193

Canopy cover Category N/A N/A N/A N/A N/A

Riparian vegetation cover Category N/A N/A N/A N/A N/A

Streambed particle size Category N/A N/A N/A N/A N/A

LULC type Category N/A N/A N/A N/A N/A

Abbreviation: NTU, nephelometric turbidity unit; SD, standard deviation; N/A, not applicable.

https://doi.org/10.1371/journal.pone.0264750.t001

Table 2. Potential macroinvertebrate predators of blackfly larvae collected from streams in the Omo Gibe river basin, southwest Ethiopia.

Order Family Frequency of occurrence (%) Relative abundance (%)

Odonata Aeshnidae 10 1

Gomphidae 30 4

Libellulidae 43 4

Coenagrionidae 34 4

Trichoptera Hydropsychidae 89 40

Ephemeroptera Baetidae 83 36

Plecoptera Perlidae 20 2

Coleoptera Dytiscidae 5 0

Hemiptera Hydrometridae 2 0

Diptera Chironomidae 46 9

https://doi.org/10.1371/journal.pone.0264750.t002

PLOS ONE Habitat preference of blackflies in Omo Gibe river basin of southwest Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0264750 March 4, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0264750.t001
https://doi.org/10.1371/journal.pone.0264750.t002
https://doi.org/10.1371/journal.pone.0264750


was positively correlated with flow velocity but negatively correlated with electrical conductiv-

ity. The second axis of the CCA was positively correlated with BOD5 and it was negatively cor-

related with alkalinity (Fig 4).

Discussion

The findings of this study revealed that the habitat preference of S. damnosum larvae is deter-

mined by a wide range of environmental factors. For instance, the abundance of S. damnosum
larvae increased with increasing alkalinity, turbidity and electrical conductivity of water. The

high levels of turbidity, alkalinity and electrical conductivity of water recorded in habitats of

blackfly larvae could be attributed to runoff from nearby land use in the catchment area [37,

65, 66]. On the other hand, S. damnosum larvae were less abundant in habitats with high

BOD5 and orthophosphate contents which matches with earlier finding by Bernotiene [64].

Besides the variables reported in this study other water quality variables (water temperature,

flow velocity, pH, total suspended solids, total dissolved solids and orthophosphate) have

shown to affect the presence and abundance of blackfly larvae in previous studies [5, 29, 33,

37].

Fig 4. Canonical Correspondence Analysis (CCA) of S. damnosum larvae and biological and environmental

variables in Omo Gibe river basin. pH: Logarithmic measure of hydrogen ion concentration; DO: Dissolved Oxygen;

TSS: Total Suspended Solids; TDS: Total Dissolved Solids; BOD5: Five-day Biological Oxygen Demand.

https://doi.org/10.1371/journal.pone.0264750.g004
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Previous studies have also reported that altitude is an important factor determining the

presence and abundance of blackfly larvae [5, 67, 68]. Our finding also indicated that the pres-

ence and abundance of S. damnosum larvae increased with increasing altitude. This could be

related to an increase in flow velocity of water with an increasing slope of the land surface

along altitudinal gradients, which in turn increases dissolved oxygen concentration in water.

Moreover, the possible explanation for this finding could be due to the reduction in diversity

and density of blackfly predators with increasing altitude [69–71]. We also noted a decrease in

densities of blackfly predators (i.e., Baetidae, Hydropsychidae) with increasing altitude in the

Omo Gibe river basin. The abundance of S. damnosum larvae in habitats characterized by

boulders, cobbles and silty streambed particles observed in our study indicates the availability

of food sources and the accessibility of suitable surfaces for the attachment of blackfly larvae.

Our observation corroborates with earlier observations [72–74]. The results of our study also

indicated that S.damnosum. larvae were abundant in habitats with riparian forest cover which

might be due to the availability of plant leaves as a source of food and shelter [75–78].

Freshwater ecologists have reported strong links between the occurrence of blackfly larvae

and macroinvertebrate communities; which could be an indication for their predominant role

in biocontrol of blackflies via predation and/or competition [29, 38, 39, 41]. Similar observa-

tions have been made in our study showing both the presence and abundance of S. damnosum
larvae were negatively affected by the abundance of stonefly larvae (Perlidae). Moreover, S.

damnosum larvae less likely present in the presence of mayfly larvae (Baetidae).Several studies

have confirmed predation of blackfly larvae by stonefly (Perlidae) and mayfly (Baetidae) which

were detected through stomach dissection and serological tests [42, 46, 79]. The occurrence

and abundance of blackfly larvae are affected not only by predation but also by competition

for food sources [80].

Dipterans are usually regarded as predators of blackfly larvae in previous studies [46, 59].

The decrease in presence and abundance of S. damnosum larvae with increasing abundance of

Chironomidae observed in our study might not be only prey-predator interaction, which

could be due to the difference in habitat preferences of the two taxa. Blackfly larvae are associ-

ated with well-oxygenated running water [5], whereas Chironomidae is known as pollution

tolerant taxa commonly found in a degraded watershed [81, 82].

Trichopterans have been confirmed to be a blackfly larvae predator in literature [44, 45].

On the contrary, our study showed that the presence and abundance of S. damnosum larvae

increased in the presence of caddisfly larvae (Hydropsychidae), which might be due to differ-

ent drivers other than predation. For instance, caddisfly larvae (Hydropsychidae) are opportu-

nistic generalist predators [44, 45, 83] and thus they can change their feeding behavior and

choose between hunting, grazing, and catching drifting food with their nets [84].The abun-

dance of organisms in aquatic ecosystems is not only related to the presence of predators but

also to the traits that aid in predator defense [85]. Many aquatic organisms are capable of alter-

ing their behavior and morphology to reduce predation rates in the presence of predators [86].

Moreover, breeding habitat characteristics such as streambed composition can provide refuges

that alleviate the negative impacts of the predators [87].

Potential macroinvertebrate predators and competitors of blackfly larvae, including the

blackfly itself, are important pollution indicators of running water and they are known for

their low pollution tolerance [88]. This indicates that the blackfly larvae and their potential

biocontrol agents respond to the deterioration of aquatic environments in a similar way [88,

89]. Aquatic environments in the Omo Giber river basin are at risk of pollution due to anthro-

pogenic activities in the catchment areas [90–92]. Fertilizer residues can runoff into adjacent

rivers and cause eutrophication of the rivers, which can lead to a decrease in water quality and

loss of biodiversity including biocontrol agents of blackflies [89, 93]. Insecticides and
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herbicides applied to agricultural land can also enter rivers, thereby adversely impact aquatic

organisms [94, 95]. In general, deterioration of aquatic ecosystems due to anthropogenic activ-

ities can adversely affect the macroinvertebrate assemblages including the potential biocontrol

agents of immature blackflies. Therefore, it is essential to protect aquatic environments from

pollution to boost biodiversity which is intended to conserve the assemblages of macroinverte-

brate predators (density and species) that are already present within the system and enhance

the opportunity of prey-predator interactions.

In conclusion, the habitat preference of S. damnosum larvae is determined by environmen-

tal factors. The information obtained from this study also offers important insights that the

presence and abundance of S. damnosum larvae are affected by macroinvertebrate predators,

implying that they have the potential to be used as biocontrol agents of immature blackflies to

enhance onchocerciasis elimination efforts. Hence, it is essential to establish buffer zones as a

part of watershed management to retain pollutants and prevent them from entering directly

into watercourses to improve water quality and the assemblages of macroinvertebrate preda-

tors and hence, to enhance biocontrol of blackflies.

As a limitation of the study, the macroinvertebrate predators identified at the family level

may not entirely reflect the influence of specific predator species on the population of blackfly

larvae. Therefore, further study is required to understand the influence of the predator species

on the occurrence and abundance of blackfly larvae.
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M. Sc. thesis. Manaus (AM, Brasil): INPA/FUA; 1996. p. 76.

86. Klauschies T, Gaedke U. Predator-prey nutrient competition undermines predator coexistence. bioRxiv;

2019. p. 535195.

87. De Haas EM, Wagner CO, Koelmans AA, Kraak MH, Admiraal WI. Habitat selection by chironomid lar-

vae: fast growth requires fast food. J Anim Ecol. 2006:148–155. https://doi.org/10.1111/j.1365-2656.

2005.01030.x PMID: 16903052

88. Pinder LC. Chironomidae. The habitats of chironomid larvae. In: Armitage PD, Cranston PS, Pinder LC,

editors. Dordrecht; Springer:1995. p. 107–135.

89. Fuller RL, Mackay RJ. Feeding ecology of three species of Hydropsyche (Trichoptera: Hydropsychidae)

in southern Ontario. Can J of Zool. 1980; 58:2239–51.

90. Sieglstetter R, Agasse F, Caquet T. Ecological segregation of two species of Hydropsyche (Trichoptera:

Hydropsychidae) in a European second-order stream (Essonne, France). J Freshw Ecol. 1997;

12:269–79.

PLOS ONE Habitat preference of blackflies in Omo Gibe river basin of southwest Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0264750 March 4, 2022 16 / 17

http://www.canoco.com
https://doi.org/10.1007/s00442-007-0877-x
https://doi.org/10.1007/s00442-007-0877-x
http://www.ncbi.nlm.nih.gov/pubmed/17960424
https://doi.org/10.1590/s1519-69842010005000015
http://www.ncbi.nlm.nih.gov/pubmed/20379655
https://doi.org/10.1186/1756-3305-5-286
https://doi.org/10.1186/1756-3305-5-286
http://www.ncbi.nlm.nih.gov/pubmed/23216815
https://doi.org/10.1007/s10393-012-0773-7
https://doi.org/10.1007/s10393-012-0773-7
http://www.ncbi.nlm.nih.gov/pubmed/22692799
https://doi.org/10.1111/j.1365-2656.2005.01030.x
https://doi.org/10.1111/j.1365-2656.2005.01030.x
http://www.ncbi.nlm.nih.gov/pubmed/16903052
https://doi.org/10.1371/journal.pone.0264750


91. DeWitt TJ, Langerhans RB. Multiple prey traits, multiple predators: keys to understanding complex com-

munity dynamics. J Sea Res. 2003; 49:143–155.

92. Hoverman JT, Relyea RA. The rules of engagement: how to defend against combinations of predators.

Oecologia. 2007; 154:551–60. https://doi.org/10.1007/s00442-007-0847-3 PMID: 17828559

93. Lodge DM, Brown KM, Klosiewski SP, Stein RA, Covich AP, Leathers BK. Distribution of freshwater

snails: spatial scale and the relative importance of physicochemical and biotic factors. Am Malacol Bull.

1987; 5:73–84.
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