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Abstract

Background: RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon
arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing
events. Commercial arrays that include probes within exon junctions have been developed in order to overcome
this problem.

We compare the performance of RNA-seq (lllumina HiSeq) and junction arrays (Affymetrix Human Transcriptome
array) for the analysis of transcript splicing events. Three different breast cancer cell lines were treated with CX-4945,
a drug that severely affects splicing. To enable a direct comparison of the two platforms, we adapted EventPointer,
an algorithm that detects and labels alternative splicing events using junction arrays, to work also on RNA-seq data.

experiments.
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Common results and discrepancies between the technologies were validated and/or resolved by over 200 PCR

Results: As might be expected, RNA-seq appears superior in cases where the technologies disagree and is able to
discover novel splicing events beyond the limitations of physical probe-sets. We observe a high degree of
coherence between the two technologies, however, with correlation of EventPointer results over 0.90. Through
decimation, the detection power of the junction arrays is equivalent to RNA-seq with up to 60 million reads.

Conclusions: Our results suggest, therefore, that exon-junction arrays are a viable alternative to RNA-seq for
detection of alternative splicing events when focusing on well-described transcriptional regions.

Background

Alternative Splicing (AS) is known to play a major role
in human biology, and the identification of transcrip-
tional splicing patterns has potential uses for diagnosis,
prognosis, and therapeutic target evaluation in the dis-
ease context [1, 2]. The development of exon microar-
rays enabled the transcriptomic study of differential
splicing events, but PCR validation rates for identifica-
tion of splice differences via microarray analysis tend to
be lower than those observed for identification of
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differential gene expression using similar technologies
[3-5]. Junction arrays [6-10] have been proposed to
overcome this problem by using oligonucleotide
probe-sets that interrogate junctions between exons in
the transcriptome, as well as the exons themselves.

Since the advent of next-generation sequencing (NGS),
RNA-seq has become the technology of choice via which
to detect and quantify alternative splicing (for a review
see [11]). Various published works compare the perform-
ance of RNA-seq and expression microarrays for the
analysis of gene expression [12, 13], but a thorough
evaluation of both technologies in terms of their ability
to detect differential AS events has yet to be presented.
In the present study, we perform a comparison of
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RNA-seq technology (using the Illumina HiSeq plat-
form) and junction arrays commercialized by Affymetrix
(Human Transcriptome array, or HTA).

AS can be studied from two complementary points of
view: with focus on transcripts or splicing events re-
spectively. In the former, the subject of analysis is the
transcript (or isoform), whereas in the latter, the sub-
ject(s) are the splicing events themselves.

The pipeline of the transcript-focused approach uses
RNA-seq data with [14] and without known annotations
in order to reconstruct the transcriptome and estimate
the concentration values of the transcripts. Finally, the
significance of change in absolute or relative concentra-
tions is assessed using suitable statistical methods [15—
17]. Transcript reconstruction is challenging [18] (even
the better methods display transcriptome reconstruction
levels below 50% when using simulated reads) and any
error in reconstruction of transcript structure may be
propagated to the output of statistical analysis. More-
over, the challenge of estimating isoform concentrations
for genes with many transcripts yields wide confidence
intervals [19].

On this basis, therefore, an event-based method ap-
pears a more suitable approach via which to compare
AS detection technologies, with the additional benefit of
straightforward validation using PCR. Event-based
methods focus directly on the analysis of differential
splicing events, rather than first attempting to estimate
transcript concentration levels. These events can be clas-
sified into five canonical categories [20]: cassette exon,
alternative 3’, alternative 5, mutually exclusive exons
and intron retention. In some cases, alternative start and
termination sites are included also when defining spli-
cing events. This approach has gained traction and sev-
eral algorithms have been developed recently for
detection of splicing events using RNA-seq data, includ-
ing rMats, SplAdder, spliceGrapher or SGSeq [21-24].
SpliceGrapher and SGSeq detect events prior to applica-
tion of separate software in order to state corresponding
statistical significance, whereas rMats and SplAdder per-
form both detection and statistical analysis. Alongside
NGS-based approaches, AS event detection methods are
available for exon arrays [25], and exon-junction arrays
[6, 8, 9, 26]. The latter methods display validation rates
well above 50%.

The principal aim of this work is to compare RNA-seq
and exon-junction microarray technologies in their abil-
ity to detect differential AS events. To do so comprehen-
sively, and to allow as close to a direct comparison as
possible, we have adapted the EventPointer [8] algorithm
for application to data from both platforms, generated
from the same control experiment. The control experi-
ment comprises three distinct triple-negative breast can-
cer (TNBC) cell-lines, exposed in culture to a drug

Page 2 of 14

known to affect the transcriptional machinery and,
thereby, to induce AS events.

Further to comparative analysis of the resulting data,
we conclude that both technologies show considerable
concordance with high PCR validation rates, and that
exon-junction microarrays have potential as an alterna-
tive to RNA-seq profiling for detection of AS events in
annotated transcripts.

Results

CX-4945 is a potent and selective orally bioavailable
small molecule inhibitor of casein kinase CK2 ([27],
which has been proposed previously as a cancer therapy
[28], and which has been shown to regulate splicing in
mammalian cells [29]. RNA samples taken from three
distinct triple-negative breast cancer (TNBC) cell-lines,
exposed to CX-4945 and also to a DMSO control, were
profiled using both RNA sequencing’ and hybridization
to exon-junction microarrays (see Methods for details).
We extended the EventPointer algorithm (available via
Bioconductor, see Methods) for application to data from
both platforms and applied it to the corresponding data-
sets in order to identify AS events.

Prior to the comparison of platforms for splice event
detection, the data was assessed at the gene level in
order to ensure signal quality and coherence. Gene ex-
pression was computed from RNA-seq data using Kal-
listo [14] to quantify expression as the sum of isoform
concentrations for each gene. RMA [30] was used to
quantify gene expression from microarray data, using
annotation files from Brainarray [31]. The same version
of the Ensembl Transcriptome (Ensembl v.74, GRCh
37.75) was used in both cases.

Considering each technology independently, correl-
ation between sample replicate profiles in each cell-line
and experimental condition is high for both platforms
(correlation coefficient ranging from 0.988 to 0.996 in
arrays and 0.996 to 0.997 in RNA-seq). When comparing
profiles from the same samples between technologies,
strong coherence is observed for well-expressed genes.
Median correlation of gene expression between tech-
nologies on the same samples is 0.510, and gene expres-
sion patterns across all samples display correlation of
0.680 between technologies. The first one is smaller
owing to the different probe affinities of the set of
probes that interrogates each gene. When only the 50%
most highly expressed genes are considered, the median
correlation of gene expression patterns is 0.750 (Add-
itional file 1). The gene expression correlations observed
are similar to previously reported comparisons between
RNA-seq and exon arrays [32]. It is important to point
out that the expected correlations for gene expression
are larger (either using microarrays or RNAseq) since
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the number of probes/reads that interrogate a gene is
larger than the ones that interrogate a splicing event.

Events detected by RNA-seq and junction arrays show
strong qualitative and quantitative concordance, with a
subset detected exclusively by one of the technologies
Figure 1 depicts the EventPointer pipeline for both pro-
filing technologies (see original publication [8] for fur-
ther detail), with CEL files (microarray) or BAM files
(RNA-seq) as starting input. When building the splicing
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graph, each exon is split into two nodes that correspond
to its start and end genomic positions respectively
(Fig. 1b). Each event is described by two alternative
paths (Paths 1 and 2) and a shared reference path (Path
Ref) within the splicing graph. These paths are sets of
edges in the splicing graph. Paths 1 and 2 are mutually
exclusive in terms of isoforms (i.e. if an isoform includes
Path 1 it does not include Path 2 and vice versa) and all
isoforms interrogated by the event share the reference
path. Therefore, events are contained in several isoforms
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Fig. 1 EventPointer overview for junction arrays and RNA-Seq data. a The CEL or BAM files are the input data for each technology. The splicing
graph for each gene is built using the array annotation files or directly using the sequenced reads. b Each node in the splicing graph is splitted
into two nodes that correspond to the start and end positions in the genome respectively. EventPointer identifies events within each gene and
annotates the type of event. In the figure, among the events in the gene, an exon cassette is highlighted. ¢ Statistical significance of the events is
computed. d Finally, the top-ranked events are validated using PCR and the results visualized in IGV
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(at least two). A simple example would be the cassette
exon shown in Fig. 1b: the reference path is composed
by the edge that links nodes 6a and 6b (i.e. the coverage
of exon 6 or the signal in the probe-set of the array that
interrogates this exon) and the edge that links nodes 8a
and 8b (coverage of exon 8). All these measurements are
summarized into one average value. Path 1 includes the
edges in the path 6b-7a-7b-8a (coverage of exon 7 and
its flanking junctions) and Path 2 is the edge that links
6b and 8a (coverage of the skipping junction). Event-
Pointer distinguishes between events as corresponding
to: cassettes; alternative 5'; alternative 3'; mutually ex-
clusive exons; alternative first exons; and alternative end
exons. Complex events that do not match any of these
categories are denoted as such.

Three different cell-lines were profiled, each exposed
to CX-4945 and DMSO respectively across five repli-
cates. AS differences were tested using a linear model
which controlled for cell-line differences. Using the read
coverage (or probe-set signal) for each path, a statistical
analysis based on voom-limma [17, 33] is applied to de-
termine the significance of each event via comparison
between alternative path signals (see Methods for de-
tails). In addition to the statistical analysis, we compute
the Percent Splice Index (PSI or W) [34], an estimate of
relative isoform concentrations that map to paths 1 and
2 for each event. In a cassette event, if the exon is
retained, W is equal to one. If it is skipped, ¥ is equal
zero. If both isoforms that retain and skip the exon are
present, V¥ is the ratio between the expression of the iso-
forms that retain the exon and the overall expression of
the isoforms that skip or retain the exon. ¥ has become
the standard method to quantify splicing events.

In order to identify well-expressed events (more likely
to be biologically significant and less prone to validation
error), the comparison of AS detection was performed
on a subset of the data with expression above a set
threshold (see Methods for details). In brief, a junction
coverage threshold was applied to the RNA-seq data (de-
fault 2 FPKM) and a threshold on expression percentile
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applied to the microarray data (default probe-set expres-
sion greater than 25% of probes in any sample profile).

Table 1 displays the number of detected events after
setting a threshold on the expression for both technolo-
gies, the number of differentially spliced events (p value
<0.001) with their corresponding False Discovery Rate
(FDR) detected via application of EventPointer to
RNA-seq and microarray data respectively. The statis-
tical analysis compares differential AS in profiles from
cell-lines treated with CX-4945 and with DMSO control.
As may be expected, setting more stringent expression
thresholds yields fewer events detected with better FDR
on both platforms. The FDR is the estimated proportion
of false discoveries (i.e. events are assumed to have dif-
ferential splicing and that do not). For example, an FDR
of 5e-4 means that 0.05% of the selected events are ex-
pected to be false positives.

Table 1 shows that fixing p-value to le-3 yields False
Discovery Rates (FDRs) less than 1% for both technolo-
gies. The expected proportion of AS events appears high
(1-1y approx. 46%) [35], i.e. more than 46% of the events
have its splicing patterns altered, which reflects the an-
ticipated strong effect of compound exposure on the
splicing machinery. It is also apparent that, for a similar
number of detected AS events, the FDR corresponding
to RNA-seq analysis is smaller.

Events detected by both technologies (referred to as
“matched events” hereon) were defined by a stringent
criterion in which nucleotide sequences of paths identi-
fied via one technology must be a subset of sequences
identified via the other, yielding 6222 matched events.
When reporting correspondence and divergence be-
tween AS events, below, the following naming conven-
tion is used: R" represents number of events deemed
significantly altered in RNA-seq analysis (p value <le-3);
R™ represents number of events deemed not significantly
altered in RNA-seq analysis (p value >0.2). M™ and M~
are the counterpart terms used to describe microarray
results. Events not detected by each technology are la-
belled R@ and M@ respectively.

Table 1 Number and statistical significance of detected AS events using both RNA-seq and array technologies

Expression Threshold Detected Events Significant events FDR for significant
RNASeq

Junction coverage >6 FPKM 9277 4526 2.7e-4

Junction coverage >2 FPKM 34,961 13,780 4.7e-4

Junction coverage > 2/3 FPKM 92,986 29,443 7.0e-4
Exon-junction arrays

Signal > 50% 10,114 2385 9.2e-4

Signal > 25% 31,506 6197 1.37e-3

No threshold 92,405 11,761 345e-3

for different expression thresholds, default filters are junction coverage greater than 2 FPKM for RNA-seq and probe-set signal greater than top 25% quantile

for microarray
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A subset of matched events is significant in both tech-
nologies (R"M") and shows coherent change in the cor-
responding W. There are also significant events detected
by only one of the technologies (R"M@ and R@M"). The
summary of findings is presented in Table 2.

Table 2 shows that the FDR of the events detected
only by RNA-seq is similar to that for events detected by
both platforms (4.56e-4 vs. 4.96e-4). In other words, the
reliability of events discovered only by RNA-seq is simi-
lar to that of events identified by both technologies. In
the case of the arrays, the FDR of matched events is
three times smaller than for those discovered solely by
the arrays (1.99e-3 vs 6.23e-4 i.e. RGM" events are less
reliable than R*M" events for the same p-value thresh-
old. In addition, Table 2 shows that the number of sig-
nificant events that are RNA-seq specific (R"M@) is
larger than the number of significant events detected
only by arrays (R@M") (10,617 vs 3297 events).

Figure 2 depicts a Sankey diagram of the relationship
between matched events. An event is declared to be sig-
nificant (in either technology) if the p value is smaller
than 1e-3. It is declared non-significant is the p value is
larger than 0.2 and inconclusive otherwise. It is apparent
that many events that are significant for RNA-seq are
not detected by arrays, but also that events significantly
detected via arrays are not detected by RNAseq. Most
matched events are consistent across technologies: sig-
nificant events for one technology are also significant for
the other.

We also considered the FDR for different types of spli-
cing events in both technologies. As shown in Fig. 3, al-
ternative 3' (5'), start and end sites have larger FDR
than cassette exons., i.e. they are harder to measure.
There were too few matched mutually exclusive events
to estimate accurately FDR for this type of events.

PCR validation rates are over 80% in both technologies
PCR validation was performed on a subset of predicted
AS events drawn from each of the subsets discussed in
previous sections, i.e. events detected by one or both
technologies. PCRs were performed on:
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1. Five top-ranked events detected by both technolo-
gies (topRNA and topArrays) regardless of the
matching with the other technology

2. Five top-ranked events detected by one technology
(R*M@ and R&M")

3. Five top-ranked events significant in one technology
(R"M™ and R™M")

4. Five top ranked events detected by both
technologies (R"M")

These potential 35 validations are in fact 29 since
there is overlap in the top-ranked events of different cat-
egories. The characteristics of validated events (genome
location, event type, etc.) and links to the corresponding
PCR images are included in Additional file 2. PCR for
events in non-coherent classes (R"M~, R"M") required
up to 40 PCR cycles and were harder to validate in gen-
eral. The corresponding GTF files to browse these
events in IGV [36] are included in Additional file 3. All
the results are summarized in Table 3.

Figure 4 shows the ¥ estimates and the PCR bands for
two of the top-ranked events in R'M" (gene names
DONSON and MELK), with clear concordance of the
splice index, ¥, across the three technologies despite use
of end-point (i.e. non-quantitative) PCR. Similar figures
for events in the other AS categories are included in the
additional material (Additional file 1: Figures S2 to S8).

Statistics and W for matched events are similar

Figure 5 shows the increment of the ¥ value estimated
by EventPointer for events detected by both technolo-
gies. Correlation for AS events is over 0.90, and z-values
of the statistical test are also similar (Additional file 1:
Figure S1). PCR figures also show high coherence be-
tween the estimated W using both technologies, espe-
cially for RNA-seq, and the PCR results (Fig. 4 and
Additional file 1: Figure S2 to S8).

Both technologies detect a similar distribution of AS
types

Figure 6a shows the number and type of AS events de-
tected by the EventPointer algorithm on data from both

Table 2 Number of AS events detected per technology, alongside statistical significance of events against distinct thresholds

Matched Events

Matched Events Significant in both (R*M™)

6222 1324

R"M@
Expression Threshold Detected Events FDR
Junction coverage > 6 FPKM 2973 244e-4
Junction coverage > 2 FPKM 10617 4.56e-4
Junction coverage > 2/3 FPKM 25,063 6.90e-4

FDR (RNASeq) FDR (arrays)
4.96e-4 6.23e-4
ROM*

Expression Threshold Detected Events FDR for significant

Signal > 50% 1016 1.46e-3
Signal > 25% 3297 1.99e-3
No threshold 7581 4.85e-3

Where thresholds not shown, default filters were employed (junction coverage > 2 FPKM for RNA-seq; upper quartile probe signal for microarrays)
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Fig. 2 Correspondence between the events detected by arrays and RNA-seq. An event is considered to be significant if the p.value is smaller
than 0.001 and non-significant is it is larger than 0.2. Events with p-values between both are considered to be inconclusive cases
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profiling technologies. The number of detected cassette
exons using arrays is smaller than that using sequencing
(p value <1e-16, test for equality of proportions). In fact,
after matching the events detected by both technologies,
a large proportion of the cassette exons in RNA-seq ap-
pear as complex in microarrays (see Fig. 6b). The reason

for this disparity is the complexity of the reference tran-
scriptome used in the HTA array. For this analysis, we
used the transcriptome provided by Affymetrix, which
includes a range of annotation sources, e.g. RefSeq,
Vega, Ensembl, MGC (v10), UCSC known genes and
other sources for non-coding isoforms. The underlying
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Table 3 PCR validation for RNA-seq and microarray technologies across events detected by one or both technologies

AS Event Category RNA-seq Arrays
Top-ranked events (topRNA, topArrays) 5/5 5/5
Significant in RNA-seq and not detected by arrays (R + M) 5/5 -
Significant in arrays and not detected by RNA-seq (RGM+) - 5/5
Detected by both. Significant in RNA-seq, not significant in arrays (R + M-) 5/5

Detected by both. Significant in arrays, not significant in RNA-seq (R-M+) 3/5

Detected by both. Significant and coherent events (R + M+) 5/5

Values reported are validations / events selected

transcriptome for HTA includes such a variety of iso-
forms that many detected AS events are labelled as
complex.

In addition, the proportion of retained introns is
smaller for RNA-seq (p value <le-16, test for equality of
proportions), perhaps owing to the coverage required to
include a region as expressed by SGSeq (defaults to 0.5
FPKM) which may exclude weakly expressed introns.

Power of arrays to detect events is approximately
equivalent to shallow RNA-seq

The comparisons above suggest that that RNA-seq — at
the depth of sequencing deployed here - detects a larger
number of AS events at lower FDR.

We subsampled the initial RNA-seq data to 30% and
10% of the input, yielding approximately 30 million and
10 million reads respectively. Using these subsampled
data, we estimated their FDR (see Table 4). Interpolating

the FDR for them, the FDR using junction arrays is
equivalent to the FDR of an RNA-seq experiment with
sequencing depth of approximately 20 million reads.

We hypothesize that the performance of the arrays
could be greatly improved by removing bad-performing
probesets. The RMA summarization algorithm with-
stands the presence of a few outlier probes. In fact, we
have identified some probes that cross-hybridize in sev-
eral loci of the transcriptome. However, if most of the
probes that interrogate either of the paths or the refer-
ence do not perform well, the whole estimate of the spli-
cing event will be compromised. Some of these cases
can be detected since the signal of the events do not
show internal coherence with the model (i.e. they show
a large relative error if the weighted sum of the signals
in Paths 1 and 2 and the reference Path are compared).
These bad probesets are somehow expected: the design
of junction probes has strong limitations since there is
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no room to select a probe with certain standards of
quality (GC content, no cross-hybridization against the
genome of the transcriptome, etc.). Owing to these pro-
besets, a number of events are not being measured ac-
curately. We have included in the additional material
Additional file 1: Figure S9 to illustrate bad and good
performing probesets: in panel A, it is shown an event
with internal coherence and in panel B, an event with

bad internal coherence. We have also included Add-
itional file 1: Table S10 that shows the FDR for genes
with large coherence (small relative error) and small co-
herence (large relative error). The FDR for genes with
large internal coherence is 2 times bigger than for events
with weak internal coherence.

The events that are not matched with RNA-seq are
enriched in these pathological cases as shown in Table 2.
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Table 4 Obtained FDR values after subsampling the number of
reads in the RNA-seq experiment

Decimation percentage FDR
Decimated 10% 1.86e-3
Decimated 30% 6.97e-4

On the contrary, the expected false discovery rate for
matched events finds HTA arrays to be equivalent to
RNA-seq with a depth of approximately 60 million
reads. A proper filtering of the probes identifying events
prone to errors could ideally take the arrays closer to the
RNA-seq performance with this depth.

Discussion

The main aim of this work was to quantitatively com-
pare the performance of RNA-seq and junction array
technologies to detect splicing events. To do this in a
balanced manner, we adapted our algorithm EventPoin-
ter, originally developed for HTA arrays, to work also on
RNA-seq data.

This study highlights:

e The creation of a real-world cell exposure dataset
specifically relevant for the study of alternative
splicing.

e Adaptation of an existing AS event detection
algorithm to a cross-platform method to enable
comparative application, and addition of percent
splice index method.

e Strong correlation of splicing event detection in
regions covered by both technologies, validated by
PCR on a subset of top ranked events identified by
both and each platform respectively.

e Benefits of RNA-seq in terms of coverage and flexi-
bility, as expected, and higher validation rates in case
of disagreement between technologies.

e Good performance of HTA arrays, estimated by
approximation to be equivalent to relatively shallow
RNA-seq in transcript regions covered.

Top-ranked events detected by each platform technol-
ogy and estimates of relative event occurrence (AY)
were validated by PCR. The relative occurrence esti-
mates were also strongly correlated, close to 0.90 for
events detected by both technologies. In addition to en-
abling comparison of the two profiling platforms, these
results suggest also that the estimates themselves are a
relevant addition to the original EventPointer algorithm.

We relied on SGSeq to build the splicing graph. Using
other algorithms (such as Spladder) could impact the de-
tected events especially for weakly expressed genes. Ac-
cording to a recent review of some of the authors [37],
AltAnalyze is the only alternative that provides the
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analysis of splicing events both for arrays and RNA-seq.
AltAnalyze characterizes each event by several values
that must be integrated. For example, in a cassette exon,
the signals of the probes in the exon, the flanking junc-
tions and the skipping junction (and the equivalent
coverage values for RNAseq) should be integrated to get
a single figure of merit. We found it difficult to perform
this integration since we are not the developers of this
method. Nevertheless, using this method could be also
informative to compare both platforms.

As might be expected in the absence of physical
probe-sets, over 10,000 statistically significant events
were identified by RNA-seq alone, the top ranked of
which were validated via PCR. Approximately 3300
events were detected using microarrays but not detected
using RNA-seq. In this case, some (3/5) of the top
ranked events were validated and correspond to
well-expressed genes. Those which did not may reflect
the specific technical biases of each technology (cross
hybridization of the probes, multi mapping reads, GC
dependence, etc.)

A recent study [38] also compared RNAseq and arrays.
This study was focused on patient derived samples in-
stead of cell-lines as we did. This study pinpoints differ-
ences in the output between both technologies and
states it in the title. In our case, the main divergence that
we found between both technologies appears in the
events that are not matched. Interestingly, the coherence
between matched events -shown by Fig. 5 and the vali-
dated PCRs- is very strong: if an event is detected by
both technologies, the increment of ¥ and its statistical
significance (see Additional file 1: Figure S1) are very
similar.

RNA-seq has inherent advantages over microarrays,
including the ability to detect unlimited novel events.
Furthermore, sensitivity can be improved by increasing
sequencing depth. Another advantage of RNA-seq is its
better approximation of gene/transcript concentrations
(e.g. allowing to state a threshold based on the expres-
sion of an event). On the other hand, arrays were able to
detect some weakly expressed events missed by
RNA-seq and, in general across the comparisons, per-
formed similarly to RNA-seq when treating
well-expressed and well-defined transcriptional regions.
As expected, a similar algorithmic approach applied to
both platforms consumed less time and memory re-
sources when treating microarray data than when treat-
ing RNA-seq data (See Table 5).

Conclusions

In conclusion, comparison of RNA-seq and junction mi-
croarrays using a cross-platform algorithm suggests that
both technologies provide accurate identification of
splice events. Moreover, predictions by both
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Table 5 Resources required for both technologies. Analysis was performed on 16 cores (Intel Xeon E5-2670 @ 2.60 GHz) with 64 GB

of RAM Linux server running 64-bit CentOS distribution

Computing time

Memory requirements Storage requirements

RNA-seq HTA RNA-seq HTA RNA-seq HTA
Mapping to the transcriptome (STAR) 115h - 32Gb - 1023 GB -
Splicing graph generation (5GSeq) 2 days 14 h 8 Gb per core 5Gb 70.3 Mb 2Gb
(5 cores)
Event detection 7 min 16 s 1.2 Gb per core 643.6 Mb
(10 cores)
Statistical analysis Tmin43s 3min 06 s 2 Gb < 1Gb 6.2 Mb 11 Mb

technologies tend to correlate strongly and yield similar
results when compared by W estimates and PCR.
RNA-seq holds a clear advantage in terms of flexibility,
and stronger PCR validation of events detected in one
platform but not the other. As compared, HTA microar-
rays are shown nevertheless to provide a reasonable al-
ternative to relatively shallow RNA-seq in the
transcriptional regions that they reference.

Methods

Sample preparation

Triple negative breast cancer cell lines MDA-MB-231
and MDA-MB-468 were obtained from ATCC (Manas-
sas, VA) with identification numbers HTB-26 and
HT-132 respectively and SUM149 was purchased from
Asterand plc (Detroit, MI). All cell lines were grown ac-
cording to the suppliers’ recommendation. CK2 inhibitor
CX-4945 (Selleckchem, Houston, TX) was dissolved in
DMSO and stored frozen at — 80 °C until used.

To induce splicing events, cells were grown to ~70%
confluence and treated with 1 uM CX-4945 or DMSO
during 12 h in a total of 5 replicates per condition. Total
RNAs were isolated using the RNeasy Mini Kit (Qiagen,
Germantown, MD) according to the manufacturer’s
protocol. Integrity of RNA was quantified using the Agi-
lent 2100 Bioanalyzer (Agilent Biosystems, Foster City,
CA). Samples were labeled and hybridized in Human
Transcriptome arrays (HTA) by the Genomics Core Fa-
cility of the Center for Applied Medical Research
(CIMA) following manufacturer’s instructions.

RNAseq was performed in the Center for Cooperative
Research in Biosciences (CICBiogune) using the Illumina
HiSeq2000 sequencing technology, HiSeq Flow Cell v3
and TruSeq SBS Kit v3. 2ug of RNA of each sample was
sent for this purpose. The run type was strand specific,
multiplexed with paired-end reads of 100 nucleotides
each. The amount of RNA for hybridization and valid-
ation purposes was 5 ug.

STAR 2.4.0 h1l was used to align the reads against the
human genome. The reference genome was Ensembl
v.74, GRCh 37.75. The output were sorted BAM files.
All the other parameters were set to the default values.

The average sequencing depth was 49 million reads (9.8
billion nucleotides sequenced per sample).

The microarray data preprocessing was performed
using the aroma.affymetrix framework using the stand-
ard RMA algorithm applied to probesets of the paths
[30]. In addition, we used both platforms to quantify ex-
pression at the gene level. Results are shown in the Add-
itional file 1. Gene expression was computed from
RNA-seq data using Kallisto [14] to quantify expression
using a pseudo-aligment method. Kallisto returns an es-
timate of the expression of all the isoforms for each
gene. The overall expression of the gene was simply
computed by summing up the expression of each the its
isoforms. We estimated the expression of the arrays
using the RMA algorithm in the aroma.affymetrix frame-
work using a Brainarray reference file of the Ensembl 74
transcriptome.

Event pointer for RNAseq

EventPointer is an R package to identify, classify and
analyze alternative splicing events using microarrays and
RNA-Seq data. The software is available for download at
Bioconductor. A thorough description of EventPointer
for microarrays can be found in [8]. This method has
been extended to RNA-seq.

The concepts for detection, classification and statis-
tical analysis are shared in EventPointer for the analysis
of both technologies. The main difference of EventPoin-
ter for RNA-seq compared with that of microarrays are
the ones associated with the type of input data (CEL or
BAM files). The R code for the analysis is available at
https://github.com/jpromeror/SplicingComparison.

EventPointer requires a splicing graph -a directed
graph used to represent the structure of the different
isoforms of a given gene [39] - as input to detect splicing
events. EventPointer for RNA-seq uses SGSeq [24] to
build the corresponding splicing graphs from BAM files.
The complexity of the splicing graph can be controlled
in SGSeq by setting different thresholds in the expres-
sion values of splicing junctions of the splicing graph (by
default set to 2 FPKM). For RNA-seq, the splicing
graphs are constructed for every single experiment. On
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the contrary, in the case of microarrays the same spli-
cing graph (and the corresponding CDF) is used for all
the experiments run on the same type of microarray
(HTA or, more recently Clariom-D).

The input data for the statistical analysis is different in
both technologies: signal values of the probes in micro-
arrays and counts in RNA-seq. In order to deal with
reads, Voom [17] is applied to preprocess the RNA-seq
count data. The statistics to deal with the processed
RNA-seq data is identical to the one used for microarray
data and hence, the same statistical tests -based on
limma [33]- are applied to both technologies.

As output, EventPointer provides a table with the fol-
lowing information associated to each detected alterna-
tively spliced event: gene identifier, genomic position,
type of event, statistical parameters and AY values. Add-
itionally, EventPointer generates a “Gene Transfer For-
mat” (GTF) file that can be used with the Integrative
Genomics Viewer (IGV) [36] to view the structures of
each detected alternative splicing event. This
visualization facilitates the interpretation of the detected
events and the design of primers for the validation of
the events using standard PCR.

Estimation of PSI

We have included a novel algorithm to estimate ¥ that
can be applied to both RNA-seq and microarrays. As-
suming that the signal of a probe-set in microarrays and
the number of reads within a region of the transcrip-
tome in RNA-Seq depend on the product of an affinity
value of the probe-set (or the equivalent length in
RNA-seq) and the concentration of the interrogated iso-
forms in the paths, the following equation holds

S,’ = (ll"ti (1)

where §; is the measured expression value of path i, a;
is the affinity of the probes or equivalent length of the
path i and ¢ is the concentration of the isoforms
mapped to path i. The affinity values (or equivalent
lengths) and concentration values are assumed to be un-
known and must be estimated from the data.

Particularizing the above equation to each of the paths
and taking into account that the concentration of the
isoforms in the reference path must be the sum of those
of paths 1 and 2, the following equations are obtained:

Sl =aplh (2)
Sz = ﬂz'tz (3)
Sg = agtr = ag(t1 + t2) (4)

In turn, the signal value of the reference path can be
expressed as the sum of the signal values of paths 1 and
2 as follows,
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SR = zzRaIISl + aRﬂEISZ = MSI -+ VSZ (5)

where u and v represent the fraction of the affinities of
the mapped probe-set (or equivalent lengths) in the ref-
erence path and paths 1 or 2 respectively. The values of
u and v can be estimated from signal data.

Dividing eq. (2) with eq. (4) we get,

Sl o a b
Sr ar(ti +1t2)

(6)

Combining eqgs. (5) and (6), the desired equation of
the Percent Spliced Index (¥) used in EventPointer is
obtained:

v — t1 _LS1_ u51
7t1+t27 Sr 7u51+V52

(7)

Note that ¥ can be directly obtained from signal
values once u and v are known. This equation does not
require the estimation of the affinities (difficult to pre-
dict accurately) to compute . On the contrary, it sim-
ply requires to estimate z and v from signal values using
eq. (5). In the case of RNA-seq, the equivalent lengths
are known a priori and hence # and v. However, using
this approach has an advantage: the estimates of these
lengths can accommodate the potential lack of uniform-
ity of the reads.

Note that # and v must be positive, similar between
them and close to one. The first affirmation is trivial
since affinity values (or equivalent lengths) are always
positive. In microarrays, probe-sets are composed by
several probes and their overall affinity are expected to
be similar to each other, since these affinities are a me-
dian of the average of the affinities of the probes that
build up them. Therefore a;~a,~agand u=v=1. A
similar reasoning can be applied to RNA-seq, if using
coverage instead of read counts, since the coverage of
the reference path is expected to be close to the sum of
the coverages of paths 1 and 2.

These two fractions can be estimated from eq. (5) by
using non-negative least squares as follows:

min||Ax-b||,
s.t.x=0,xeR*, AcR™*"

where,
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[ Signal P1  Signal P2

A -1 u
4= A 0 %= [v] b

o p

| Signal R
0

= 1 (9)

A

The penalty factor \ is added to force the equation to
fulfill the previous considerations: # and v must be simi-
lar and close to 1. In our results, we found that the esti-
mates were not sensitive to the specific value of \ if
there is differential alternative splicing. If the relative
usage of both paths is similar and therefore, ¥ is con-
stant, the results are more sensitive to the value of A.
This fact is shown in Fig. 4: the correlation is much bet-
ter for events that show variability in the relative expres-
sion of both paths.

The residuals of this model can be used to test if the
additive model of egs. 2, 3 and 4 holds. We computed
the relative error of the residuals as follows:

. |(u - Signal P1 + v - Signal P2)-Signal R||,
B ||Signal R||,

If the relative error is large, the additive model does
not fit the data and, therefore, the estimates are expected
to be less reliable. In order to test this, we divided the
events according to the relative error. The events with
top 50% relative error have FDR two times larger than
the bottom 50% as shown in Additional file 1: Table S10.

Statistical analysis

The comparison and analysis of the profiling data was
done using a linear model. The design matrix was built
considering both the cell line and treatment with
CX4945 as factors. The interaction between cell line type
and treatment was not considered.

The selected contrasts test for the difference between
control samples (DMSO) and drug exposed ones
(CX4945) controlling for the cell-type. The complete ex-
perimental design in the form of design and contrast
matrices is included in Additional file 1: Table S9.

EventPointer includes several statistical methods to
state the significance of an event. In this experiment, the
events are considered to be statistically significant if
there is a change in the expression of the isoforms asso-
ciated to each of the alternative paths, this change oc-
curs in opposite direction, i.e. opposite signs for the fold
changes and the summarized p.value is significant (p
value< 0.001).

In order to compare the arrays with different sequen-
cing depths, we subsampled the RNAseq data to 30 and
10 million reads and rerun the whole pipeline with these
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data. The FDR for 30 million reads was better than using
arrays. On the contrary, using 10 million reads the FDR
was worse than using arrays. Interpolating both data, the
EDR for arrays is similar to a depth of 20 million reads.

Filters used to include the events

For arrays, the signal of the probe-sets interrogating
each of the alternative paths involved in a splicing event,
must be expressed more than a certain threshold in at
least one sample. This threshold is the 25% quantile of
the expression of the signal in the reference paths for all
the events included in the array. For RNAseq, the edges
of the splicing graph (junction reads) are included only
if their expression is at least 2 FPKM in at least one
sample (SGSeq defaults).

Matching of the events using different technologies

Lets assume that Ap and A,; are, possibly
non-contiguous, regions of the genome that correspond
to path A using either technology (Ar for RNA-seq and
Ay for HTA). By and By, have a similar description for
path B and Rp and R, for the reference path in each
technology. Two events are considered to match if any
of the following two expressions is true:

((ArcAm)|(AmcAR)) ((BreBu)|(BmcBr))

x ((RrNRy)2D) (10)
((ArcBu)|(BuCAR))((BrcAm)|(AmcBr))
x ((RrNRy)2D) (11)

In these expressions, (x Cy) is true if the genomic re-
gion x is a subset of the genomic region y (the nucleo-
tide sequence of x is a substring of the nucleotide
sequence in ). Besides, the operators “|” and “&” and
the logical OR and AND operations. If (xcy)|(ycx),
then one of the regions is contained in the other are
considered to be “compatible”. On the other hand, (xn
y) = @ means that regions x and y overlap in the gen-
ome. Therefore, the first expression is true if both paths
Ar and Ap are compatible, By and B,; are compatible
and Rpand R,; overlap. The second expression is true if
path Ap and path B,; are compatible and also path A,
and Bp are compatible and, again, and Rp and Ry,
overlap.

Within an event, the longer path in the transcriptome
is assigned the name “A” and the other the B. The sec-
ond eq. (11) takes into account that, in some few cases,
the name of the paths can be switched in both
technologies.
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PCR validation

For each splicing event, an end-point PCR was run using
primers designed in the exons that flank the event of
interest. RNA was retro-transcribed and the PCR was
performed an analyzed as previously described [40].
Primers used are shown in Additional file 2.

Endnotes

!Average sequencing depth for RNA-seq was approx.
98 million (paired-end, stranded protocol), yielding on
average approx. 49 million fragments per sample.

Additional files

Additional file 1: Vignette on the comparison based on expression
analysis. Figure S1 to S9. Experiment design and contrast matrices.
Table S10. (PDF 7766 kb)

Additional file 2: Excel file with characteristics of the validated events
and PCR primers. (XLSX 27 kb)

Additional file 3: Compressed file including the GTF files generated for
the matched events. (ZIP 15 kb)
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