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Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices
to distribute secret keys in an insecure network. It thus represents the ultimate form of
cryptography, offering not only information-theoretic security against channel attacks, but
also against attacks exploiting implementation loopholes. In recent years, much progress has
been made towards realising the first DIQKD experiments, but current proposals are just out
of reach of today's loophole-free Bell experiments. Here, we significantly narrow the gap
between the theory and practice of DIQKD with a simple variant of the original protocol
based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two
randomly chosen key generating bases instead of one, we show that our protocol significantly
improves over the original DIQKD protocol, enabling positive keys in the high noise regime
for the first time. We also compute the finite-key security of the protocol for general attacks,
showing that approximately 108-1010 measurement rounds are needed to achieve positive
rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus
represents a highly promising path towards the first realisation of DIQKD in practice.
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he basic task of DIQKD!-? is to distribute a pair of identical

secret keys between two users, called Alice and Bob, who are

embedded in an untrusted network. To help them in their
task, Alice and Bob are each given a measurement device, which they
use to perform random measurements on a sequence of entangled
systems provided by an adversary called Eve (see Fig. 1). The main
advantage of DIQKD is that the measurement devices need not be
characterised—Alice and Bob only need to verify that the
input-output statistics of the devices violate a CHSH Bell
inequality®’. As such, DIQKD represents the pinnacle of crypto-
graphy in terms of the number of assumptions required. More spe-
cifically, it only asks that (1) the users each hold a trusted source of
local randomness, (2) their laboratories are well isolated, (3) they use
trusted algorithms for processing their measurement data, (4) if the
devices are reused for multiple instances of the protocol, the outputs
in later instances do not leak information about earlier outputs, (5)
they possess sufficient pre-shared keys to implement information-
theoretically secure authenticated (public) channels, and that (6)
quantum theory is correct. Given these basic assumptions (which are,
in fact, standard assumptions in cryptography), one can then show
that DIQKD is information-theoretically secure8-10, We note that
assumption (4) is needed to address issues with protocol
composition!! and memory attacks!?, because information-theoretic
security may be violated if the protocol’s public communication leaks
some information about the private data from earlier instances.

The practical implementation of DIQKD, however, remains a
major scientific challenge. This is mainly due to the need to have
extremely good channel parameters (i.e. high Bell violation and
low bit error rate), which in practice requires ultra-low-noise
setups with very high detection efficiencies; though in recent years
the gap between the theory and practice has been significantly
reduced owing to more powerful proof techniques *1%-13 and the
demonstrations of loophole-free Bell experiments!4-17. The pre-
sent gap is best illustrated by Murta et al.!8, whose feasibility
study showed that current loophole-free Bell experiments are just
short of generating positive key rates assuming the original
DIQKD protocol®3 (see the dashed line in Fig. 3).

To improve the robustness of DIQKD, researchers have taken
several approaches, from heralding-type solutions!-2!, local
precertification®223, local Bell tests?4, to two-way classical protocols?>.
However, none of these proposals are truly practical, for they are
either more complex in implementation or provide only very little
improvements in the channel parameters. Here, we show that a
simple variant of the original DIQKD protocol is enough to obtain
significant improvements in the channel parameters.

Results and discussion
To start with, we note that in the original protocol introduced by
Acin et al3, the key generating basis is predetermined and known to
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Fig. 1 Robust DIQKD. Alice and Bob use uncharacterised devices to
perform measurements on a quantum state that is created by a source that
is potentially controlled by an adversary (Eve). In the proposed protocol,
Alice has two possible inputs (measurement settings, magenta buttons)
which are used for key generation and for running the CHSH Bell test, and
Bob has four possible inputs grouped into two sets (magenta/cyan
buttons): the magenta buttons are used for key generation while the cyan
buttons are used for running the CHSH Bell test.

Eve. For concreteness, let Alice’s and Bob’s measurement settings be
denoted by X€{0, 1} and Y€ {0, 1, 2}, respectively, and let the
corresponding outcomes be denoted by Ay € {0, 1} and By € {0, 1}.
The secret key is derived from the events in which Alice and Bob
choose X =0 and Y =0, respectively. The remaining measurement
combinations are then used for determining the CHSH violation.
Our DIQKD proposal is essentially the same as the original protocol,
except that we introduce an additional measurement setting for Bob
and now generate the secret key from both of Alice’s measurements.
This additional setting is needed so that Bob has a measurement that
is aligned with Alice’s additional key generating basis to obtain
correlated outcomes (like in the case of the original protocol). Hence
in our proposal, the key generation events are those where Alice and
Bob choose X=Y =0 and X= Y = 1. Below, we describe the pro-
posal in detail (Box 1).

In the parameter estimation step of the protocol, note that when
the inputs are not uniformly distributed i.e. p # 1/2, the CHSH value
is to be computed in terms of the conditional probabilities P(Ax,
By|X, Y) rather than the unconditioned probabilities P(Ay, By, X, Y)
directly. We remark that this does not introduce a measurement-
dependence?® security loophole, because the choice of inputs is still
independent of the state.

It is well known that incompatible measurements are necessary for
the violation of a Bell inequality and that such measurements are not
jointly measurable and hence cannot admit a joint distribution?”-2.
The intuition behind our proposal roughly follows along this line and
exploits two related facts: (1) the key generation measurements of
Alice must be incompatible for S>2 and (2) Eve has to guess the
secret key from two randomly chosen incompatible measurements.

When the secret key is only generated from a single measurement,
like in the original DIQKD protocol, Eve’s attacks are basically lim-
ited only by the observed CHSH violation and thus the monogamy of
entanglement®. Eve, however, knows which measurement is used for
key generation and hence can optimise her attack accordingly. On
the other hand, if the secret key is generated from a random choice of
two possible measurements, Eve faces an additional difficulty.
Namely, in order to achieve a CHSH violation, the two measure-
ments cannot be the same, and it is known? that for CHSH-based
protocols, different measurements can give Eve different amounts of
side-information; note that this is not the case for BB84 and six-state
QKD protocols. Therefore, at least one of the measurements will not
be the one that maximises Eve’s side-information, giving an advan-
tage over protocols based only on one key-generating measurement
(Eve cannot tailor her attack to the measurement in each round
individually, since she does not know beforehand which measure-
ment will be chosen).

In the following, we first quantify the security of the protocol
using the asymptotic secret key rate, K... This quantity is the ratio
of the extractable secret key length to the total number of mea-
surement rounds N, where N — co. In the asymptotic limit, we
may also take g— 1, which maximises the so-called sifting
factor3! and get

Ky =PiTo0s (1)

where p;:=p?+ (1 — p)? is the probability of having matching
key bases, and r., is the secret fraction32. The latter is given in
terms of entropic quantities and reads

ro = AH(A,|E) + (1 — V)H(A, |E)
H(Z|E®) (2)
— A(Qup) — (1 = H(Qy 5 ),

where h(x) := —xlog (x) — (1 — x)log (1 — x) is the binary entropy
function, A: = p?/p,, Q a8, = P(Ax # By|X,Y) is the quantum bit
error rate (QBER) for X, Y, and E is Eve’s quantum side-information
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Box 1 | Proposed device-independent quantum key distribution protocol

1. Measurements: This step is carried out in N rounds, where N is assumed to be asymptotically large. In each measurement round, Alice’s and Bob's
inputs, denoted by X €{0, 1} and Y€ {0, 1, 2, 3}, respectively, are drawn according to the following probability distributions: P(X=0) =p, P
X=D=1—p, P(Y=0)=qp, P(Y=1)=q(1—p) and P(Y=2)=P(Y=3)=(—q)/2, where 0 <p,qg<1. Once Alice and Bob enter their inputs into
their respective devices, they each obtain a measurement outcome, which we denote by Ax € {0, 1} and By € {0, 1}, respectively.

2, Sifting: Alice and Bob announce their measurement inputs over an authenticated public channel. This allows them to identify two common subsets of
their measurement data: a pair of raw keys32 of size ~ g(p2 + (1 — p)2)N (corresponding to Y € {0, 1} and X = Y) and a pair of parameter estimation data

underlying CHSH value:

predefined threshold value. Otherwise, they abort the protocol.

protocol.

and Bob are left with a pair of identical secret keys.

of size ~ (1 — g)N (corresponding to Y € {2, 3}). Alice and Bob discard the remaining measurement data.
3. Parameter estimation: Alice and Bob publicly reveal their measurement outcomes from the parameter estimation data set and compute the

S=max{2,G; — G — Co3 — G},
where Cxy = P(ax = By|X, Y) — P(ax # Byl X, Y) is the correlation function of X, Y. Alice and Bob proceed to the next step if S> S, where S is a
4. One-way error correction and verification: In the first part, Alice computes a syndrome based on her raw key (denoted by L) and sends it to Bob via
the public channel, who then uses the syndrome and his raw key to recover Alice’s key. In the second part, they perform an error verification by

comparing the hash values of their raw keys. Alice and Bob proceed to privacy amplification if the hash values are identical, otherwise they abort the

5. Privacy amplification: Alice and Bob perform privacy amplification to remove Eve's information about Alice’s raw key. Once this is completed, Alice
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Fig. 2 Secret key rate and uncertainty of Eve. a Assuming the validity of quantum theory and a given CHSH value S > 2, we show that our new protocol
can establish and certify drastically more uncertainty H(Z|E®) (close to the upper physical limit) than the best approach known before. b We consider a
noise model (depolarising noise)?3 that only depends on the CHSH value S. Now a larger amount of noise can be tolerated in order to establish a positive
key rate K... In detail, we can decrease the critical CHSH value from 2.423 to 2.362. This corresponds to an increase of the critical bit-error-rate from 0.071
to 0.082, which brings a practical implementation of DIQKD into the reach of existing experiments.

gathered just before the error correction step. Here, Z=Ag and ® €
{0, 1} is the random variable denoting Alice’s basis choice condi-
tioned on the event either X=Y=0 or X=Y=1. Moreover, E
refers to quantum side information possessed by Eve. Hence, Eve’s
knowledge is fully described by E®. The second line in equation (2) is
the amount of information leaked to Eve during the error correction
step (decoding with side-information ©).

The main challenge here is to put a reliable lower bound on the
conditional von Neumann entropy H(Z|E®), which measures the
amount of uncertainty Eve has about Z given side-information
E®, using solely the observed CHSH violation, S. To this end, we
employ a family of device-independent entropic uncertainty
relations3334, which we can solve efficiently and reliably using a
short sequence of numerical computations. More specifically, we
seek to establish weighted entropic inequalities of the form

AH(4|E) + (1 — DH(A, |E) 2 C*(S), (3)
where C*(S) is a function of the observed CHSH violation, S. A

proof sketch is outlined in the ‘Methods’ section and the complete
analysis is provided in the accompanied Supplementary Note 1.

A commonly used noise model for benchmarking the security
performance of different QKD protocols is the depolarising
channel model?332, In this noise model, all QBERs are the same
and related to the CHSH value S via

_a=l(1- 5,

Using this model, we compute the secret key rate and H(Z|E®),
which are presented in Fig. 2. Here, A is a free parameter (ie. a
protocol parameter) that can be optimised by Alice and Bob (i.e.
they optimise p = P(X = 0)) for a given pair of (S, Q). The result
of this optimisation is remarkably simple: it is optimal to use a
protocol with A = 1/2 (uniformly random key generation bases) if
§ 5 2.5(high noise) and set A =1, i.e. a fixed key generation basis
otherwise (low noise). Surprisingly, there is no need to consider
the intermediate values of 1/2 < A < 1. In the case of the latter, our
proposal reverts back to that of Acin et al.1-3 and the computed
secret key rate appears to exactly match their analytical key rate
bound. When using H(Z|E®) as a performance metric (which

4)

QAOBO = QAIBI
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Fig. 3 Rates for existing experiments. The contour plot (a) illustrates the asymptotic key rate Ke. = pst— as a function of S and QBER. We marked the
location of recent experiments (see Table 1). Our DIQKD proposal suggests that now a positive asymptotic key rate of reasonable magnitude is possible for
experiments (7, 8). The plots b, ¢ show the finite-size key rates as a function of number of rounds, for the choice p =1/2 (which appears optimal at these
noise levels). These plots are for the estimated parameters in Murta et al.!8 for the Bell tests in (b) Hensen et al.'* and (c) Rosenfeld et al.l7, respectively.
The solid curves show the results for general attacks, while the dashed curves show the results under the assumption of collective attacks. The different
colours correspond to different soundness parameters ¢3! (informally, a measure of how insecure the key is; see Supplementary Note 4) as listed in the
inset legends, while the completeness parameter (the probability that the honest devices abort) is ¢<°™ =102 in all cases. The horizontal line denotes the
asymptotic key rate. Note that only experiments (5, 6, 7, 8, 9, 10, 11) are loophole-free Bell tests, closing both detection and locality loopholes. On the other

hand, experiments (1, 2, 3, 4) did not close the locality loophole.

only depends on S and thus applies to a general class of channel
models satisfying this constraint), we observe that the uncertainty
of Eve for our proposal is always higher than that of the original
protocol for all S € (2,2+/2), see the right side of Fig. 2. In fact,
for A =1 our proposal is nearly optimal, in the sense that the
bound on H(Z|E®) is very close to the linear bound, which is the
fundamental upper limit of Eve’s uncertainty given a fixed S.
However, while it is optimal in this sense, choosing A = 1 is not
always optimal in terms of producing the highest secret key rates,
because the key rate is penalized by the sifting factor. Hence,
A =1 is preferred for the region Sz 2.5.

In order to evaluate the feasibility of our proposal, we look at
the existing list of loophole-free CHSH experiments!® and com-
pute the corresponding secret key rates. Generally speaking, there
are two types of Bell experiments: one based on measuring
entangled photon pairs using high efficiency single-photon
detectors, and the other based on event-ready systems>> using
entanglement swapping between entangled photon pairs and
atoms/NV-centres. Following along the lines of Murta et al.!8, we
prepare a feasibility region plot for the list of CHSH experiment
therein, which is presented in Fig. 3. The immediate observation
is that our DIQKD proposal significantly expands the region of
channel parameters that give rise to positive key rates, thus
substantially improving the robustness of DIQKD. The next
observation is that event-ready loophole-free ~CHSH
experiments!417 are now well within the positive key region; as
opposed to the original protocol where they are either in the
insecure region or around the boundary. Unfortunately, CHSH
experiments based on entangled photon pairs are still in the

4

insecure region (also see Supplementary Note 2), although it
should be mentioned that this observation holds only for our
proposal and the original DIQKD protocol (Table 1).

Our results hence show that positive asymptotic key rates can
be achieved by recent event-ready loophole-free experiments.
This significantly improves over the original protocol?, which
does not achieve positive key rates for any such experiments, even
in the asymptotic limit (though Murta et al.!® describes pro-
spective future improvements to NV-centre implementations,
which may allow positive asymptotic rates). However, there are
still a few experimental challenges. For one, we note that the
event-ready CHSH experiments are fairly slow compared to their
photonic counterparts; e.g. the event-ready experiment by Hen-
sen et al.14 performed only 245 rounds of measurement during a
total collection time of 220h. Recently, Humphreys et al.3
demonstrated that it is possible to improve the entanglement rate
by a couple of orders of magnitude, but this comes at the expense
of the overall state fidelity and hence lower CHSH violations.
While our protocol can yield positive asymptotic key rates in
these noise regimes, a relevant question to consider is the number
of rounds required to achieve security in a finite-key analysis.

To make this concrete, we analyse the finite-key security of our
protocol using the proof technique from a recent work®’ (see Sup-
plementary Note 4 for the proof sketch). In particular, we compute
the finite-key rates for both collective and general attacks, with the
analysis of the latter making use of the entropy accumulation
theorem38-40, which essentially certifies the same asymptotic rates as
in the collective attacks scenario. (An alternative approach may be the
quantum probability estimation technique*l.) Our results are
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Table 1 Asymptotic rates for existing experiments (data
from Murta et al.’8, Table 4).

Label Experiment Year Rate [bit/channel
use]

m Matsukevich Cold atom 2008 0.004

et al.64

@) Pironio et al.®> Cold atom 2010 018

3) Giustina et al.6® Photonic 2013 0

4) Christensen et al.6? Photonic 2013 0

5) Giustina et al.’ Photonic 2015 0

(6) Shalm et al.1® Photonic 2015 0

@) Hensen et al.4 NV-centre 2015 0.057

® Rosenfeld et al.”” Cold atom 2017 0.019

©) Liu et al.68 Photonic 2018 0

10) Liu et al.6® Photonic 2019 0

an Li et al.’0 Photonic 2019 0

Non-photonic experiments ((1, 2) and (7, 8)) now promise a positive keyrate. However, note that
the experiments (1, 2) were performed in a single lab and therefore did not close the locality
loophole. The photonic experiments (3, 4) also did not close the locality loophole. The more
recent experiments (5, 6, 7, 8, 9, 10, 11) closed both locality and detection loopholes. Note that
the value of QBER for experiment (8) provided by Murta et al.'® is based on the experiment of
Henkel et al.63 while the QBER achievable by experiment (8) is estimated to be higher by the
authors of experiment (8)7.

summarised in Fig. 3, focusing on the experiments from Hensen
et al.'* and Rosenfeld et al.'” (which can achieve positive asymptotic
key rate, as mentioned above). We see from the plots that they
require ~108 and 10! measurement rounds, respectively to achieve
positive finite-size key rates against general attacks. In these experi-
mental implementations, this number of rounds is still currently out
of reach (assuming realistic measurement time). Overall, however,
given future improvements on these experimental parameters, our
protocol would attain higher asymptotic rates than the original
protocol?, and hence also require fewer rounds to achieve positive
finite-key rates.

To further improve the robustness and key rates, there are a few
possible directions to take. For one, we can consider the full
input—output probability distribution instead of just taking the CHSH
violation. Since the latter only uses part of the available information,
more secrecy could potentially be certified by finding methods to
compute secret key rates that take into account the full probability
distribution estimated from the experiment. Such a method for
general Bell scenarios was recently developed*%; however, we found
(see Supplementary Note 1) that the bounds it gives in this case are
not tight, and are slightly worse than the results presented above.
Another possible approach specialized for 2-input 2-output scenarios
is presented in Tan et al.37, which is potentially more promising for
such scenarios.

Methods

Here, we outline the main ideas of our security analysis. The core of the security
analysis is a reliable lower-bound estimate on the conditional von Neumann
entropy of Eve. The complete analysis is deferred to the accompanying Supple-
mentary Note 1.

Average secret key rate. Conditioned on the key generation rounds, Alice and
Bob would pick their inputs (basis choices) according to a probability distribution
(p» 1 — p). As discussed in the main text, this distribution acts as a free parameter in
our protocol and has to be adapted to a given set of channel parameters (S, Q) in
order to obtain an optimal performance. In the following we will, therefore, outline
how the final key rate K., and secret fraction r., are given as functions of (p, S, Q).

The secret fraction in a round of the protocol, in which the measurements Ax
and By are obtained, can be computed using the Devetak-Winter bound #3 under
the assumption of collective attacks,

rAxBr > H(Ay|E) — H(Ax|By). (5)

Here the term H(Ax|By) only depends on the statistics of the measured data of
Alice and Bob, and can therefore be directly estimated in an experiment. For binary
measurements this quantity can be furthermore expressed by the respective bit

error rate Q4 g via
H(Ay|By) <h(Qq3,)- (6)
In our protocol, a key generation round is obtained whenever Alice and Bob
perform measurements Ay and By with X =Y. The probability that Alice and Bob
perform the measurements A, and By is p? and the probability that they perform A,
and B, is (1—p)% When the error correction is done for both cases, (Ao, By) or (4,
B,), separately, we obtain the overall asymptotic key rate as sum of the individual
secret fractions weighted by their respective probability. This gives
= p"H(Ao|E) + (1 = p)’ H(A,|E)
— p°H(Ay|B,) — (1 — p)*H(A, |B,)
2 p(AH(Ag|E) + (1 — MH(A,|E)
— M(Quyp,) — (1= WA(Qy 5)
=Dl oos
where the success probability p; and the relative distribution of the basis choices
(A, (1 — 1)) are given by

@

po=E+U—pP)=1-2p+2p’ 8)
and
__r
T 1-2p+2p%’ ©

respectively. As mentioned in the main text we also write

H(Z|E®) := \H(A,|E) + (1 — )H(A, |E) (10)

where ® denotes a binary random variable (distributed by (A, (1 —1))) that (virtually)
determines which basis pair, (Ao, Bo) or (A, By), is picked in a successful key generation
round in order to generate the values of a combined random variable Z = Ag.

Device-independent entropic uncertainty relation. The only term in the key rate
formula (7) that cannot be directly obtained from the measurement data is the
conditional entropy H(Z|E®). The main challenge here is thus to establish a reli-
able lower bound on this quantity assuming only the CHSH violation S. More
specifically, we are interested in finding a function C*(S) such that

H(Z|E®) = C*(S) (11)

holds for all possible combinations of states and measurements (in any dimension) that
are consistent with the observed CHSH value S. An inequality like equation (11) is
commonly referred to as an entropic uncertainty relation, and in our case we are
interested in relations with quantum side-information33#44>, There is a vast amount of
literature344647 in which relations of this form33444548 or similar*-5> have been
studied and several types of uncertainty relations have been discovered. A typical family
of entropic uncertainty relations, which is close to our problem, is that proposed by
Berta et al.33 and the weighted generalisation of it from Gao et al.*>. These inequalities,
however, are not device-independent and require the measurement characterisation of
at least one party, which unfortunately is not possible in our setting.

To the best of our knowledge, the only known entropic uncertainty relations for
uncharacterised measurements are given by Tomamichel et al.>® and Lim et al.24.
There, the uncertainty of the measurement outcomes with side-information is
lower bounded by the so-called overlap of the measurements®3, which in turn is
further bounded by a function of the CHSH violation. Although these relations are
applicable to uncharacterised measurements, they appear fairly weak when applied
to our DIQKD proposal, i.e. they do not provide any improvement in the secret key
rate when compared to the original protocol.

The lower bound we establish in this work, i.e. the function C*(S), appears to be
optimal in that it can be saturated by two-qubit states up to numerical precision
(see Supplementary Note 1). C*(S) is depicted in Fig. 2b for A = 0.5, and in Fig. 4b
for continuous values of A and S € {2,2.2,2.4,2.6,2.8,2+/2}. In Fig. 4a, we
additionally plot the so-called uncertainty sets*”>4°7 of our relation. These are sets
that outline all the admissible pairs of entropies (H(Ao|E), H(A,|E)) for a given
lower bound on S. We also note that it may seem plausible to independently
optimise each term H(Ay|E), H(A,|E), instead of the sum of them. However, as
shown in Fig. 4b, numerical results suggest that optimising the weighted sum of
these terms is always better than optimising the individual terms: this also
highlights where our DIQKD proposal improves over the original protocol.

Computing C*(S). As mentioned, the complete analysis of our lower bound on
C*(S) is deferred to Supplementary Note 1. In the following, we will only outline
the main steps of the analysis to reduce the computation of C*(S) to a sequence of
problems that can be treated successively. The basic idea to find a way to compute
C*(S) by only using known estimates (both analytical and numerical) that give a
final lower bound that is reliable. This means that all the steps of the analysis
assume the worst-case scenario, so that the final value is a strict lower bound on
C*(S). In brief, the analysis uses a refined version of Pinsker’s inequality, semi-
definite optimisation and an e-net to achieve this goal.
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Fig. 4 Device-independent uncertainty relations. In a the plot shows the device-independent uncertainty relation between AH(AQ|E) + (1 — ADH(AL|E),

where the solid line is the fundamental uncertainty C*(S) for a given CHSH violation. The shaded region above the line hence represents the feasible region
of (H(Ao|E), H(A,|E)) given S. Evidently, when S = 24/2, we see that H(Ao|E) = H(A;|E) =1 must be maximally random; indeed, S = 2+/2 corresponds to
the case where Eve is completely uncorrelated with the devices and hence her best guess is limited to a random guess. In panel (b), the plot shows the
minimal uncertainty C*(S) (the bottom dashed line) attained when 1= 0, 1 and one can see that C'(S) (solid line) for 0 <1< 1 always gives a non-trivial

advantage over the limiting case (like in the original DIQKD protocol).

! I3
( > i
Hfl \
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IIye

Fig. 5 Measurement setting for two-qubit states. Alice has two projective measurement that are described by projectors (Hé“,l‘[f") and (Hé‘ , Hf‘) with
relative angle ¢. Bob has in total four measurements: for key generation, ideally he should perform measurements B and B; which are aligned with Alice's
measurements Ag and A; to minimise the quantum bit error rates. The security analysis only depends on Bob’s measurements B, and Bs, which are w.l.o.g.

specified by a relative angle .

Our first step is to reformulate the tripartite problem involving Alice, Bob and
Eve to a bipartite one that involves only Alice and Bob. Following Tan et al.*2, we
note that conditional entropy terms like H(Ay|E) can always be reformulated as the
entropy production H(Tx(pap)) — H(pag) of the quantum channel Ty on the post
measurement state on the Alice-Bob system, which is defined as the change of von
Neumann entropy of the system that is subjected to the quantum channel Tx. In
our case, this channel Ty is a pinching channel, defined as:

Tylpl =) @1 p ([ @ D+ I @ 1) p (IIf* ® 1), (12)

where IT;* denotes the projector associated with Alice’s measurement setting x and
outcome a. Clearly, the pinching channel satisfies Ty = T% = T% and acts
complementary to the map that models Alice’s measurement. With this, we can
further rewrite the entropy production as

AH(A,|E) + (1 — M)H(A, |E)
= AH(T[pap)) — AH(p 5p)
+ (1 = VH(T [psp)) — (1 — MVH(p,p)
= AD(pyl| TolpapD) + (1 = MD(p 51T, [p45))

where D(p||o) is the quantum relative entropy of p with respect to o.

(13)

Then, we follow a proof technique in the original work on DIQKD?3 to reduce the
underlying p4p to a mixture of two-qubit states, where it is assumed that the mixing is
due to Eve. That is, since each party (Alice and Bob) performs only two binary
measurements, their local measurement devices can be described by only specifying two
projectors (whose dimensions are unspecified). The corresponding local algebras, which
are generated by two projectors, are well investigated mathematical objects>® for which a
central theorem® states that their representation can be decomposed into 2 x 2 (qubit)
blocks and a commuting rest. Correspondingly, this allows us to conclude (details in the
Supplementary Note 1) that the desired uncertainty bound can be decomposed
accordingly as a convex combination:

2v2
C*(S) = inf / #(dS") CLas(S)
b =2 '

sth. (2,272 <1, u=0 (14)
2V2

[ wasys =s.
§=2

where C{...4(S') is a lower bound on the conditional entropy H(Z|E®) for projective
measurements on two qubits. Here, we note that once a bound on Cf....(S) is

established, the optimisation overall measures y, which can be geometrically interpreted
as taking a convex hull, is straightforward to perform. As shown in Fig. 5, the situation
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for the optimisation corresponding to C7...4(S') can now, w.lo.g, be fully described by
specifying a two-qubit state and two angles (¢, w) that describe the relative alignment of
Alice’s and Bob’s measurements.

Although the problem has been reduced to two-qubit states and projective qubit
measurements, a direct computation of C7....(S) is still an open problem as there
are no known proof techniques that can be applied to our situation. To that end, we
employ a refined version of Pinsker’s inequality (see Theorem 1 in the
Supplementary Note 3),

DT log(2) by (5 =3 1= T, ). (s)
to obtain a lower bound on the relative entropy in (13) in terms of the trace norm.

The big advantage of establishing estimates in terms of the trace norm is that a
minimisation thereof can be formulated as a semi-definite program (SDP). (In fact,
it is possible in principle to use this inequality to bound the entropy without
reducing the analysis to qubits, though the resulting bounds in that case do not
appear to be very tight. We discuss this in detail in Supplementary Note 1.)

With that, the overall optimisation problem at hand now reads

inf,  13(p,0) + (1 — Do(p, )
inf inf (16)
gelom/2) | b s.th. : <F0 +F. b>p= S
where
3(p.9) = Il{p, Qo) } — 2QU9)p QI a7
and constraints that are linear in p given by 4 x 4-matrices
Fyand F-b = b,F,(¢) + b.F.(9). (1)

where Q(¢), Fx(¢) and F,(¢) depend on ¢ in terms of the first and second order in
cos(¢) and sin(¢). In the above expression, b is a vector on a (2-norm) unit sphere
that arises from reformulating the description of Bob’s measurements.

This optimisation can be solved in three stages, indicated by boxes in (16):

(i) The optimisation within the square bracket [] over p is an SDP on 4 x 4
matrices, which can be efficiently solved®.

(ii) The optimisation in the curly bracket { } over b is performed by relaxing the
continuous optimisation over the (2-norm) unit sphere to a discrete
optimisation on a sequence of polygonial approximation (similar to the
method used in Schwonnek et al.®1:62). Also this optimisation can be
performed with reliable lower bounds to the order of any target precision.
The last optimisation runs over the single parameter ¢ coming from a
bounded domain. Hence, it is possible to efficiently tackle this optimisation
by an e-net. In order to do so it is required to provide an error estimate (for
the magenta and the black box) for all ¢ that are located in an e-interval
around some ¢,. Note that all previous optimisations are linear in p and b
and only depend in the second order on cos(¢) and sin(¢) (which are
bounded functions of ¢).
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