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MIF is a critical regulator
of mononuclear phagocytic infiltration
in hepatocellular carcinoma

Yunxi Liao,1,2 Chenyang Wu,1,2 Yang Li,3 Jinhua Wen,3,* and Dongyu Zhao1,2,4,*

SUMMARY

Immunotherapy targeting tumor-associated macrophages (TAMs) is a promising
approach to treating cancer. However, the limited drug targets and ambiguous
mechanisms impede the development of clinical immunotherapy strategies. To
elucidate the underlying processes involved inmononuclear phagocyte (MNP) infil-
tration and phenotypic changes in hepatocellular carcinoma (HCC), we integrated
single-cell RNA-sequencing data from 100,030 cells derived from patients with
HCC and healthy individuals and compared the phenotypes and origins of the
MNPs in the tumor core, tumor periphery, adjacent normal tissue, and healthy liver
samples. Using machine learning and multi-omics analyses, we identified 445 infil-
tration-associatedgenes andpotential drug targets affecting this process. Through
in vitro experiments, we found that the expression of macrophagemigration inhib-
itory factor (MIF) is the upstream regulator of secreted phosphoprotein 1 (SPP1)
and promote migration in TAMs. Our findings also indicate that MIF promotes tu-
mor metastasis and invasion and is a promising potential target for treating HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC) is an aggressivemalignancy accounting for >80%of primary liver cancers. HCC

is the fourthmost common cause of cancer-related death worldwide, posing a serious threat to people’s health

and lives.1 In addition to tumor cells, fibroblasts, endothelial cells, and immune cells in the tumor comprise the

tumor microenvironment (TME). Tumor-associated macrophages are considered a major component of the

TME and are related to patient prognosis and tumor resistance to therapy. Macrophages in the liver are cate-

gorized into tissue-resident macrophages (Kupffer cells) and bone-marrow-derivedmacrophages according to

their origin.2 The TME can induce these macrophages to undergo a series of phenotypic and functional alter-

ations, yielding tumor-associatedmacrophages (TAMs).Monocytes extravasate into the tissue and interact with

the TME during infiltration and differentiation, becoming TAMs that can promote tumor progression.

Mononuclear phagocytes (MNPs) include macrophages and monocytes, and their precursors are dispersed

across various organs and tissues throughout the body. It has previously been demonstrated thatmacrophages

can be divided into two groups, M1 and M2.3 M1 macrophages are considered ‘‘classically activated’’ macro-

phages that can be activatedwith lipopolysaccharide and IFN-g. M1macrophages express TNF-a, iNOS, IL-1b,

andCXCL9/10, recruit T cells, and promote inflammation.M2macrophages are ‘‘alternatively activated’’ by IL-4

and IL-13. M2 macrophages express CD206, CD163, TREM2, and other anti-inflammatory markers and do not

play a pro-inflammatory role.3,4 However, these two distinct types do not comprehensively represent the highly

heterogeneous nature of macrophages5 such as TAMs, a heterogeneous group of cells expressing both M1

andM2markers. Many TAMs with immunosuppressive effects exhibit an M2-like phenotype and do not inhibit

tumors.6 These TAMs secrete IL-10, TGF-b, VEGFA, and other tumor-promoting cytokines, hampering T cell

cytotoxicity and promoting tumor metastasis.7 Cancer patient single-cell RNA-seq (scRNA-seq) data have re-

vealed previously unrecognized dynamics and heterogeneity among TAMs.8–10

Due to cellular plasticity, numerous MNPs exhibit distinct phenotypes, implying a diverse role in disease.

Many studies have now demonstrated that macrophages in the TME promote tumor development11,12 and

targeting TAMs has emerged as a promising direction for drug development and therapeutic strategies.13

There are twomain TAM-targeting approaches: changing the function of the TAMs or inhibiting TAMs infil-

tration.14 Several cytokines, including IL-6, IL-1b, CSF-1, and VEGFA, and chemokines CCL2, CCL3, CCL4,
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Figure 1. Identification of the MNPs in HCC
(A) UMAP plot showing the clusters of the 10,381 HCC myeloid cells.

(B) Dim plot showing the marker genes expression of the HCC myeloid cells.
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and CXCL12, have been demonstrated to promote monocyte recruitment in animal models of lung, breast,

and pancreatic cancer.15 This finding has led to the development of many drugs targeting MNP infiltration,

predominately targeting the CCR2–CCL2 and CXCR4–CXCL12 pathways.16 Strategies targeting these

pathways have shown efficacy in HCC mouse models.13

However, due to the complexity of the TME, additional signaling pathways that mediate intercellular in-

teractions within the TME need to be illustrated. Limited targets and unclear mechanisms impede the

development of clinical treatment strategies. To further understand the role of MNPs in HCC and identify

potential drug targets influencing MNP infiltration, we integrated single-cell transcriptomic data from pa-

tients with HCC and healthy individuals. We used a gradient-boosted decision tree (GBDT) approach to

distinguish different spatial locations of MNPs. A multi-classifier was trained to identify genes affecting

the spatial distribution of cells, and the effects of these genes were further confirmed with microarray and

RNA-seq data. Through data mining and experimental validation, we demonstrated that the migration

inhibitory factor (MIF) gene could influence TAM infiltration, providing a potential target for treat-

ing HCC.

RESULTS

MNPs show phenotype and function heterogeneity in HCC

To better understand the heterogeneity of the immune system in liver cancer, we evaluated data from

75,696 immune cells from two published HCC single-cell datasets, Zhang Q et al. and Sharma A et al.

The cells were obtained from distinct spatial regions: adjacent normal (AN) tissue, the tumor periphery

(TP), and the tumor core (TC) (Figures S1A–S1C). We divided the cells into 12 groups based on the expres-

sion of classical immune cell marker genes, such as CD8A, IL-7R, TCLA4, IFG, and CD79A (Figures S1D, S1E,

and Table S1). We further focused on myeloid cells, comprising dendritic cells (DCs), monocytes, and mac-

rophages, and classified the cells into 13 subtypes, including seven MNP subtypes, five conventional den-

dritic cells subtypes, and one plasmacytoid dendritic cells subtype after re-clustering (Figure 1A and 1B). To

exclude the effect of ribosomal proteins (RPs), we compared cell clusters before and after ribosome

removal and found that DC-CD1C-RPs belonged to the DC-CD1C subtype and Macr-RPs represented a

separate subtype (Figures S1F and S1G).

Gene Ontology (GO) enrichment analysis17 was performed for the 7 MNP subtypes (Figure 1C). The Mono-

VCAN subtype has high motility and is enriched in the cell extravasation pathway; thus, these cells might

migrate during the inflammatory response. In contrast, the Mono-CD16 subtype with low motility exhibited

a more mature phenotype (Figure 1C). The Macr-STAT1 and Macr-APOE subtypes have a strong antigen-pre-

senting functions and are significantly enriched inmyeloid-mediated immunity and immune effects (Figure 1C).

The Macr-APOE subtype expressed M2 markers, such as CD163, MRC1, and IL-10, and classical complement

C1q (C1QA/B/C) (Figure S1H). It has been reported that tumors with a high number ofmacrophages and a high

level of C1q expression establish an immunosuppressive environment.18 Another type of immunosuppressive

macrophage was the Macr-secreted phosphoprotein 1 (SPP1) subtype. These cells strongly expressed SPP1

and TREM2 (Figures 1B and S1H). The Macr-SPP1 subtype demonstrated overexpression of pathways involved

in cell adhesion, extracellular matrix remodeling, and angiogenesis (Figure 1C).

To identify direct factors affecting MNP infiltration, we evaluated the expression of chemokines and their

ligands in each cell subtype. The inflammatory Mono-VCAN subtype showed the highest level of CCR2

expression, indicating the initial event of CX3CR1LoCCR2Hi monocytes recruitment from the vasculature

to the tumor; infiltrating monocytes are then further transformed into CX3CR1HiCCR2Lo monocytes (the

Mono-CD16 subtype) (Figure 1D). The CCR2+ Macr-STAT1 subtype expressed many chemokine receptors

and M1 marker genes, suggesting that the Macr-STAT1 subtype is present in the early stages of monocyte

differentiation into macrophages (Figures 1D and 1E).

Figure 1. Continued

(C) Heatmap showing ssGSEA results of the 6,939 HCC MNPs in the BP gene set in the GO term enrichment. Heatmap colors show the normalized gene

enrichment scores (NES), and label ‘‘*’’ represents the adjusted p value <0.05. The different color blocks of row names distinguish the pathway types, from

top to bottom, the pathway types are ‘‘inflammation & immune’’, ‘‘antigen presentation’’, ‘‘phagocytosis’’, ‘‘angiogenesis’’, ‘‘remodeling cell adhesion and

matrix’’, ‘‘cell migration’’, and ‘‘oxidative stress’’. ‘‘:’’ represents ‘‘Antigen Processing and Presentation’’, ‘‘C’’ represents ‘‘Sprouting Angiogenesis’’.

(D) Bar plot showing the average expression of CCR2 and CX3CR1 in each type of MNPs.

(E) Heatmaps showing the expression levels of cell polarization, chemotaxis, and immune-related genes in each MNP subtypes.

(F) Dim plot showing the expression of CXCLs in each type of MNP.
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The Macr-SPP1 subtype was also highly enriched in cell migration-related pathways and had low expression of

chemokine receptors but higher chemokine levels. These cells primarily secrete CXCL1/2/3/8 (Figure 1F), which

are CXCR1/2 ligands. The aforementioned chemokines primarily recruit myeloid cells, such as granulocytes,

promote the development of immunosuppressive cells, and inhibit T and NK cell cytotoxicity.19,20 In addition,

secretion of IL-5 byMacr-SPP1 cells may also inhibit NK cell function by recruiting eosinophils.21 Due to the low

enrichment scores in the immune-related pathways (Figure 1C), Macr-SPP1 cells may not secrete inflammatory

factors such as IL-6 and TNF-a. Overall, we distinguished immunosuppressive and activated MNP subtypes in

the tumor microenvironment using their distinct gene expression characteristics.

MNPs show spatial distribution preferences

We investigated the cells’ origin by using scRNA-seq of MNPs from healthy liver datasets (MacParland

et al.22, Tamburini et al.23, and Ramachandran et al.24) (Figure S2A). In contrast to tissue-resident Kupffer

cells, monocytes and mononuclear-derived macrophages are collectively referred to as ‘‘MDM’’ in healthy

livers (Figure S2B). VCAM1, MARCO, VSIG4, CD163, and other markers of Kupffer cells were highly ex-

pressed in the KC-VCAM1 subtype. A small fraction of cells, MDM-CD14 cells, expressed CD14, ITGAM

(CD11b), and FCN1 and may be located in the peripheral blood. In addition to classification by tissue

origin, MDMs can be classified as inflammatory or non-inflammatory. Compared to MDM-CD14 cells,

MDM-VCAN cells express higher levels of CCR2 and inflammatory factors (e.g., S100A8 and S100A9) (Fig-

ure S2C). MDM-VCAN cells account for the vast majority of MNPs in the liver.

Subsequently, we examined the similarities among cellular identities in HCC and healthy liver samples

by directly calculating correlation coefficients and using a logistic regression model with elastic net

regularization for each cellular identity defined by the clusters identified in each sample type.25 In this

study, Macr-SPP1 and Macr-STAT1 were two novel mononuclear-derived macrophage subtypes that

evolved in HCC with little connection to a specific cell subtype found in healthy livers (Figure 2A).

Additionally, we found that Macr-VCAM1 and KC-VCAM1 cells are quite similar (Figures 2A and 2B).

A small cluster of Macr-VCAM1 cells prominently expressing Kupffer cell markers was found at the margin

of the Macr-APOE cluster. The distribution of most Macr-APOE cells overlapped with KC-VCAM1 cells in

the UMAP descending analysis, indicating that Macr-APOE cells are derived from Kupffer cells, while

Macr-APOE cells were derived from the mononuclear-derived Macr-STAT1 subtype (Figure 2C).

The proportion of non-inflammatory Macr-APOE, Macr-RP, andMacr-SPP1 cells is significantly enhanced in

HCC samples compared to in healthy liver samples, increasing from 35% in the AN tissue to 70% in the TP

and 71% in the TC, respectively (Figures 2C–2E). Under the influence of the TME, the ratio of Mono-CD16/

Mono-VCAN cells increased from the AN site to the TC, and infiltrating monocytes lost their inflammation-

related phenotype. Macr-STAT1 cells with anM1 phenotype were mainly found at the TP, with low numbers

in the TC (Figure 2C), supporting the idea that macrophages display more M2 characteristics during tumor

infiltration.6 Ro/e, the ratio of observed cell number over the expected cell number of a given combination

of MNPs cell cluster and spatial distribution, was calculated to determine changes in cellular distribution

among spatial locations (Figure 2F). These results indicated that infiltrating MNPs are influenced by the

TME in different locations and show spatial distribution preferences.

MIF is the main secretory signal for MNPs interacting with the microenvironment

To investigate the environmental signals affecting MNP infiltration, we reintegrated non-immune cells (hepato-

cytes, endothelial cells, and fibroblasts) from Sharma A et al. (Figure 3A). Cell-cell commutation with CellChat

revealed that non-immune cells primarily produce MIF, annexin, visfatin, and C3+ complement to interact

with MNPs (Figures 3B and S3). It has been reported that C3 complement can promote M2 polarization.6,26 Tu-

mor hepatocytesmaygenerateC3 complement, attractingC3AR+ TAMs (Macr-APOE) (FigureS3).Notably,MIF-

related pathways were present in all three types of samples and varied across adjacent normal and malignant

tissues (Figure S3). The primary source of MIF in the TME was fibroblast cells, along with autocrine signaling

from MNPs, whereas in AN sites, hepatocytes are the primary non-immune cells that secrete MIF (Figures 3C,

and S3). Given the widespread expression of MIF receptors CD74 and CXCR4 in MNPs in HCC, the MIF/

CXCR4 axis may be the primary signaling pathway promoting macrophage infiltration (Figure 3C), whereas

the other ligand of CXCR4, CXCL12, was detected only in endothelial cells in AN sites with low intensity (Fig-

ure S4). The expression levels of MIF were higher in Macr-SPP1 cells than in the other MNPs (Figures 3C and

3D). Both signals reached maximum intensity (Figure S4), and their signaling network structures were similar

in the tumor sites (Figure 3E), suggesting these two genes have potential correlations. In summary, the
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Figure 2. Differences in the MNPs in the different spatial locations

(A) Heatmap showing the correlation of MNP types in healthy livers (columns) and HCC (rows).

(B) Heatmap showing the similarity between different MNP types in healthy livers (columns; 3,039 cells) and HCC (rows; 6,939 cells).

(C) Pie charts and UMAP plots showing the spatial distribution and proportion of each MNP subtype.

(D–E) UMAP plot and bar plot showing the spatial distribution of the MNPs in HCC.

(F) Heatmap showing the spatial preference of each cell type estimated using the Ro/e method.
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disparities in cellular spatial distribution and communication signals provide a snapshot of different macroenvir-

onments, and the TC possesses more immunosuppressive factors than AN sites.

The cellular trajectory in tumor sites reveals MNP infiltration processes

To explore how monocytes transform during infiltration into tumors, we deduced the cellular infiltration

and differentiation process using analysis of pseudotime and RNA velocity. To prevent batch effects arising

Figure 3. Analysis of cell communication through secretory signals by CellChat

(A) UMAP plots showing the 21,295 non-immune cells and 6,939 MNPs and their spatial location used to run CellChat.

(B) Chord diagrams showing the secretory signals predicted by CellChat for the communication between non-immune cells and MNPs.

(C) Violin plots showing the RNA expression levels of ligand-receptor pairs of MIF-related pathways in MNPs.

(D) Violin plots showing the RNA expression levels of ligand-receptor pairs of MIF-related pathways in the non-immune cells of different locations.

(E) UMAP plots showing the structure similarity of the secretory signals in the different spatial locations.
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Figure 4. Cell trajectory analysis of MNPs during infiltration in HCC

(A) PAGA plot showing the predicted trajectory by scVelo.

(B) Heatmap showing the top 100 genes in the molecular dynamic model most likely to affect differentiation based on latent time for RNA splicing.
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from usingmultiple HCC datasets, we selected one dataset (Sharma A et al.) for RNA velocity analysis27 and

discovered that the cells were divided into two branches derived from the Mono-VCAN subtype, mono-

cyte-like and macrophage-like progressing from M1 (Macr-STAT1) to M2 (Macr-APOE) (Figure 4A and

4B). Additionally, the RNA velocity between the Macr-VCAM1 and Macr-APOE subtype flow confirmed

that Macr-APOE cells are partially derived from Kupffer cells (Figure 4A).

Within the trajectory inference, we set the CX3CR1LoCCR2Hi Mono-VCAN subtype as the root cells (Figure 4C).

AlthoughMacr-VCAM1 cells are consistent with the tissue-resident Kupffer cells in HCC and are not involved in

monocyte infiltration, we included these cells in our analysis to obtain a full overview of the MNPs. Monocle2

(Figures S5A–S5C), Monocle3 (Figure S5D),28 Slingshot,29 and Destiny (Figures S5E–S5H)30 produced similar

pseudotime orders (Figures 4C–4E), in agreement with the RNA velocity results. Overall, the trajectory illumi-

nates the progression of inflammatorymonocytes (abundant in theANsites) toM1macrophages (accumulating

at the TP) and immunoinhibitory TAMs, consistent with MNPs’ spatial preference (Figure 2C), indicating a dy-

namic process of MNP infiltration in the tumor.

Machine learning determined the 445 infiltration-associated genes in MNPs

We used a machine learning approach to identify the main factors influencing MNP infiltration. Because

cellular trajectories reveal this dynamic process of infiltration, we used 2026 essential genes obtained

from RNA velocity analysis and pseudotime inference as model features (Figures 4F, and S5). The expres-

sionmatrix of these 2026 genes was used as the input for themodel, and three spatial sites were used as the

output. This approach was used to identify the critical genes influencing the MNP cells’ distribution. We

employed three models based on GBDT, Catboost,31 LightGBM,32 and XGBoost33 (Figure S6A). Because

single-cell data are high-dimensional sparse matrices, we first employed Boruta software to perform

feature selection by importance rating, lowering the gene number from 2026 to 446 (Figures S6B and S6C).

The performance of the models was similar with this dataset using the selected hyperparameters,

and the built ternary classifiers had an accuracy of 85% on the same test set after hyperparameter

tuning (Figure S7A). We selected the XGBoost model (Figures S7B and S7C) as it demonstrated the

highest accuracy (85.7%), and high AUCROC and AUCPR values (Figures 5A and 5B, Table 1). The accuracy

reached 94.6% when the normal and malignant tissues were separated (Figure S7A). Intriguingly, both

SPP1 and MIF were listed at the top when ranking the importance of the model’s features (Figure 5C).

The model was externally verified using scRNA-seq datasets (Cheng S et al.) containing other HCC

and alternate tumor types.10 Due to the lack of distinction between the TP and TC in the other datasets,

we could only use the model to produce binary (normal vs. malignant) predictions, and the model per-

formance was good (Figures 5D and 5E). GO term enrichment analysis of the selected genes revealed

that MNP chemotaxis and migration were involved in MNP infiltration (Figures 5F and 5G).

The infiltration-associated genes enable the classification of TME types

To determine whether the infiltration-associated genes identified throughmachine learning can be used to

characterize the MNP-related microenvironment in tissues, we calculated the highest expressed gene in

each tissue and divided the 445 genes into three corresponding categories (AN, TP, and TC) (Figure S7B,

Table S5). In addition, we integrated two sets of bulk transcriptome data from patients with HCC, including

microarray data34–41 and data from the TCGA42 and ICGA43 (Figures S8A–S8F). The tumor tissues were

grouped into three groups (AN, TP, and TC) by comparing the weighted average of gene expression.

When combined with patient survival data, we discovered that AN-type patients have a better prognosis

than TP- or TC-type patients (Figures 6A–6C), as the aforementioned spatial distribution preferences of

MNPs (Figures 2C–2F) in AN imply an immune microenvironment with a high proportion of monocytes

(especially inflammatory monocytes) and a low proportion of macrophages. Regarding the TNM stage

and Edmondson–Steiner grade, most patients with stage I and G1-2 had AN-type HCC (Figure 6D). The

AN-type microenvironments are low-risk factors.

Figure 4. Continued

(C) UMAP plots showing the pseudotime by four TI methods. The trajectory is simplified according to the predicted trajectory inferred by the TI methods.

The colorful dots in the trajectory represent the cells where the median pseudotime of each MNP subtype and the small green dots represent the starting

cells with pseudotime 0.

(D) Density plots showing the cell pseudotime order inferred by the TI methods.

(E) Heatmap showing the Pearson correlation coefficient when compared to the pseudo-time order of cells estimated by the TI methods.

(F) Venn diagram showing the driver genes found in the five-cell trajectory.
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Next, we compared the three categories of genes with differential genes between tumor and normal tissue

(Figure 6E). AN genes and low-expressed genes in the tumor were regarded as low-risk genes, and TP or

TC genes and high-expressed genes in the tumor were considered high-risk genes. There was a significant

overlap within the high-risk genes (Figure 6F), considered tumor-related genes affecting the immune microen-

vironment. The top-ranked genes in terms of feature importance, SPP1 and MIF, overlapped with high-risk

genes and were highly expressed in tumor tissues, indicating poor prognosis (Figures S9A and S9B). These

two genes were negatively correlated with CD8+ T cell infiltration in tumors and positively correlated with

the degree of monocyte and macrophage infiltration (Figure 6G). In summary, genes that affect MNP infiltra-

tion, especially SPP1 and MIF, influence the tumor microenvironment and cancer prognosis.

Figure 5. Predicting the spatial location of the HCC MNPs using the XGBoost model

(A) ROC curves of the selected XGBoost models.

(B) PR curves (precision-recall curve) of the selected XGBoost model.

(C) Bar plot shows the importance scores ranking of the feature genes in the XGBoost model.

(D) ROC curves of the selected XGBoost models on the external validation datasets.

(E) Bar plot representing the accuracy of the XGBoost model as a binary classifier in external validation.

(F and G) Bar plot representing the pathways associated with cell chemotaxis (F) and migration (G) enriched in GOBP for the 446 feature genes selected by

Boruta.
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MIF is a critical factor that regulates SPP1 expression in TAMs

To further explore the relationship between MIF and SPP1, we explored the correlation of MIF and SPP1 in

TCGA, ICGC, and tissue microarray datasets and found that MIF and SPP1 demonstrate high correlation

(Figure S9C). We selected 50 samples with the highest MIF expression and 50 with the lowest MIF expres-

sion as the MIF-high-variable samples from the TCGA and ICGC datasets, respectively, and performed a

differential gene (DEG) analysis. We found that in the MIF-high-variable datasets, SPP1’s logFC was similar

to that of MIF; however, in the SPP1-high-variable datasets, MIF was not significantly overexpressed (Fig-

ure S9D). In addition, the common DEGs between MIF- and SPP1-high-variable samples substantially over-

lapped (Figure S9E). These data indicate that these two genes might share a common regulatory pathway

and that MIF is a possible upstream regulator of SPP1.

Then, we developed an in vitro model of TAMs induced by HCC tumor-conditioned media (TCM-TAMs)

(Figure S10A) to further elucidate the possible regulatory relationship between MIF and SPP1

within MNPs in the TME. The TCM-TAMs express M1 and M2 marker genes (CD86, CD80, CD206,

and CD163) and associated cytokines (IL-1b, IL-10, TNF-a, and TGF-b) in a dose-dependent manner

as the TCM concentration increases (Figure S10B). To test the role of MIF in the induced macrophages,

we treated the TCM-TAMs with MIF inhibitors 4-IPP and ISO-1 and found that suppression of

MIF decreased SPP1 expression in both mRNA and protein levels (Figures 7A and 7B). 4-IPP and ISO-1

help inhibit the migration of TAMs. Conversely, inhibition of MIF does not impair cell proliferation (Fig-

ure S10C). These data suggest that inhibition of MIF is a potential approach to reducing TAM migration.

We analyzed the effects of 20 mM 4IPP treatment and SPP1 knockdown on TAMs using RNA-seq, which re-

sulted in reduced levels of SPP1 mRNA expressed by TAMs (Figure 7E). The corresponding differential

genes were identified after inhibiting the MIF pathway activation and SPP1 expression, respectively (Fig-

ure S10D), and were found to show a large overlap (Figure 7F). Notably, the knockdown of SPP1 did not

result in decreased MIF expression (Figure 7G). Moreover, MIF-activated genes were found to be enriched

in SPP1-activated genes, while MIF-repressed genes were enriched in SPP1-repressed genes, indicating

that SPP1 is downstream of MIF (Figure 7H). Gene set enrichment analysis in KEGG revealed that the

DEGs obtained from theMIF or SPP1-high-variable datasets are enriched in similar pathways (Figure S11A).

MIF and SPP1 regulate multiple metabolic pathways, including fatty acid metabolism, and enhance extra-

cellular matrix receptor interactions and basal cell carcinoma-related pathways (Figures S7A and S7B). The

DEGs between 4IPP-treated or SPP1-KD TAMs with respective control were enriched in many pathways

associated with cell migration (Figure 7I). Therefore, MIF and SPP1 share common downstream targets

and may regulate macrophage migration through some common pathways.

We also constructed a gene regulatory network of cancer-associated transcription factors and shared

DEGs in MIF- or SPP1-high-variable datasets in the TCGA or ICGC. Themost central target gene in the reg-

ulatory network was PRSS22 (brain-specific serine protease 4), which has been reported to promote liver

cancer cell migration and invasion in vitro and in vivo44. Other genes associated with tumor metastasis

and invasion, such as PROM1,45 B3GALT5,46 RHOV,47 WNT7B,48 and EPN3,49 were also identified (Fig-

ure S11B). All nodal genes are enriched in extracellular matrix regulation, cell adhesion and migration,

and other pathways related to tumor invasion (Figure S11C). The degradation of the extracellular matrix

is the first step of tumor invasion; tumor cells subsequently invade the basement membrane and surround-

ing stroma. Since the expression level of matrix metalloproteinases was significantly reduced in 4IPP-

treated or SPP1-KD TAMs (Figure S10D), we performed tumor invasion experiments on HepG2 cells using

SPP1 knockdown or MIF-suppressed TAMs as variables and found that MIF and SPP1 indeed inhibit tumor

invasion (Figure S11D). Overall, MIF and SPP1 may enhance the aggressiveness of tumors by regulating the

aforementioned cancer-related genes in HCC, promoting tumor migration and invasion.

Table 1. XGBoost model evaluation metrics

Triple classifier Binary classifier

Macro average Micro average AN TP TC

AUCROC 0.959 0.9634 0.981 0.942 0.954

F1 score 0.849 0.857 0.866 0.879 0.802

AUCPR (mAP) 0.923 0.934 0.953 0.925 0.892
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Figure 6. The infiltration-associated genes from the model training can predict HCC patient prognosis

(A–C) Overall survival rates of patients with HCC with different microenvironment types divided by the infiltration-associated genes. (A) AN = 142, TP = 113,

TC = 109; (B) AN = 99, TP = 78, TC = 65; (C) AN = 90, TP = 67, TC = 52.

D) Stacked bar plot of the TNM stage (I, II, III, IV) and Edmondson–Steiner grade (G1-G2 and G3-G4) by microenvironment types.

(E) Scatterplot showing gene expression fold changes (tumor vs. normal) of integrated microarray data and RNA-seq data.
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DISCUSSION

In the study, we obtained important genes involved in the infiltration process of MNPs after model training.

The highly ranked genes demonstrated high expression in the TCMNPs, andmany are induced by hypoxia,

including various heat shock proteins, such as FTL,50 NUPR1,51,52 TXNIP,53 SOD1,54 HMOX1,55 and

PRDX1,56 indicating that MNPs are under oxidative stress (Figure 2A). Additionally, several genes reported

to promote tumor development, such as ORM1,57 S100A10,58,59 AIF1,60 TGFBI,61 and TREM2,62 were

included in the feature genes highly expressed in the MNPs of the TC.

At the tissue level, the infiltration-associated genes identified both represent MNPs and correlate with

CD8+ T cell infiltration. Their expression reflects, to some extent, the whole TME due to the variable inter-

actions, correlating with prognosis. This finding further illustrates that these 445 important genes play crit-

ical roles in tumor development, particularly MIF and SPP1. Some of these genes are less reported, and

their functions in tumor immunity require further exploration.

MIF is expressed in various cell types63 and was initially thought to inhibit macrophage migration.64 Sub-

sequent studies have revealed that MIF recruits and promotes macrophage infiltration in tumors65 and

induces macrophage M2-type polarization.66 In contrast to earlier studies, our findings suggest that

the fibroblast cells, together with autocrine signaling, are the primary source of MIF in the TME. We iden-

tified hepatocytes in AN sites as the primary non-immune cells that secrete MIF (Figures 4D and 4E). Our

in vitro experiment confirmed that SPP1 expression is influenced by the MIF pathway and that MIF pro-

motes TAM migration. Collectively, these results suggest that MIF is a promising drug target and diag-

nostic indicator in HCC. 4-IPP is a specific suicide substrate of MIF that can irreversibly bind to MIF cova-

lently and inhibit its biological activity.67 ISO-1 is a competitive inhibitor of MIF1’s tautomerase activity,

and both ISO-1 and hydroxyphenylpyruvate, a substrate of MIF, can bind to the same site of the MIF tau-

tomerase active site.68 We simulated the blockade of MIF activation on corresponding receptors on mac-

rophages in the tumor microenvironment by adding MIF inhibitors to the cell culture medium. For the

first time, we identified an association between MIF and SPP1 expression in both MNPs and tumor tissue.

Furthermore, we determined that MIF is a possible regulator of SPP1, promoting macrophage infiltration

and tumor invasion.

Osteopontin (OPN) is the final product of the SPP1 gene. Recently, many studies have focused on the role of

OPN in the tumormicroenvironment because it is considered a keymolecule in promoting tumordevelopment.

OPN has secreted (sOPN) and intracellular (iOPN) forms with different functions depending on their location

inside or outside the cell; they are translation isoformsandare thus difficult to isolate.69Our results demonstrate

that MIF affects the level of SPP1 mRNA from the transcriptional level, and MIF inhibitors can reduce the total

OPN protein and sOPN, but it is challenging to precisely determine whether iOPN is affected.

A recent study revealed that MIF knockdown in lung tissue in rats slowed the progression of bleomycin-

induced pulmonary fibrosis and decreased SPP1 expression.70 However, the underlying mechanism

by which MIF regulates SPP1 remains unknown and requires further exploration. It has been

observed that 4-IPP and ISO-1 inhibit the p65 pathway, and a review summarized the upstream

regulatory genes of SPP1, revealing that both RUNX2 and STAT3 can bind to the SPP1 promoter

and upregulate transcription.71 MIF may regulate OPN expression in macrophages through the p65/

RUNX2 or STAT3 pathways. MIF originates from various cells of the tumor microenvironment, especially

fibroblasts, and serves as a signal for environmental stimulation of mononuclear macrophages,

whereas SPP1 is mainly expressed by macrophages and is a more direct regulator of migratory

capacity and pro-tumor-invasive ability. Additionally, CD44 participation is required for MIF activation of

the CD74 receptor, and an sOPN domain exists that can bind to CD44.69 Matrix metalloproteinases,

another important CD44 ligand, are commonly upregulated in many cancers and play an important role

in promoting tumor angiogenesis, progression, invasion, and metastasis.72 Binding of CD44 on macro-

phage membranes induced by sOPN and THP-1 activates p65-related pathways and promotes cell migra-

tion.73 Thus, sOPN may regulate macrophage phenotype in conjunction with MIF by activating CD44.

Figure 6. Continued

(F) Venn diagrams showing the overlap between the genes upregulated in tumors and the TP or TC genes. The p value of the hypergeometric test is shown.

(G) Heatmaps showing the Pearson correlation coefficient between MIF or SPP1 and the gene signature scores related to CD8+ T cells and MNPs calculated

by the MCP-counter algorithm, CIBERSORT algorithm, xCell method, and MFP method.
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Figure 7. MIF can regulate the expression of SPP1 in the TAMs and promote cell migration

(A) Bar plots showing osteopontin protein levels in TAMs supernatants (left) and SPP1 mRNA levels (RT–qPCR, right) in the TAMs treated with DMSO, 20 mM

4-IPP, or 5 mM ISO-1. The data are represented as meanG SD. The p values of the unpaired Student’s t-test are shown, *: p < 0.05, **: p < 0.01, ***: p < 0.001,

****: p < 0.0001.

(B) Western blotting results showing the expression of SPP1 and MIF in TAMs treated with DMSO (control), 20 mM 4-IPP, or 5 mM ISO-1. The line chart shows

the relative gray value calculated by ImageJ.

(C) Transwell assays for the migration of TAMs treated with DMSO, 20 mM 4-IPP, or 5 mM ISO-1. The migration time is 72 h. The length of the black lines in

the figure represents 50 mm. The data are represented as mean G SD. The p values of the unpaired Student’s t test are shown, *: p < 0.05, **: p < 0.01,

***: p < 0.001, ****: p < 0.0001.
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Sorafenib and lenvatinib are established as first-line drugs for the treatment of hepatocellular carcinoma.

Recent studies have demonstrated that cancer-associated fibroblast-derived SPP1 promotes resistance to

sorafenib and lenvatinib in HCC through the activation of oncogenic signals and the promotion of epithe-

lial-to-mesenchymal transition.74 While rarely reported in HCC, tyrosine kinase inhibitors can also impact

the MIF signaling pathway. For example, studies have shown that the tyrosine kinase inhibitor genistein

can inhibit the upregulation of MIF mRNA in primary synovial fibroblasts.75 Moreover, in non-small-cell

lung cancer, MIF expression can influence the therapeutic efficacy of epidermal growth factor receptor-

tyrosine kinase inhibitors like osimertinib and gefitinib. TargetingMIF, a widely expressed secreted protein

in various cells, presents challenges in achieving specificity. Various MIF inhibitors have been developed,

including ISO-1, 4-IPP, and IPG1094. IPG1094 has undergone evaluation in clinical trials and received

approval from the US FDA for the treatment of solid tumors, hematological tumors, psoriasis, and multiple

sclerosis (ClinicalTrials.gov Identifier: NCT05112159). The clinical application of MIF inhibitors is still in its

early stages, and more clinical trials are needed to evaluate their safety and efficacy.

In conclusion, our study analyzed the relationship between the origin of macrophage cells in healthy

livers and HCC in detail, revealed the dynamics of MNPs in the tumor environment through cell trajectory

analysis, identified genes affecting MNP infiltration and differentiation, and screened the genes for prog-

nostic applications. We revealed a previously unknown link between MIF and SPP1 in HCC, providing

new potential targets for tumor immunotherapy targeting macrophages.

Limitations of the study

Our study provides new targets and directions for immunotherapy of hepatocellular carcinoma, with MIF and

SPP1 being identified as key factors in promoting macrophage infiltration and tumor invasion. We agree that

our study fails to demonstrate a specific molecular mechanism for this regulatory relationship. Furthermore,

our data suggest that MIF affects the overall protein levels and sOPN levels of OPN in vitro, as shown by our

western blot and ELISA experiments. However, it is still not possible to know exactly if iOPN is affected. Here,

further studies need to be done to explore the regulatory mechanisms between MIF and SPP1.
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(D)Wound healing assays for themigration of TAMs treated with DMSO, 20 mM4-IPP, or 5 mM ISO-1. The pictures showing the wound closure after scratching

the wounds for 0, 24, 48, and 72 h. The length of the solid white lines in the figure represents 100 mm. The data are represented as meanG SD. The p values of

the paired Student’s t test are shown, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

(E) Bar plots showing the mRNA expression levels of SPP1 measured by RNA-seq. The data are represented as meanG SD. The p values of differential gene

analysis by edgeR are shown.

(F) Bar plot showing the results of the Fisher test for MIF- and SPP1-activated/repressed genes.

(G) Bar plots showing the mRNA expression levels of MIF measured by RNA-seq. The data are represented as mean G SD. The p values of differential gene

analysis by edgeR are shown.

(H) GSEA showing enrichment of the SPP1-activated and -repressed genes in genes regulated by MIF in TAMs.

(I) GSEA showing the enrichment of the DEGs between 4IPP-treated or SPP1-KD TAMs and control on migration-associated pathways.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-SPP1 Abcam Cat# ab214050

Anti-MIF Abcam Cat# ab187064

Anti-GADPH Abcam Cat# ab8245

HRP-labeled Goat Anti-Rabbit IgG (H+L) Beyotime Cat# A0208

Bacterial and virus strains

MIF shRNA lentiviral Genechem

Chemicals, peptides, and recombinant proteins

PMA Santa Cruz CAS 16561-29-8; Cat# sc-3576

ISO-1 Selleck CAS 478336-92-4; Cat# I287808

4-IPP Aladdin CAS 41270-96-6; Cat# S7732

2-mercaptoethanol Aladdin CAS 60-24-2; Cat# M301573

Tween 20 Ameresco CAS 9005-64-5

Methanol Tongguang Fine CAS 67-56-1

Chloroform Tongguang Fine CAS 67-66-3

Anhydrous ethanol Tongguang Fine CAS 563-64-4

Isopropanol Tongguang Fine CAS 67-63-0

Critical commercial assays

Cell Counting Kit-8 MCE Cat# HY-K0301

TB Green PCR Mix Takara Cat# RR420A

cDNA Reverse Transcriptase Thermo Fisher Scientific Cat# EP0751

BCA Protein Assay Kit Applygen Cat# P1511

Enhanced Chemiluminescence Kit Advansta Cat# K-12049-D50

Human osteopontin ELISA Kit Multisciences Cat# 70-EK1135-48

Protease Inhibitor Applygen Cat# C1055

TRIzol� Reagent Applygen Cat# R1030

Trypsin-EDTA (0.25%) Gibco Cat# 25200056

Matrigel Solarbio Cat# M8370

Skimmed milk powder Wondersun Cat# 100012705274

Deposited data

103 Genomics scRNA-seq data Zhang et al.76 GEO: GSE140228

103 Genomics scRNA-seq data Sharma et al.77 GEO: GSE156625

103 Genomics scRNA-seq data MacParland et al.22 GEO: GSE115469

103 Genomics scRNA-seq data Tamburini BAJ et al.23 GEO: GSE129933

103 Genomics scRNA-seq data Ramachandran P et al.24 GEO: GSE136103

103 Genomics scRNA-seq data Sun Y et al.12 CNGBdb: CNP0000650

scRNA Smart-seq data Zhang et al.76 GEO: GSE140228

103 Genomics scRNA-seq data Cheng et al.10 GEO: GSE154763

RNA-Seq data This paper GEO: GSE230666

RNA-Seq data TCGA TCGA-LIHC

RNA-Seq data ICGC LIRI-JP

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

microarray data Wang et al.34 GEO: GSE121248

microarray data Hodo et al.37 GEO: GSE41804

microarray data Chiang et al.35 GEO: GSE9843

microarray data Lim et al.38 GEO: GSE36376

microarray data Dong et al.39 GEO: GSE43619

microarray data Grinchuk et al.41 GEO: GSE76427

microarray data Roessler et al.36 GEO: GSE14520

microarray data Villanueva et al.40 GEO: GSE63898

processed data This paper https://figshare.com/account/home#/

projects/164332

codes This paper https://github.com/LiaoYunxi/HCC_MNPs_MIF

Experimental models: Cell lines

Human: THP-1 cells Dr. Huanran Tan’s laboratory, School of

Basic Medicine at Peking University

N/A

Human: HepG2 cells ATCC Cat# HB-8065

Oligonucleotides

Oligonucleotides/primers are listed in Table S4. RuiBiotech N/A

Software and algorithms

TopHat Kim et al.78 https://ccb.jhu.edu/software/tophat/index.shtml

HTSeq N/A https://htseq.readthedocs.io/en/master/

BEDTools N/A https://bedtools.readthedocs.io/en/latest/

bedGraphToBigWig N/A https://www.encodeproject.org/software/

bedgraphtobigwig/

DANPOS Chen et al.79 https://sites.google.com/site/danposdoc/

DoubletFinder McGinnis et al.80 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

LightGBM Ke et al.32 https://github.com/Microsoft/LightGBM

scvelo Bergen et al.27 https://scvelo.readthedocs.io/

BatchQC Manimaran et al.81 https://github.com/mani2012/BatchQC

Boruta Kursa and Rudnicki82 https://cran.r-project.org/web/packages/

Boruta/index.html

caret N/A https://cran.r-project.org/web/packages/

caret/index.html

Catboost Prokhorenkova et al.31 https://catboost.ai/

CellChat Jin et al.83 http://www.cellchat.org/

edgeR N/A https://bioconductor.org/packages/release/

bioc/html/edgeR.html

clusterProfiler Wu et al.84 http://www.bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

destiny Angerer et al.30 http://www.bioconductor.org/packages/

release/bioc/html/destiny.html

Fgsea Korotkevich et al.85 http://www.bioconductor.org/packages/

release/bioc/html/fgsea.html

gglmannotate N/A https://github.com/wilkox/gglmannotate

glmnet N/A https://cran.r-project.org/web/packages/

glmnet/index.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dongyu Zhao (zhaodongyu@bjmu.edu.cn).

Materials availability

Reagents and methods in this study will be made available by the lead contact upon request.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Harmony Korsunsky et al.86 https://github.com/immunogenomics/

harmony

MCPcounter Becht et al.87 https://github.com/ebecht/MCPcounter

modEvA N/A https://cran.r-project.org/web/packages/

modEvA/index.html

monocle Qiu et al.88 http://cole-trapnell-lab.github.io/monocle-release/

monocle3 Cao et al.28 http://cole-trapnell-lab.github.io/monocle-release/

msigdbr N/A http://www.bioconductor.org/packages/release/

data/experiment/html/msigdb.html

Presto N/A https://cran.r-project.org/web/packages/presto/

index.html

pROC Robin et al.89 https://cran.r-project.org/web/packages/pROC/

index.html

randomForest N/A https://cran.r-project.org/web/packages/

randomForest/index.html

Seurat Hao et al.90 https://satijalab.org/Seurat/index.html

slingshot Street et al.29 http://www.bioconductor.org/packages/release/

bioc/html/slingshot.html

survival N/A https://cran.r-project.org/web/packages/

survival/index.html

survminer N/A https://cran.r-project.org/web/packages/

survminer/index.html

Sva Leek et al.91 http://www.bioconductor.org/packages/

release/bioc/html/sva.html

velocyto.R La Manno et al.92 http://velocyto.org/

xCell Aran et al.93 https://github.com/dviraran/xCell

XGBoost Chen and Guestrin33 https://cran.r-project.org/web/packages/

xgboost/index.html

Ggraph N/A https://cran.r-project.org/web/packages/

ggraph/index.html

Other

CFX384 Real-Time system BIO-RAD

6.5 mm Transwell� with 8.0 mm

Pore Polycarbonate Membrane Insert

Corning Cat# 3422

polyvinylidene difluoride Millipore Cat# ISEQ00010

RPMI 1640 medium Gibco Cat# C11875500BT

DMEM medium Gibco Cat# C11995500BT

FBS Gibco Cat# A3161001C, 10099-141
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Data and code availability

d The publiced scRNA-seq and microarray data used for analysis of MNPs and the data generated for this

manuscript are stored in Gene Expression Omnibus. Accession numbers are listed in the key resources

table (KRT). The tumor microenvironment RNA-seq data for TME classification were obtained from the

TCGA-LIHC and LIRI-JP project.

d All original code has been deposited at github, and the URL is listed in the key resources table.

d The processed data can be downloaded from figshare, and the URL is also listed in the key resources

table. Other additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and treatment

HepG2 (ATCC) cells were grown in DMEM medium supplemented with 10% fetal bovine serum (FBS).

THP-1 (ATCC) cells were donated by Professor Tan Huanran (School of Basic Medicine at Peking University)

and grown in RPMI 1640 medium supplemented with 2-mercaptoethanol to a final concentration of

0.05 mM and 10% FBS. Cells were incubated at 37�C in a 95% humidified atmosphere containing 5%

CO2. Both cell lines have not been authenticated or tested for mycoplasma contamination.

A total of 13106/ml THP-1 cells were differentiated into M0 macrophages by 24 h incubation with 150 mM

phorbol-12-myristate 13-acetate.

Culture supernatant was harvested 36 h after HepG2 cell starvation treatment to use as TCM for developing

HCC tumor-associated macrophages (TAMs). M0 macrophages were cultured with different concentration

gradients of TCM for 24 h for HCC-TAM induction. For theMIF inhibitor treatment experiments, 5 mM ISO-1

and 20 mM 4-IPP were added to the TCM at the step of TAM induction for 24-h induction to investigate the

effect of MIF on HCC-TAMs.

METHOD DETAILS

Plotting cell growth curves

THP-1 cells were treated withMIF inhibitors for cell growth curves. The standard curve was plotted by seed-

ing 0, 53103, 13104, 23104, and 43104 THP-1 cells/well into a 96-well plate, adding 10 mL of CCK-8 re-

agent, incubating for 2 h, and then measuring the absorbance at 450 nm. For cell growth curves, the cells

were seeded into 96-well plates (83103 cells/well) with different doses of drug (ISO-1: 1.25, 2.5, 5, 10 mM;

4-IPP: 2.5, 5, 10, 20 mM). Cell viability was determined by Cell Counting Kit-8 every 2 days. ISO-1 was ob-

tained from Selleck, and 4-IPP was obtained from Aladdin.

Reverse transcription qPCR analysis

Quantitative real-time PCR (qRT–PCR) was performed to measure the mRNA levels CD86, CD80, CD206,

CD163, SPP1, IL-1b, IL-10, TNF-a, and TGF-b in cells. The qPCR primers used in this experiment are shown

in Table S3. Total RNA was extracted from the cells using TRIzol according to the manufacturer’s instruc-

tions. After reverse transcription using cDNA reverse transcriptase and Oligo (dT) primer, qRT–PCR was

performed using TB Green PCR Mix and the CFX384 Real-Time system. mRNA expression levels were

normalized to b-actin. Data are presented as expression quantification relative to the M0macrophage con-

trol determined by the 2�DDCt method.

Western blot analysis

Whole cells were lysed in RIPA buffer containing a protease inhibitor. The protein concentration was

measured with a BCA Protein Assay Kit. Protein samples were separated using sodium dodecylsulfate-

polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride. The membranes were

blocked with 5% nonfat milk for 2 h and incubated overnight with the indicated primary antibody. A sec-

ondary antibody was added, and incubation was conducted for 1.5 h at room temperature. Finally, the blots

were visualized with an enhanced chemiluminescence kit and the gray value was analyzed using ImageJ

software.
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ELISA

After the induction of THP-1 cells into M0 cells, HCC-TCM was used to further induce HCC-TAMs; 5 mM

ISO-1 and 20 mM4-IPP were added to TCM, and after 24 hours, the supernatants were collected in 1mL after

centrifuged at 1000 rpm at 4�C for 5 min to remove cells and diluted 10-fold. The OPN content was

measured using the Human osteopontin ELISA Kit, according to the manufacturer’s protocol.

Macrophage migration assays

Fresh 13105 TCM-TAMs suspended in 150 mL serum-free 1640 were added to the upper chamber of 8 mm

pore transwell inserts (Corning, 3422). The inserts were then moved to 24-well plates containing 800 mL

RPMI 1640 medium with 20% FBS and incubated at 37�C for 2 days. The migrated cells were fixed in meth-

anol and stained with 0.5% Crystal Violet. Migratory cells in the lower chamber were quantified using five

random fields. The area of stained cells was calculated using ImageJ software.

For the wound-healing assay, THP-1 cells (13106/ml) were seeded in 24-well plates and inducted into TCM-

TAMs. The monolayer was then disrupted by scraping with 10 mL pipette tips, and photographs were taken

at 0 and 72 h using a phase-contrast microscope.Wound areas were calculated bymanually tracing the cell-

free area in the images using ImageJ software.

Tumor invasion assay

Matrigel was diluted with cold serum-free DMEMmedium at a 1:40 ratio to obtain a working concentration

of 200 mg/mL after melting at 4�C. A 100 mL aliquot of the diluted gel was added to each Transwell insert

and incubated at 37�C for 4 hours. To prepare for cell seeding, 200 mL of serum-free medium was added to

each Transwell insert, followed by aspiration after 30 minutes. HepG2 cells were digested with trypsin, re-

suspended in a serum-free suspension at 53105 cells/mL, and added to the Transwell inserts. The inserts

were then placed into 24-well plates containing HCC-TAM, 5 mM ISO-1, and 20 mM 4IPP-treated HCC-TAM

for the experimental groups, respectively. Next, 800 mL of DMEM medium containing 20% FBS was added

to each well of the 24-well plates. After 48 hours of incubation at 37�C, staining and counting were per-

formed using the same method as that used for the macrophage migration assays.

Lentiviral transfection experiments

The lentiviral vector containing SPP1 shRNA was GV115 with the sequence of components hU6-MCS-

CMV-EGFP.

Two hundred thousand THP-1 cells were inoculated in a 24-well plate, and the cells were transfected with

33107 TU/ml virus and A solution, centrifuged at 1000 rpm for 1 hour at room temperature, and placed in a

cell culture incubator. The solution was changed after 13 hours. After one week of culture, cells with strong

positive expression of GFP were sorted by flow cytometry.

Library construction, quality control and sequencing for RNA-seq

We induced THP-1 cells with lentivirus carrying shRNA and negative control virus into HCC-TAMs, and ex-

tracted total RNA for RNA-seq. The NEB Next Ultra RNA Library Prep Kit for Illumina was used to generate

sequencing libraries, and index codes were added to distinguish between samples. After mRNA purifica-

tion and cDNA synthesis, cDNA fragments of preferred length were selected, and PCR was performed with

Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index Primer. The libraries were then

sequenced on Illumina platforms. The same RNA sequencing process was used for 4IPP-treated HCC-

TAMs and their control.

Integration and processing of the 10x myeloid single cell dataset

The 10x scRNA-seq datasets fromHCC immune cells were obtained from the GEO database (Gene Expres-

sion Omnibus). A total of 75,696 immune cells from AN, TP, and TC sites in the data from Zhang Q et al.76

and Sharma A et al.77 were selected for integration based on the original annotations in the two datasets.

First, we used the ‘Seurat’ R package to normalize the two datasets separately. We obtained 4000 variable

genes, scaled them, and ran a PCA. The data were quality controlled by removing cells with mitochondrial

gene percentages greater than 10% and nFeature > 200. Doublets in both datasets were found and

removed separately using the DoubletFinder R package80 (Figure S1A) with the following setting parame-

ters: PCs = 30, pN = 0.25, and nExp = 5% of the total number of cells. We first used Seurat v4 methods90 to
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match shared cell populations across datasets and remove batch effects. These methods first identified

cross-dataset pairs of cells in a matched biological state (’anchors’) using the FindIntegrationAnchors func-

tion. These anchors were used to integrate the two datasets with IntegrateData. Then, we ran an integrated

analysis on all cells, calculated the k-nearest neighbors, and identified clusters of cells using a shared near-

est neighbor modularity optimization-based clustering algorithm.

We isolated myeloid cells for reintegration using the Harmony algorithm.86 After creating the two datasets

as Seruat objects, a PCA matrix with 50 components was computed for the Harmony algorithm. Harmony

embeds gene expression data into a low-dimensional space via PCA. Then, it uses an iterative process to

remove data-specific effects.

Similarity analysis of cell types between health livers and HCC tissues

We calculated the Pearson’s correlation coefficient of each cell’s gene expression levels and performed hi-

erarchical clustering of cells based on the correlation coefficients to examine cell type similarity. In addi-

tion, we trained a logistic regression model using elastic net regularization on the cellular identities25

defined by the cell types in HCC and healthy liver using the "glmnet" R package. In training this model,

we used 10-fold cross-validation and set alpha = 0.99 to produce strong regularization but to prevent

the exclusion of strongly co-linear genes.

Determination of the spatial preference of MNPs

To measure the enrichment of MNPs across different spatial distributions, we calculated Ro/e, the ratio of

observed cell number over the expected cell number of a given combination of MNP types and spatial loca-

tion as follows: (Ro/e = observed
expected).

94 The expected cell number for each combination of MNP types and tis-

sues was obtained from the chi-squared test and defined as: ðobserved�expecyedÞ2
expected . This method only indicates

the divergence of observations from random expectations. Ro/e > 1 indicates that cells of the given MNP

type are more frequently observed expected at random in the specific microenvironment. Ro/e < 1 indi-

cates that cells of the given MNP type are observed less frequently than expected at random in the specific

microenvironment.

Analysis of cell-cell communication

Secreted signals were ascertained by evaluating the expression of pairs of ligand-receptor pairs within cell

types in different tissues according to the CellChat R toolkit.83 We set min. cells = 10 for scanning signals

and chose a K parameter from 2–5 in the identifyCommunicationPatterns function based on NMF (non-

negative matrix factorization) during the analysis of MNPs and non-immune cells from various spatial

locations.

Distinguishing polarization, chemotaxis, and immune-related phenotypes

We collected the reported gene signatures of the M1/M2 phenotype,9,95 calculated their average expres-

sion values in different MNPs, and normalized them to 0–5. The known chemotaxis or immune-related

genes were obtained from ImmPort (https://www.immport.org/). The three gene signature types are shown

in Table S4.

Inference of cell trajectories

To characterize the potential process of cell functional changes and determine the potential lineage differ-

entiation between diverse MNPs, we first applied Velocyto92 to obtain the loom files of the dataset from

Sharma A et al using the GRCh38 database (version 1.2.0) as the human genome reference from the

bam files provided by the authors. Subsequently, we used scVelo to calculate and obtain the PAGA (Parti-

tion-based graph abstraction) graph. scVelo27 is a scalable python toolkit that generalizes RNA velocity

through dynamical modeling, recovering the latent time of the underlying cellular processes and system-

atically detecting driver genes via their characterization by high likelihoods. The parameter settings for the

Sharma A et al. dataset were min_shared_counts = 5, n_top_genes = 2000, n_pcs = 23, n_neighbors = 30.

We applied four methods to infer cell trajectories, all using Mono-VCAN as root cells. To prevent batch

effects, the built-in dimensionality reduction calculation was skipped, and the calculation was performed

directly using the data stored in the Seurat object after removing batch effects with Harmony. When

running Monocle 3,28 we randomly sampled 50% of the cells. We found the driver genes that vary between
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types of MNPs in UMAP space using the function graph_test function. In Slingshot,29 we used the associa-

tionTest function to invert the variance-covariance matrix of the consecutive nodes along a lineage as con-

trasts to find driver genes. In Monocle 2,88 we used marker genes obtained from the function

FindAllMarkers function in the Seurat package for ordering cells and the differentialGeneTest function

to model a gene’s expression level as a smooth, nonlinear function of pseudotime and obtain p values after

the likelihood ratio tests. We used the Destiny algorithm based on diffusion maps and found driver genes

by calculating gene relevance.

Finally, we compared the order of cells’ pseudotime generalized by Monocle3, Monocle2, slingshot, and

the Destiny algorithm through Pearson correlation coefficients.

Data preprocessing for training machine learning models

To identify the key genes affectingMNP infiltration, we trainedmachine learning models using GBDT. Each

cell was considered a sample, and the labels corresponded to spatial sites (AN, TP, and TC). We took and

merged the driver genes obtained from the four trajectory inference methods as model features to

construct a cell expression matrix with 2026 gene features (Slingshot: 1000 genes, Monocle 3: 931 genes,

Monocle 2: 879 genes, Destiny: 298 genes) and scVelo (281 genes). The criteria for selecting the 2026 genes

were based on the following

� Genes with a probability greater than 0 as driver genes in scVelo

� Genes with Moran’s I greater than 0.1 in Monocle 3

� Genes identified as driver genes by QR decomposition in slingshot

� Genes with p-values less than 0.05 from the differentialGeneTest function in Monocle2

� Genes with high gene relevance identified by the Destiny algorithm on the basis of diffusion maps

To improve the effectiveness and quality of machine learning, we first preprocessed the cellular transcrip-

tome expression matrix as the input data. scRNA-seq data represent a high-dimensional sparse matrix.

Considering the difficulty of missing value completion, we used Seurat to normalize the data, keeping

the original sequencing count of zeroes unchanged. We used the quantile method to eliminate data noise

by deleting cell samples containing over 200 extreme expression values, and we used the Boruta algo-

rithm82 for feature engineering. The Boruta R package is a wrapper built around the random forest classi-

fication algorithm. We ran the Boruta function with the default settings and removed the rejected features

for the next training.

Model construction

We used XGBoost (ExtremeGradient Boosting),33 LightGBM (Light Gradient BoostingMachine)32 and Cat-

boost31 to train ML models. We divided the training and test set into 7:3 and trained the model using

10-fold cross-validation, using the same training and test sets for all threemethods. Other scRNA-seq data-

sets (Cheng S et al) from HCC and alternate tumor types were used to externally verify the model.10 We

used the caret R package to implement the XGBoost and Catboost algorithms, with the following param-

eter settings:

XGBoost: objective = "multi:softprob", num_class = 3, eta=0.1, max_depth = 7, nrounds = 10000,

booster = "gbtree", eval_metric = "error", subsample = 0.5, colsample_bytree = 1, gamma = 0.5, min_

child_weight = 1.

Catboost: loss_function = ’MultiClass’, classes_count = 3, learning_rate = 0.2, depth = 7, iterations = 10000,

border_count = 64, rsm = 0.95, l2_leaf_reg = 0.01, metric_period = 50.

We implemented LightGBM algorithm in python 3.7 with the parameter settings: objective= ’multiclass’,

num_class = 3, max_depth = 7, num_iterations = 10000, learning_rate= 0.1, lambda_l1= 0.1, lambda_l2 =

0.2.
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Model evaluation

We evaluate the model by comparing the accuracy, AUC (Area under the ROC Curve), mAP (mean Average

Precision), and F1-score using the test set and external validation datasets. We calculated the AUC of the

binary classifier using the roc function of the pROC R package89 and AP by the AUC function of themodEvA

R package when the set curve = "PR". The performance of themulti-label classifier wasmeasured asmacro-

F1, macro-AUC, macro-AP, micro-F1, micro-AUC and micro-AP.96

Integration of the bulk RNA-seq and microarray datasets

To integrate two sets of tissue transcriptome data from HCC patients, we downloaded the raw count data

from the TCGA,42 ICGC97 and Gene Expression Omnibus (GEO) databases (https://www.ncbi.nlm.nih.gov/

) and normalized the gene expression as transcripts per million (TPM). Given the presence of multiple sour-

ces of variation, we applied two parametric ComBat98 implemented with the sva R package91 to remove

batch effects. Regarding the microarray data, ComBat was first applied to remove batch variability using

the common prob, and then a second ComBat step was run to remove prob variability. We also used

the BatchQC R package81 to detect batch effects.

Feature gene classification and sample typing

We first compared the spatial site of highest expression for each gene, dividing the 445 feature genes into

the corresponding three categories (AN, TP, and TC). We normalized the gene expression among the

model-selected features for bulk-tissue RNA data by calculating the Z-sore. The genes of each sample

were divided into three groups according to the gene categories, and the weighted average of each

gene category of each sample was calculated as a spatial scoreMNP , and the weight was the importance

value obtained by the XGBoost model. Then, each sample was typed according to the highest

spatial scoreMNP of the corresponding spatial type.

spatial scoreMNP =

P
ngene expression3weight

n

Estimation of immune cell infiltration

We applied four immune infiltration estimation methods to quantify the abundance of tumor infiltration im-

mune cells in HCC specimens, focusing on the elements associated with MNPs and CD8+T cells. We

normalized the data obtained from these methods by Z-score and calculated their correlation coefficients

with gene expression.

CIBERSORT99 estimates the proportions of 22 immune cell types in a mixed cell population using normal-

ized data. The CIBERSORT R source code and the immune signature matrix file called ‘‘LM22.txt’’ were ob-

tained online (https://cibersort.stanford.edu/). xCell93 estimates the abundance scores of 64 immune and

stromal cell types. TheMicroenvironment Cell Populations-counter (MCP-counter) method87 quantifies the

absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues. We ran

xCell and MCP-counter on the corresponding R packages. The MF (Molecular Functional) Portrait can yield

qualitative and quantitative descriptions of modules built based on the expression of 29 gene expression

signatures, with the size of each module corresponding to the intensity of the normalized ssGSEA score.

The MFP python source code was obtained online (https://github.com/BostonGene/MFP).

Analysis for RNA-seq data

RNA-seq raw reads were mapped to the rat genome version rn7 using TopHat78, and expression value

(number of raw reads) for each gene was determined by the software HTSeq. Normalized (using the upper-

quartile method) expression values and differentially expressed genes were determined by edgeR. We

used the function genomeCoverageBed in BEDTools, along with the nor2total function in DANPOS79,

and the tool bedGraphToBigWig to generate a BigWig file that contains RNA-seq signal (read density)

at each base pair across the genome.

Differential expression analysis for tumor and normal samples

We calculated the log2 fold change (log2FC) of the expression (TPM) for each feature gene by subtracting

the log2 transformedmedian count in each group and used the Wilcoxon Signed Rank Test to evaluate the

significance of each feature gene, with multiple hypothesis correction performed using the Benjamini–

Hochberg procedure. Genes with |logFC| >0.5 in the integrated RNA-seq dataset, |logFC| >0.1 in the
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integratedmicroarray dataset, and adjusted p-value < 0.05 in both, were considered DEGs. In addition, the

linear correlation between feature genes’ expression levels in the microarray and RNA-seq datasets was

calculated using the geom_lmannotate function, and the significance of the overlap between DEGs and

feature gene classification was calculated using the hypergeometric test.

We ranked patient samples by MIF expression levels and constructed MIF-high-variable datasets from the

top 50 and tail 50 samples in the TCGA and ICGC datasets. Genes with |logFC| >0 and a p-value < 0.05 in

both datasets were considered DEGs. We constructed the SPP1-high-variable datasets using the same

method. The upregulated and downregulated genes were separated in the high-variable datasets of the

two genes. The hypergeometric distribution test was used to calculate the significance of the degree of

overlap of the upregulated and downregulated genes.

Construction of gene regulatory networks

Pearson correlation coefficients were calculated for cancer-associated TFs and shared DEGs in MIF- or

SPP1-high-variable datasets in the TCGA or ICGC. Shared interactions with a p-value < 0.05, and a |corre-

lation coefficient| > 0.4 in both the TCGA and ICGC datasets were selected. The degree of centrality was

calculated with Pearson’s correlation coefficient as the weight. Cancer-related TFs were obtained through

CistromeCancer (https://cistrome.org/CistromeCancer/CancerTarget/), and gene regulatory networks

were mapped using the ‘ggraph’ R package.

Survival analysis

Clinical data were obtained from the TCGA-LIHC, ICGC-LIHC-JP, and GEO datasets. The Cox propor-

tional-hazards regression models were analyzed using the survival R package to test the correlation be-

tween selected genes or microenvironment types and patients’ survival. The Kaplan–Meier survival curves

were plotted and compared using the log-rank test. The ggsurvplot function in the survminer R package

was used for data visualization.

Functional enrichment analysis

The pathway enrichment analysis of feature genes was performed by the ‘clusterProfiler’ R package.84

P-values were obtained using an empirical phenotype-based permutation test, and pathways with

p-values < 0.05 were selected. The p-values were corrected for multiple hypotheses using the

Benjamini–Hochberg method. GO biological processes (GOBP) with an adjusted p-value <0.05 were em-

ployed. The GOBP gene sets were obtained using the msigdbr R package.

The gene set enrichment analysis (GSEA) of the MNPs was performed using the fgsea R package.85 The

DEGs in each cell subtype were calculated using theWilcox function in the R package presto, and the logFC

was replaced by AUCROC. Genes with |logFC| >0 and p < 0.05 in MIF- or SPP1-high-variable datasets were

subjected to KEGG pathway enrichment analysis by the same method described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of experiments can be found in the figure legends, and the statistical details of

bioinformatics analysis can be found in each related part of the method details section.
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