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Phosphides of transition metals (TMPs) are a developing class of materials for hydrogen

evolution reaction (HER) as an alternative to expensive noble metals to produce

clean energy. Herein, the nitrogen-doped molybdenum oxide (MoOx) is developed

via a facile and simple hydrothermal method, followed by annealing in the N2

atmosphere and phosphorization to form a nitrogen-doped oxygenated molybdenum

phosphide (N-MoP) sphere-shaped structure. The developed N-doped phosphide

structure depicts enhanced HER activity by reaching a current density of 10mA

cm−2 at a very low overpotential of only 87mV, which is much better than annealed

nitrogen-doped molybdenum oxide (A-MoOx) 138mV in alkaline medium. N-MoP is

a highly efficient electrocatalyst for HER attributed to a more exposed surface, large

electrode/electrolyte interface and appropriate binding energies for reactants. This

study extends the opportunity of developing nitrogen-doped TMPs, which can display

exceptional properties as compared to their oxides.

Keywords: molybdenum phosphide, hydrogen evolution reaction, alkaline electrolyte, water-splitting, catalysts

INTRODUCTION

Excessive use of fossil fuels and other non-renewable energy sources has led to their fast depletion
and the omnipresent issue of environmental pollution (Jiao et al., 2015; Yuan et al., 2016; Li
et al., 2020). It is urgent to find out the alternative sources of energy that have the potential
to replace the swiftly exhausting fossil fuels. Hydrogen, due to its recyclability and high energy
density, has emerged as a clean energy source (Mahmood et al., 2018; Haque et al., 2019; Ren Q.
et al., 2019; Surendran et al., 2019b; Aslam et al., 2020). The electrochemical water splitting via
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hydrogen evolution reaction (HER) is expected to provide a
favorable pathway for inexpensive H2 generation, which can be
used as an alternative fuel to fossil fuels (Turner, 2004; Zou and
Zhang, 2015; Surendran et al., 2018, Surendran et al., 2019a).
Noble metals such as platinum (Pt/C) perform exceptionally
well when used as an electrocatalyst for HER in acidic media
(Xiao et al., 2014); however, its wide-scale application is hindered
due to high cost and scarcity in the earth’s crust (Xiao et al.,
2014; Zhou et al., 2017; Li et al., 2020). Therefore, the focus
has been shifted toward finding the electrocatalysts which are
earth abundant and inexpensive and possessed a similar or better
performance than precious metals. Recently, transition-metal
alloys, nitrides, sulfides, oxides, selenides, phosphides, borides,
and carbides have been studied (Fosdick et al., 2014; Yuan et al.,
2016; Zhang et al., 2017; Zhao et al., 2018; Lian et al., 2019; Zou
et al., 2020). Out of these materials, transition metal phosphides
(TMPs) have shown superior activity and stability (Ren Q.
et al., 2019; Zou et al., 2020). Another challenge associated with
electrocatalysts is the type of electrolyte being used during the
reaction. Particularly, the highly corrosive nature of acidic media
has increased the cost of setting up the system, producing safety
concerns, and instability (Subbaraman et al., 2011). Thus, it is
required to search for an effective electrocatalyst that can perform
well in the basic media and have low energy requirements. In
recent years, molybdenum-based compounds have emerged as
potential candidates for HER (Li et al., 2018; Yao et al., 2018;
An et al., 2019). Molybdenum base compounds showed better
performance in the acidic medium as compared to the alkaline
medium (Haque et al., 2019). For sustainable development of
hydrogen as cleaner energy, HER in the alkaline medium is a
point of focus (Mahmood et al., 2018). Initially, molybdenum
sulfide was prepared to be applied as an electrocatalyst, but
high overpotential requirement and poor stability in the alkaline
medium have limited its long-term use (Anjum et al., 2018).
Various other Mo-based compounds including carbides, borides,
and nitrides were studied in the alkaline medium, but their
use was hindered by poor stability and higher overpotentials
(Haque et al., 2019). To meet up the challenges of developing
an electrocatalyst with good performance and stability, the
oxides of molybdenum are a good solution because at room
temperature one of the oxides, i.e., molybdenum trioxide, is
chemically inert (Datta et al., 2017). However, when it comes
to long-term stability tests, these trioxides do not maintain a
consistent performance which paved the way for MoP as an
electrocatalyst (Xiao et al., 2014; Haque et al., 2019). Moreover,
nitrogen doping helps in improving electrocatalytic performance
by creating positively charged sites (Yuan et al., 2016; Sim
et al., 2020). Experiments carried out by Xing et al. (2014)
resulted in the development of the closely linked networked
structure of MoP nanoparticles, which showed the best HER
performance with an overpotential of 125mV to achieve a
current density of 10mA cm−2. However, there is a considerable
gap in understanding the HER activity on N-doped MoP.
Therefore, there is a need to develop some nitrogen-doped MoP-
based novel structures for an enhanced performance and stability
in the alkaline medium. Previously, N-doped MoOx by crystal
phase transition was reported to have efficient and stable HER

activity (Haque et al., 2019). Here, we present that the thermal
conversion of nitrogen-doped MoOx into phosphide can further
enhance the HER catalytic activities in the alkaline medium. The
nitrogen-dopedmolybdenum phosphide (N-MoP) is synthesized
using a facile and simple hydrothermal method followed by
annealing and phosphorization. The improved performance is
due to the nitrogen doping along with thermal phosphorization
of MoOx, which increases the active sites for electrocatalysis. N-
MoP is tested in an alkaline medium in terms of overpotential,
durability, stability, and electrochemical surface area for HER.
This study extends the opportunity of developing nitrogen-doped
TMPs, which can display exceptional properties as compared to
their oxides.

EXPERIMENTAL SECTION

Materials
Hydrogen peroxide (30% weight) was used along with 99.9%
pure Mo powder and 99% pure hexamethylenetetramine
(HMTA) purchased from Sigma-Aldrich. Sodium
hypophosphite (NaH2PO2) (98–101% weight, Sigma-Aldrich),
polytetrafluoroethylene (PTFE) (60% weight, Sigma-Aldrich),
potassium hydroxide (KOH, 85–90% weight), and Ni foam
(99.9% purity, MTI Corporation). All chemicals were used
without any further purification.

Synthesis of Nitrogen-Doped Oxygenated
Molybdenum Phosphide
The N-doped MoOx is prepared as reported by Haque et al.
(2019); 6mL of hydrogen peroxide (30% weight) was added
in 500mg of Mo powder in a 20-mL glass vial to form
peroxomolybdic solution. In another 20-mL glass vial, 350mg of
HMTAwas dissolved in 20mL of DI water. The HMTA dissolved
in DI water was then slowly added into the peroxomolybdic
solution and left for magnetic stirring for 30min. The prepared
solution was transferred into the Teflon-lined stainless-steel
autoclave. The hydrothermal reaction was then carried out for
24 h at a temperature of 200◦C. After experiment completion
and cooling at room temperature, the sample obtained was
washed with DI water and dried at room temperature, followed
by annealing in a tube furnace under an N2 environment at a
temperature of 350◦C for 2 h at 3◦C per min to get annealed
MoOx (A-MoOx). The ramp rate in the annealing process was
5◦C min−1. Annealing was done to remove adsorbed water
and oxygen from the sample as much as possible so that
it would not interfere during the phosphorization. 25mg of
annealed sample along with 750mg sodium hypophosphite was
put in a ceramic boat for thermal conversion to phosphide.
The ceramic boat was positioned at the center of the tube
furnace. The reaction was then carried out at 400◦C with a
ramping rate of 3◦C per min for 3 h under an N2 environment to
obtain N-MoP.

Material Characterizations
A FEI Quanta 200 scanning electron microscope (SEM) with an
attached energy-dispersive X-ray spectrometer (EDS) was used
to check the morphologies and to do the elemental analysis of
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the samples. The crystal structure of the sample was obtained
through X-ray diffraction (XRD) analysis using a Bruker
D4 endeavor. A thermo-scientific K-alpha system was used
to conduct high-resolution X-ray photoelectron spectroscopy
(XPS). The machine consisted of an Al Kα monochromated
X-ray source through which the samples were scanned. The
sample scanning was done with a dwell time of 50 ms−1

and pass energy of 50 eV. Electrochemical measurements were
conducted using a CHI 760D electrochemical workstation
(CH instruments).

Electrochemical Measurements
Electrochemical measurements were conducted in 0.1M KOH
solution using a typical three-electrode setup. Ni foam coated

with the sample was used as the working electrode, a graphite
rod was used as the counter electrode, and Hg/HgO (in 1M

KCl aqueous solution) was used as the reference electrode.

The Ni foam was properly cleaned with ethanol and DI water
before coating samples on it. The reference electrode was

converted to RHE after calibration along with all the potentials
that have been mentioned. The polarization curves in the
paper were iR-corrected, which were obtained after performing
linear sweep voltammetry at a scan rate of 5 mVs−1. The
working electrode was prepared by mixing 5mg of resultant
compound in a carbon black solution following the addition
of 5 µL of PTFE solution and sonicating it for 10min. The
carbon black solution was prepared by mixing 20mg carbon in
20mL IPA and DI water mixture (4:1) followed by sonication

FIGURE 1 | (A) XRD patterns of MoOx and MoP, SEM images of (B) annealed MoOx, (C) N-MoP, HR-TEM images of (D) annealed MoOx, (E) N-MoP, EDS mapping

of (F) Mo and (G) O elements in A-MoOx, EDS mapping of (H) Mo, and (I) P elements in the N-MoP sample.
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FIGURE 2 | XPS analysis of as-synthesized samples; (A) Mo 3d, (B) N 1s, and (C) O 1s elements for annealed MoOx, (D) Mo 3d, (E) N 1s, and (F) P 2p elements for

N-MoP.

for 10min. After this, 100 µL of the solution was drop-
cast on the Ni foam with an area of 0.25 m2 to get 0.4mg
mass loading.

RESULTS AND DISCUSSION

The polycrystalline nitrogen-doped MoOx was prepared using
the hydrothermal method, annealed, and then thermally
converted into N-MoP as described in the experimental section.
The annealing process enhanced the crystallinity of A-MoOx,
which shows enhanced performance due to the more positive
charge sites, large electrode/electrolyte interface, and higher
conductivity for electron/ions for HER in 0.1M KOH. For
the crystallographic study, the XRD analysis was performed
for A-MoOx and N-MoP; the XRD patterns are shown in
Figure 1A. It is quite clear that the XRD patterns match
well with the standard patterns JCPDS file no. 47-1320 and
JCPDS file no. 26-1273, respectively, indicating the high
purity of the crystalline structure of the prepared oxide and
oxygenated phosphide (Kumar et al., 2015; Liu et al., 2019).
The A-MoOx sample showed that dominant peaks at 12.8,
23.5, 25.7, 27.4, 33.7, and 49.3◦ correspond to the (001),
(101̄), (002), (011), (110), (102), and (020) crystal planes,
respectively, while the dominant peaks of N-MoP located

at 26, 37, and 53.5◦ correspond to the planes of (111),
(131) and (1̄33), respectively. The morphological features of
the developed products were studied using scanning electron
microscopy (SEM) analysis. It is noticed that the sphere-
shaped structures of the oxide as displayed in Figure 1B do not
change even after the conversion to form phosphide as shown
in Figure 1C. Further, high-resolution transmission electron
microscope (HRTEM) results in Figures 1D,E delineate the
lattice spacing of 0.344 and 0.272 nm for the (002) plane of
crystalline A-MoOx and N-MoP, respectively, matching well
with the XRD findings. The elemental analysis was carried
out to investigate the distribution of elements in the product.

The EDS mapping of MoOx clearly shows the homogenous

dispersion of Mo and O in the product (Figures 1F,G)
while N-MoP (Figures 1H,I and Figures S1, S2) indicates the
homogeneous dispersion of P in the product with Mo and
O. N is not detected in the EDS which might be due to less
amount of N.

X-ray photoelectron spectroscopy (XPS) was employed to
investigate the presence of core levels of the elements as well
as their oxidation states. The C1s peak (284.4 eV) was used as
a reference to do the peak shift correction. The XPS results
show the presence of Mo, N, and O (Figures 2A–C, respectively)
in A-MoOx. The peak binding energy at ∼236 and ∼232.9 eV
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FIGURE 3 | (A) Polarization curves for MoOx, annealed MoOx, N-MoP for HER, (B) Tafel plots, (C) the amperometric i–t plot for stability test of N-MoP, and (D)

differences in current density (at a potential of 0.90 V) plotted against scan rate (the marked values in the graph are the fitted slopes) in 0.1M KOH solution.

(Figure 2A) appears due to Mo 3d3/2 and 3d5/2, respectively,
which points out the presence of the Mo–O bond (Li et al.,
2015; Wen et al., 2019). The deconvoluted peaks of N1s appear
in Figure 2B at ∼396.7 and ∼398.7 attributed to the N-doping
in A-MoOx and the peak at ∼401 attributed to the surface-
adsorbed N2 (Si et al., 2016; Haque et al., 2019). The peak at
∼530.7 eV in Figure 2C can be assigned to the O–Mo bond
and the other peak at ∼532.7 eV to the adsorbed OH group
and O–Mo bond (Luo et al., 2016; Zhang et al., 2018; Haque
et al., 2019; Mohiuddin et al., 2020). It is evident from the
results that Mo, N, and O are mainly present in A-MoOx,
indicating the high purity of A-MoOx. The XPS analysis of N-
MoP shows the presence of Mo, N, P, and O (Figures 2D–F

and Figure S3) in the N-MoP sample. The doublet peaks of Mo
3d3/2 and 3d5/2 appear at ∼236.7 and ∼233.5 eV, respectively,
in Figure 2D (Xing et al., 2014; Ren G. et al., 2019; Wen et al.,
2019). The deconvolution peaks of N1s in Figure 2E at ∼396.6,
∼398.3, and ∼399.8 represented the traces of doped N, and
the peak at ∼401 attributed to adsorbed N2 on the surface
(Si et al., 2016; Haque et al., 2019). The deconvoluted peak
at ∼134.4 eV in Figure 2F suggests the presence of the P–O
bond of phosphate (Xing et al., 2014; Mohiuddin et al., 2020),
and the peak at ∼133.7 eV shows the presence of the Mo–P
bond, while the increase (or positively shift) in binding energy

peak is attributed to the presence of a higher electronegative
value of doped N in the structure (Mhtensson et al., 1995;
Khattak et al., 1997; Blanchard et al., 2009; Zhang et al., 2014;
Rai et al., 2018; Jeon et al., 2020) as higher electronegative N
decreases the electron density to increase the binding energy
and the molybdenum phosphate bond’s peak centered around
133 eV (Khattak et al., 1997). The adsorbed OH groups on the
surface of N-MoP show peaks at 531.9 and 533.4 eV of O1s,
as shown in Figure S3. There is no peak that appeared around
∼530.7 eV inN-MoP as present in the A-MoOx sample attributed
to the cleavage of the Mo–O bond during conversion and
successful formation of the Mo–P bond as shown in Figure 2F

after phosphorization. The results depicted that Mo, N, P, and
O are mainly present in N-MoP attributed to the high purity
of prepared N-MoP. Further, A-MoOx having doped N and
its conversion into oxygenated phosphide to form N-MoP are
verified by XPS data. The presence of nitrogen and phosphorous
species in N-MoP makes it a better electrocatalyst for HER
than molybdenum oxides, owing to the enhanced conductivity
(Wang D. et al., 2019; Wang L. et al., 2019).

Inspired by the pure phase of N-MoP which assists fast
mass transport, the electrochemical behavior of the as-developed
N-MoP was investigated for the HER activity. The HER was
carried out in 3-electrode configuration in 0.1M KOH, and the
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results are presented in Figure 3. N-MoP exhibited excellent
HER activity by reaching a current density of 10mA cm−2

at a very low overpotential of only 87mV, which is much
superior to A-MoOx 132mV at 10mA cm−2, as delineated by
the polarization curves (Figure 3A), and the original reported
MoOx has 160mV at 10mA cm−2 (Haque et al., 2019). The
higher activity can be attributed to the highly exposed surface,
large electrode/electrolyte interface, and suitable binding energies
for reactants which contribute toward improvement in overall
catalytic performance. It can be assumed that the large channels
for mass transport ensure fast reaction and evolution of H2,
leading to exceptional performance. Furthermore, Mo acts as
the hydride acceptor and P works as a proton acceptor. The
presence of a large number of Mo–P bonds promotes the
formulation of Mo-hydride, which facilitates the HER process on
the developed catalyst (Xing et al., 2014). To further understand
the reaction mechanism on the catalyst surface, the linear fitted
Tafel slopes were plotted and are presented in Figure 3B. The
Tafel values of 43.98 and 49.18mV dec−1 were achieved for
N-MoP and A-MoOx, respectively, suggesting that the reaction
followed the Tafel–Heyrovsky mechanism (Figure 3B). The
better values of Tafel slopes for N-MoP than oxide showed
that N-MoP bears better reaction kinetics due to easy access of
active sites and better desorption of hydrogen from the surface
of catalysts.

Considering the industrial requirements, the long-term
durability of N-MoP was measured by amperometric i–t curve
technique, as shown in Figure 3C. The developed product
shows the minimum loss in activity and current density for
a period of 20 h. Such performance and stability assure that
N-MoP can be used in commercial electrolyzers. Moreover,
N-MoP exhibits much higher electrochemical double-layer
capacitances of Cdl of 11.47 mF cm−2 compared to A-MoOx

(5.91 mF cm−2) (Figure 3D). Higher ECSA values assure a large
electrode/electrolyte interface, more exposed active sites for the
enhanced catalysis on the surface of the N-MoP, and higher
conductivity of ions and electrons.

CONCLUSIONS

The alternatives of precious noble metals have been studied
to develop a new class of materials comprising phosphides
of transition metals to produce clean energy through HER.
N-MoP exhibited an overall particle-like spheremorphology with
homogeneous dispersion of N and P in the product. N-MoP

exhibited impressive HER activity in an alkaline environment
by achieving a current density of 10mA cm−2 at a very low
overpotential of only 87mV with a Tafel slope of 43.98mV
dec−1 as compared to A-MoOx (132mV at 10mA cm−2 with
Tafel slope of 49.18mV dec−1). This enhanced performance is
attributed to the extended Mo–P bond formation with assistance
of N-doping, which facilitates the HER process. N-MoP also
exhibits the long-term stability at least for 20 h with enhanced
ECSA, indicating the more electrode/electrolyte interface, higher
exposed active sites for the improved catalysis on the surface,
and better conductivity of ions and electrons. This facile and
simple synthesis of N-MoP with splendid HER performance will
offer new possibilities for nitrogen-doped transition metal-based
phosphides as an alternative to exorbitant noble metals.
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