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ABSTRACT

Introduction: Chronic inflammation is associated with an
increased risk of several diseases, including cancer. A
complex tumor microenvironment created and maintained
by a range of cell types promotes tumor growth, angio-
genesis, and metastasis. Inflammasomes, multicomplex
cytosolic proteins, generate much of this inflammation,
including the activation of the cytokine interleukin (IL)-1b.
Inflammation generated by IL-1b is present in several dis-
ease states, including atherosclerosis, diabetes, and
arthritis. IL-1b is activated when a specific inflammasome,
nucleotide-binding domain–like receptor protein 3, induces
cleavage of pro–IL-1b into its active form. Nucleotide-
binding domain–like receptor protein 3 is up-regulated in
lung cancer; IL-1b binds to its receptor and activates
signaling pathways, including the MAPK, cyclooxygenase,
and nuclear factor–kB pathways, leading to macrophage
activation, intratumoral accumulation of immunosuppres-
sive myeloid cells, and tumor growth, invasiveness, metas-
tasis, and angiogenesis. Evidence suggests a role for IL-1b
and some of its downstream effectors (e.g., IL-6, IL-8, C-
reactive protein, cyclooxygenase-2) as prognostic markers
in many malignancies, including lung cancer.

Methods: A phase III cardiovascular study of canakinu-
mab, a human immunoglobulin Gk monoclonal antibody
with high affinity and specificity for IL-1b, was con-
ducted in patients who had a myocardial infarction.

Results: A subanalysis of this study found that treatment
with canakinumab substantially reduced incident lung cancer
and lung cancer mortality in a dose-dependent manner.

Conclusions: A phase III trial is currently recruiting partic-
ipants to evaluate canakinumab as adjuvant treatment versus
placebo in patients with lung cancer. Other studies are
investigating combinations of established antineoplastic
agents and canakinumab in both early- and advanced-stage
NSCLC.
� 2020 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lung cancer; IL-1b; Inflammasome;
Canakinumab
JTO Clinical and Research Reports Vol. 1 No. 1: 1-11

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chihyang@ntu.edu.tw
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jtocrr.2020.100001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtocrr.2020.100001&domain=pdf


2 Garon et al JTO Clinical and Research Reports Vol. 1 No. 1
Introduction
Chronic inflammation is associated with an increased

risk of cancer through promotion of transformation,
immune suppression, tumor invasion, and metastasis.1–3

Tumors promote a constant influx of myelomonocytic
cells, including macrophages, angiopoietin-1 receptor-
expressing monocytes, and myeloid-derived suppressor
cells (MDSCs) that express inflammatory mediators and
promote tumor growth, metastasis, and angiogenesis.4,5

Much of this inflammatory response is mediated by
inflammasomes, multicomplex cytosolic proteins formed
in response to infection- or stress-associated stimuli.2,6,7

Activation of inflammasomes induces the release of
pro-inflammatory cytokines such as interleukin (IL)-1b,
elevated levels of which correlate with tumor progression
in a variety of malignancies.2,7 Indeed, overexpression of
IL-1b has been found to increase inflammation-associated
tumor invasiveness3,8,9 and stimulate the tumor microen-
vironment to favor increased cell proliferation and
angiogenesis.2 Inhibition of IL-1b signaling has been linked
to suppressed tumor progression and enhanced tumor
immunity.3

Recent data from the phase III Canakinumab Anti-
Inflammatory Thrombosis Outcomes Study (CANTOS)
have revealed that treatment with the IL-1b–specific
inhibitor canakinumab substantially reduced incident
lung cancer and lung cancer mortality in patients with
atherosclerosis and high levels of C-reactive protein
(CRP).10 The objective of this review is to present cur-
rent available data demonstrating the link between IL-1b
activity and lung cancer development and provide the
basis for targeting IL-1b in lung cancer prevention and
therapy.

Interleukin-1 Activation and Signaling
The IL-1 family consists of 11 members, including the

two pro-inflammatory cytokines IL-1a and IL-1b, both of
which bind to IL-1R1 on the surface of target cells. IL-1a
and IL-1b have distinct functional profiles.11,12 IL-1a is
constitutively expressed in numerous cell types,
including both hematologic and nonhematologic cells.12

IL-1a typically remains membrane-bound on the cell
surface and signals at short distances by autocrine or
paracrine signaling with cells expressing IL-1R1. It can
also be released from the cell on necrosis, thereby
serving as an alarmin (Fig. 1).11,12

In contrast, IL-1b is produced by a limited number of
cells (e.g., monocytes, macrophages, and dendritic cells).
IL-1b requires additional processing to exert its biological
effects. Active IL-1b is released from immune cells by
means of pyroptosis, which is a form of regulated cell
death occurring through nucleotide-binding domain–like
receptor protein 3 (NLRP3) activation of the inflamma-
some.13 When activated, NLRP3 induces a caspase
1–mediated inflammatory response, leading to cleavage of
pro–IL-1b into its mature active form, which lacks signal
sequences for secretion. Therefore, the process of pyrop-
tosis allows the release of active IL-1b when caspase 1–
mediated cleavage of the effector molecule gasdermin
causes large pores to form in the cell membrane, leading
to cell death (Fig. 1).14,15 This secretion of IL-1b allows it
to exert its effects on inflammation at the tissue level and
also systemically.16 IL-1b plays an important role in the
host defense against infections and in tissue homeostasis
and repair. IL-1b has emerged as a therapeutic target for a
number of inflammatory diseases and more recently, tu-
mor promotion.14,16

The Role of IL-1b in Lung Cancer
Development
Promotion of Tumorigenesis and Metastasis

IL-1b is involved in the promotion of tumor growth
and metastasis through the induction of growth factors,
including vascular endothelial growth factor, prosta-
glandin E2 (PGE2), and transforming growth factor
b.7,17,18 Aberrant IL-1b signaling has been found to drive
tumorigenesis through a variety of pathways, as sum-
marized in Table 1.19 IL-1b is a key mediator in the
initiation of the inflammatory response in pulmonary
diseases, including chronic obstructive pulmonary dis-
ease and lung cancer.20,21 Lung inflammation is charac-
terized by macrophage infiltration and increased
thickness and fibrosis of the airways, leading to airflow
obstruction.22,23

NLRP3 has been associated with increased lung
metastasis24 and has been found to regulate protumor
activity in lung tumor–derived macrophages.25 Further-
more, NLRP3 is up-regulated in lung adenocarcinoma
(ADC) and SCLC; notably, high-grade ADC was associated
with increased expression of NLRP3 components
compared with low-grade ADC.14 Inflammation can be
mediated by the NLRP3 inflammasome even in the lack
of immune cells through local production of IL-1b.10,26

Mechanisms of IL-1b-Driven Tumorigenesis
Once released, active IL-1b binds to the IL-1 re-

ceptor, leading to the activation of signaling pathways
involving MAPK and nuclear factor–kB.27 Downstream
effects of these pathways include the release of
granulocyte-macrophage colony-stimulating factor,
which is involved in the activation of M2 macrophages
and MDSCs, leading to their intratumoral recruitment
and promotion of tumor invasiveness, immune
evasion, and malignant progression.23,28 Tumor cell–
derived IL-1b has been found to induce abnormal
differentiation of myeloid cells, immune suppression,
accumulation of immature myeloid cells in the spleen,



Figure 1. Key components of the IL-1 inflammatory pathway and downstream effects.19,81 Pro-inflammatory cytokines IL-1a
and IL-1b bind to IL-1R1 on the surface of target cells. IL-1a can remain membrane-bound or be released from cells on
necrosis. Activated NLRP3 inflammasome induces caspase 1–mediated cleavage of pro–IL-1b to mature IL-1b and of the
effector molecule gasdermin. The latter causes large pores to form in the cell membrane, leading to a form of cell death
called pyroptosis. Mature IL-1b is released from the cell by means of pyroptosis and binds to the IL-1 receptor, which activates
signaling pathways (involving MAPK and NF-kB) and causes downstream effects that promote tumor invasion and metastasis.
AP-1, activated protein-1; GSDMD, gasdermin D; IL-1b, interleukin 1 beta; IL-1R, IL-1 receptor; NF-kB, nuclear factor–kappa
B; NLRP3, nucleotide-binding domain–like receptor protein 3; TRAF6, TNF receptor associated factor 6.
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and leukocytosis.3 IL-1b also facilitates chemokine
release and the expression of leukocyte adhesion
molecules on the vascular endothelium, which lead to
chemotaxis, angiogenesis, and increased cell adhe-
siveness.17,29 IL-1b is a potent inducer of the cyclo-
oxygenase 2–PGE2 pathway, leading to immune
suppression,30–32 invasion, epithelial-mesenchymal
transition,33,34 apoptosis resistance,35 and angiogen-
esis.36 In NSCLC cells, IL-1b–mediated activation of the
cyclooxygenase 2 pathway down-regulated the microRNA
tumor suppressor miR-101, suggesting a role for IL-1b in
the development of lung cancer.9 In addition, PGE2-
mediated induction of c-Myc and the subsequent
elevation in oncomiR-17-92 was found to contribute to
apoptosis resistance in NSCLC cells.37

IL-1b polymorphisms that lead to IL-1b up-regulation
may influence the level of reactive oxygen and nitrogen
species in the lung epithelial microenvironment, which
may invoke inflammatory-mediated induction of muta-
tions in tumor suppressor genes such as TP53.20 The
single-nucleotide polymorphisms G-1464C (rs1143623)
and G-3893A (rs12621220) located in the enhancer re-
gion of the IL1B gene have been associated with TP53
mutations, increased levels of IL-1b, and increased risk
of NSCLC.20,38 Two other single-nucleotide poly-
morphisms identified in the promoter region of



Table 1. Aberrant IL-1b Signaling in Cancer

Cell Type Effect of Aberrant IL-1b Signaling

Cancer and stem cells Promotion of epithelial-to-mesenchymal transition during oncogenesis
Endothelial cells Increases leukocyte adhesions, inflammatory mediator, and prostaglandin production
Tumor and stromal cells Increases production of basement membrane-degrading proteinases involved in cancer invasion and

metastasis
Induces immune suppression, apoptosis resistance, and angiogenesis by means of induction of COX2–
PGE2 pathway in tumor cells

Hepatocytes Increases acute phase C-reactive protein
Leukocytes Increases production of inflammatory cytokines, chemokines, and lipids

COX2, cyclooxygenase 2; PGE2, prostaglandin E2.
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IL1B, �511 (C > T; rs16944) and �31 (T > C;
rs1143627), have also been associated with increased
expression of IL-1b and increased risk of lung cancer,
including NSCLC.20,38–41

Long-term exposure to external factors such as
asbestos, silica, cigarette smoke, and other inhaled toxins
also results in a persistent pulmonary inflammatory
response that can drive tumor promotion.23,42,43 Indeed,
exposure to tobacco smoke is associated with increased
levels of IL-1b,44 although this observation is not
consistent across all studies.27,28

Preclinical studies have reported beneficial effects of
IL1B knockdown and inhibition. In macrophages ob-
tained from IL-1b–deficient mice, induction of inflam-
mation or angiogenesis was not observed, and local
tumor growth and lung metastases were absent in the
IL-1b–deficient mice compared with wild-type mice.45

IL-1b inhibition using an anti–IL-1b antibody sup-
pressed tumor progression and enhanced antitumor
immunity in mice by limiting inflammation and inducing
maturation of MDSCs into M1 macrophages.46
Clinical Agents Modulating the IL-1b
Pathway

Several strategies are being used to inhibit IL-1
signaling in human disease, including antibodies
directed against IL-1a, IL-1b, and the IL-1 receptor.
Anakinra, a recombinant version of the naturally occur-
ring IL-1 receptor antagonist is approved for the
treatment of rheumatoid arthritis, cryopyrin-associated
periodic syndromes (CAPS),47,48 and Still’s disease.48 It
competitively inhibits the binding of IL-1a and IL-1b to
the IL-1 receptor type 1 (Fig. 2).47 IL-1 receptor blockade
by anakinra decreased tumor proliferation rate and
improved median progression-free survival in patients
with multiple myeloma (NCT00635154).49 In this
setting, the hypothesis is that myeloma plasma cell–
derived IL-1b induces marrow stromal cells to produce
large amounts of IL-6, thereby promoting the survival
and expansion of myeloma cells, highlighting the pleo-
tropic effects of IL-1b.50
Since the introduction of anakinra, two additional
IL-1 targeted therapies have been approved. Rilonacept,
approved in the United States, is a soluble decoy re-
ceptor (IL-1 trap) (Fig. 2) that is indicated for the
treatment of CAPS, including familial cold auto-
inflammatory syndrome and Muckle-Wells syndrome,
in adults and children 12 years and older.51 Canakinu-
mab, an anti–IL-1b neutralizing monoclonal antibody
that blocks binding to the IL-1 receptor (Fig. 2), is
indicated for the treatment of several autoinflammatory
periodic fever syndromes in adults, adolescents, and
children, including CAPS (Muckle-Wells syndrome,
neonatal-onset multisystem inflammatory disease,
chronic infantile neurologic, cutaneous, articular syn-
drome, and familial cold autoinflammatory syndrome,
familial cold urticaria), tumor necrosis factor receptor
associated periodic syndrome, hyperimmunoglobulin D
syndrome, mevalonate kinase deficiency, familial Med-
iterranean fever, and Still’s disease (including systemic
juvenile idiopathic arthritis and adult-onset Still’s
disease).52,53

The anti–IL-1b monoclonal antibody, gevokizumab, is
being evaluated in a clinical trial for metastatic colo-
rectal, gastroesophageal, and renal cancers.54,55 The
safety and pharmacokinetics of another IL-1b neutral-
izing antibody, LY2189102, was evaluated in clinical
trials for rheumatoid arthritis.54 AMG 108, a monoclonal
antibody that inhibits IL-1a and IL-1b by binding to
human IL-1R1, was investigated in patients with osteo-
arthritis and chronic obstructive pulmonary disease.54

EBI-005, a protein chimera of IL-1b and IL-1 receptor
antagonists, modulates the IL-1b pathway by binding IL-
1R1 and has been studied in ocular surface inflammatory
diseases (Fig. 2).54

IL-1b as a Prognostic Marker in Cancer
A retrospective analysis of tumor tissue from patients

with early-stage, surgically treated NSCLC reported that
a high level of IL-1b was independently associated with
3-year mortality in NSCLC,56 suggesting a role for IL-1b
and its downstream effectors as biomarkers in NSCLC
and possibly other malignancies.



Figure 2. Biologics that modulate the IL-1 pathway.54,82 The IL-1a and IL-1b signaling pathways can be inhibited by several
biologics. Anakinra, a selective IL-1R1 antagonist, and rilonacept, a soluble decoy receptor, can inhibit the activity of both IL-
1a and IL-1b. AMG 108 can bind to IL-1R1 to inhibit the activity of IL-1a and IL-1b. Protein chimera EBI-005 inhibits IL-1
signaling by binding to IL-1R1. Bermekimab is a monoclonal antibody that targets IL-1a. Canakinumab is an anti–IL-1b hu-
man monoclonal IgG1 antibody. Gevokizumab and LY2189102 are IL-1b neutralizing antibodies. IL-1b, interleukin 1 beta; IL-
1a, interleukin 1 alpha; IL-1R, IL-1 receptor; IgG1, immunoglobulin G1.
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IL-6 is a downstream effector cytokine of IL-1b and is
involved in inflammation and cancer through promotion
of angiogenesis and tumor growth. These effects are
mediated through IL-6–induced activation of the signal
transducer and activator of transcription 3 and Nuclear
Factor–kB pathways, which results in increased tumor
cell proliferation, survival, angiogenesis, and inva-
sion.57,58 IL-6 is also highly expressed in lung tumors,
and increased serum levels have been associated with
lung cancer risk. Data from a case-control study inves-
tigating the association between serum IL-6 levels and
lung cancer revealed that the levels of IL-6 were
increased in patients who had a diagnosis of lung cancer
and in patients who developed lung cancer within 2
years of blood sample collection. Serum levels of IL-8
were also increased in patients with lung cancer, with
increased levels identified up to 5 years before diagnosis.
These findings suggest that IL-6 may be primarily
involved in tumor progression, whereas IL-8 may have a
role in tumor initiation and promotion.59

CRP, another downstream effector of IL-1b–induced
signaling, is a well-known marker of chronic inflamma-
tion in several disease states and is widely used as a
sensitive inflammatory biomarker in routine clinical
practice, with baseline levels potentially indicative of
chronic inflammation preceding lung cancer.60,61 In a
nested case-control study from the prospective Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial,
individuals with baseline circulating CRP levels in the
highest quartile had a twofold increased risk of lung
cancer compared with those with CRP levels in the
lowest quartile (OR ¼ 1.98, 95% CI: 1.35–2.89).62 A
prospective population-based study of individuals who
were aged 55 years or more also reported that high
baseline CRP levels (> 3 mg/L) were associated with
increased risk of incident cancer when compared with
low levels (< 1 mg/L; hazard ratio [HR] ¼ 1.4, 95% CI:
1.1–1.7), particularly lung cancer (HR ¼ 2.8, 95% CI:
1.6–4.9).61 A study evaluating serum CRP levels in pa-
tients with NSCLC reported significantly higher levels in
patients with metastatic NSCLC than in those with
localized disease (p < 0.01).60 Elevated serum CRP levels
may be useful for predicting tumor progression and poor
prognosis in patients with NSCLC; high preoperative
levels of CRP have been found to predict poor survival in
patients undergoing resection for NSCLC.60
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This evidence suggests that IL-1b and its downstream
effectors (IL-6, IL-8, and CRP) may have a role as bio-
markers and prognostic indicators in patients with lung
cancer.

IL-1b Inhibition With Canakinumab
Canakinumab is a human immunoglobulin Gk mono-

clonal antibody with high affinity and specificity for IL-
1b (dissociation equilibrium constant, 35–40 pM).63

Canakinumab has been and is being studied in a large
number of patients across various therapeutic areas,
including rheumatoid arthritis, CAPS, chronic obstructive
pulmonary disease, and atherosclerosis.10,64,65

CANTOS was a large, phase III, randomized, double-
blind, placebo-controlled trial of patients with a history
of myocardial infarction (MI) with atherosclerosis and
was designed to investigate whether canakinumab could
prevent recurrent cardiovascular events in patients with
persistent pro-inflammatory responses. Adults (N ¼
10,061) with no previous cancer diagnosis (patients with
previous basal cell skin carcinoma were allowed on the
study) who had persistent blood high-sensitivity CRP
(hsCRP) levels of greater than or equal to 2 mg/L were
randomized to one of four treatment arms: canakinumab
50 mg, 150 mg, or 300 mg or placebo. Canakinumab was
administered subcutaneously every 3 months. The pri-
mary end point was the first occurrence of nonfatal MI,
nonfatal stroke, or cardiovascular death; study partici-
pants were also followed up prospectively for incident
medical events, including cancer. At baseline, 2366 pa-
tients (24%) were current smokers, 4753 (47%) were
past smokers, and the median hsCRP was 4.2 mg/L.
Although primarily designed to evaluate cardiovascular
events, an additional analysis was performed to evaluate
if IL-1b inhibition with canakinumab may change cancer
incidence, including lung cancers in a high-risk popula-
tion (high hsCRP levels, previous MI, high rate of ciga-
rette smoke exposure).10

With a median follow-up of 3.7 years, lung cancer
mortality was lower in patients treated with canaki-
numab than in patients in the placebo group (Fig. 3).
Baseline median hsCRP level was significantly higher in
patients who developed lung cancer than in those who
did not (6.0 versus 4.2 mg/L, respectively; p < 0.0001);
a similar pattern was seen with IL-6 levels (3.2 versus
2.6 ng/L, respectively; p < 0.0001). Canakinumab
treatment resulted in reductions in cancer incidence
and mortality rates overall compared with placebo. The
rate of total cancer mortality was lower in the pooled
canakinumab group than in the placebo group (p ¼
0.0158), and the treatment effects were dose-
dependent, with significant reductions observed with
the 300-mg dose (Table 2). The treatment effect on lung
cancer incidence was particularly prominent in patients
with greater reductions in hsCRP levels (HR ¼ 0.29, p <

0.0001) and IL-6 levels (HR ¼ 0.24, p < 0.0001) at 3
months.10

Although no significant benefit was observed in the
incidence of other types of cancers, total cancer mor-
tality was significantly reduced in the 300-mg group
(Table 2). In the placebo group, lung cancer accounted
for 26% of all cancers and 47% of cancer deaths,
whereas in the canakinumab groups, lung cancer
accounted for 16% of all cancers and 34% of cancer
deaths.10

Because IL-1b levels have been linked to tumori-
genesis and tumor progression in other cancer types,17

the observation that canakinumab was of benefit in
lung cancer is of interest. The specific effects of canaki-
numab on lung cancer incidence and mortality may be
driven by several factors. Most patients in CANTOS were
current or past smokers (71%);10 lung cancer is the
most common form of cancer worldwide,66 and its
prevalence may have allowed for a more robust statis-
tical comparison of treatment groups with placebo.10 In
fact, 12.9% of global cancer incidence and 19.4% of
global cancer mortality is attributed to lung cancer.66 In
addition, screening programs for other highly prevalent
cancers such as breast or prostate may have reduced the
number of patients entering the study with undiagnosed
tumors for these indications. By contrast, NSCLC has
been reported to be most usually detected when the
disease is already at an advanced stage.67 However,
changes in screening methodology may improve this
statistic. The National Lung Screening Trial enrolled
former or heavy smokers from 2002 to 2004 with the
objective of determining whether low-dose computed
tomography (CT) or radiography could best detect early-
stage lung cancer. Participants were followed until 2009,
and the results revealed that low-dose CT resulted in
higher rates of early-stage detection and potentially
treatable NSCLC.68,69 Because the enrollment period for
CANTOS extended from 2011 to 2014 with follow-up
until mid-2017, enrollment to the National Lung
Screening Trial or adoption of the findings into routine
practice did not likely impact enrollment in CANTOS.10

Enrollment also coincided with a 2015 Centers for
Medicare and Medicaid Services decision to allow low-
dose CT lung cancer screening, but uptake of this
screening tool is low in the CANTOS-eligible
population.70

Although findings from CANTOS suggest that the use
of canakinumab was associated with a reduced incidence
of fatal and nonfatal lung cancers in patients with
atherosclerosis (who had increased hsCRP and no pre-
vious cancer diagnoses), CANTOS was not formally
designed with lung cancer as a prespecified end point. In
addition, the proportions of occult, pre-existing lung



Figure 3. Canakinumab Anti-Inflammatory Thrombosis Outcomes Study lung cancer incidence data. The incidence of
lung cancer was lower in patients treated with canakinumab than in patients receiving placebo. The effects were
dose-dependent, with a relative hazard reduction of 67% (p < 0.0001) for total lung cancer patients in the canakinumab
300-mg group. HR, hazard ratio. Reprinted with permission from Ridker et al.10

March 2020 Interleukin 1b in Lung Cancer 7
cancers between treatment arms in CANTOS are un-
known, as the participants did not undergo CT screening
for lung cancer before study entry. The marked separa-
tion of the incidence curves for lung cancer and lung
cancer mortality with the 300-mg dose during the early
period of the trial suggests that canakinumab has an
immediate therapeutic effect on established lung tumors,
but the lack of baseline scans obfuscates further
interpretation.10,71
Prospective Cancer Studies:
Opportunities

Single-agent and combination studies of canakinu-
mab in patients with NSCLC are being developed as a
result of the findings from CANTOS. A phase III, ran-
domized, double-blind, placebo-controlled study evalu-
ating the efficacy and safety of single-agent canakinumab
as adjuvant treatment versus placebo in patients with
surgically resected NSCLC is currently recruiting
(NCT03447769). Approximately 1500 patients will be
randomized (1:1) to receive canakinumab 200 mg or
placebo every 3 weeks for 18 cycles (z54 w). The pri-
mary end point is disease-free survival, and the key
secondary end point is overall survival. Other secondary
end points are lung cancer-specific survival, safety,
pharmacokinetics, immunogenicity, and patient-reported
Table 2. Cancer Mortality Rate in CANTOS

300-mg Dose Group Rate Reduction

Cancer mortality 51% (p ¼ 0.0009)
Lung cancer incidence 67% (p < 0.0001)
Lung cancer mortality 77% (p ¼ 0.0002)
outcomes. The estimated primary completion date for
this study is 2021.72,73

The combination of an anti-inflammatory agent such
as canakinumab with established targeted therapies (e.g.,
EGFR inhibitors) also will be investigated. Preclinical
data suggest that IL-1 blockade overcomes erlotinib
resistance in head and neck squamous cell carcinoma.74

The complex interplay between immunity and inflam-
mation makes the combination of IL-1b inhibitors with
checkpoint inhibitors an attractive clinical research area
in both early- and later-line settings. Results from
CANTOS indicate that IL-1b inhibition is not sufficient to
reduce elevated baseline levels of IL-6 and hsCRP in all
patients and that the addition of other anti-inflammatory
agents targeting overlapping signaling pathways may be
a potential area for clinical exploration. Targeting the
programmed cell death 1 (PD-1) protein checkpoint
pathway has changed the treatment landscape of
advanced NSCLC.75–77 A phase III study is investigating
the effect of pembrolizumab plus platinum-based
doublet chemotherapy with or without canakinumab in
previously untreated patients with locally advanced or
metastatic NSCLC (NCT03631199).78 The activity of
combination therapies is also being investigated in a
phase Ib study of an anti–PD-1 monoclonal antibody in
combination with canakinumab or an anti–IL-17A
monoclonal antibody (NCT02900664).79

CANTOS did not generate information on the molec-
ular profile of the lung cancers observed in the study
follow-up, and it is therefore unknown whether patients
developed tumors that were positive for well-established
oncogenic drivers such as EGFR, ALK, BRAF, or MET. In
the same phase Ib study, anti–PD-1 therapy in combi-
nation with EGFR or MEK inhibitors are also being
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evaluated in patients with cancer (NCT02900664). The
study is currently recruiting, and approximately 432
patients will be randomized with an estimated trial
completion date of 2020.79

Patient Selection
With the advent of new agents and multiple combina-

torial opportunities, patient selection takes on ever-
increasing importance to best position patients to benefit
from tailored treatment. Future studies will certainly
include important pathologic details such as tumor histol-
ogy, staging, molecular, and genetic profiling to help iden-
tify patient populations who stand to benefit the most from
anti–IL-1b therapy. Combinations with radiation or other
immunomodulating therapies may also be of interest.

Although elevated baseline levels of hsCRP and IL-6
were associated with a greater risk of lung cancer, not
all patients with this profile derived benefit from cana-
kinumab. In an analysis of combined canakinumab doses
compared with placebo, the incidence of lung cancer was
not significantly different between the two groups, in
patients whose serum hsCRP concentrations were higher
than the median of 1.8 mg/L at 3 months (p ¼ 0.34).10

The sustained inflammation observed in some patients
suggests redundancy between cytokine signaling path-
ways, whereby inhibition of one pathway is compen-
sated for by another.

It is likely that a panel of biomarkers may be required
to provide an overview of the inflammatory state of each
patient, improve the predictive value of biomarker se-
lection, and identify patients who are most likely to
benefit from IL-1b inhibitor treatment. Outstanding
questions remain regarding the overlap of biomarkers
for inflammatory and immune status, given the role of
IL-1b signaling in immunosuppression and the induction
of MDSCs.3,46

Although data from KEYNOTE-001 (NCT01295827),
KEYNOTE-010 (NCT01905657), and KEYNOTE-024
(NCT02142738) have reported that approximately
68% of patients with advanced NSCLC had programmed
cell death 1 ligand 1 tumor proportional scores of
greater than or equal to 1% and 28% had scores of
greater than or equal to 50%,80 the proportion of pa-
tients with lung cancer who have elevated biomarkers of
chronic inflammation and T-cell exhaustion remains
unclear.

Conclusions
IL-1b signaling is involved in the inflammatory

component of many disease states, including cancer. The
role of inflammasomes and IL-1b is an emergent topic in
lung cancer; high levels of IL-1b and its downstream
effectors (IL-6, IL-8, and CRP) have been associated with
lung cancer progression. Although therapies targeting IL-
1 have been approved for the treatment of several in-
flammatory diseases, there are no approved IL-1 tar-
geted therapies for lung cancer. Data from CANTOS have
highlighted the possible benefit of IL-1b inhibition with
canakinumab in patients with lung cancer. As a result,
single-agent and combination studies of canakinumab in
patients with NSCLC are underway and may establish IL-
1 targeted therapies as new treatment options for pa-
tients with lung cancer.
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