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The existence of man-made facilities such as pasture fences makes the grassland
ecosystem fragmented and endangers the survival of local wild animals. The Mongolian
gazelle is highly sensitive to hunting and habitat destruction, and is one of the most
threatened artiodactyls in Eurasia. It provides a critical model to studying gut microbiota
under fragmented habitats. Therefore, we applied metagenomics sequencing to analyze
the gut microbiota communities and functions of Mongolian gazelle under fragmented
habitats. The results demonstrated that there were no significant differences in gut
microbial communities between the different groups at both the phylum and genus
level. The functional analyses showed that the Mongolian gazelle in fragmented habitat
had a stronger ability to degrade naphthalene, but their ability to absorb carbohydrates
was weaker. This study provided fundamental information about the gut microbiota of
Mongolian gazelle, and we recommend reducing habitat fragmentation to better protect
the Mongolian gazelle.
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INTRODUCTION

The gut microbiota of mammals is frequently affected by many factors, including dietary choices,
phylogeny, and environmental changes (Turnbaugh et al., 2009; Yatsunenko et al., 2012; Schnorr
et al., 2014; Clemente et al., 2015). The diverse and extremely complex gut microbiota benefits
host in many ways, such as synthesizing vitamins, stimulating immune responses, and performing
metabolic functions that the host cannot perform (Backhed et al., 2005; Cerf-Bensussan and
Gaboriau-Routhiau, 2010; Leblanc et al., 2013; Crespo-Piazuelo et al., 2018; Nagarajan et al., 2018).
Ruminants rely on the gut microbiota to harness energy via the fermentation of dietary material
(Thoetkiattikul et al., 2013). Thus, the gut microbiota plays an important role in the nutritional
ecology of ruminants (Hu X. et al., 2018). Recent studies indicate that anthropogenic disturbance
can cause major changes in the composition of the gut microbiota (Barelli et al., 2020). For instance,
populations of both the black howler monkey and Udzungwa red colobus have been shown to have
lower gut microbiota diversity in fragmented habitats compared with intact habitats (Amato et al.,
2013; Barelli et al., 2015). Given that the gut microbiota plays a crucial role in host health (Fung
et al., 2017), understanding the effects of anthropogenic disturbance on host’s gut microbiota is
critical for developing effective conservation strategies for endangered species (Stumpf et al., 2016).
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The Mongolian gazelle (Procapra gutturosa) is a unique
herbivorous animal on the steppe habitats in Eurasia and
was listed as a Category I species in the China’s Red List of
Biodiversity: Vertebrates (Zhang et al., 2014; Jiang et al., 2021).
The species was once widespread in Mongolia, northern China,
and southeastern Siberia (Wang et al., 1997). A previous study
of Mongolian gazelle has focused on behavioral characteristics,
feeding habits, and migration (Li et al., 1999; Leimgruber et al.,
2001; Odonkhuu et al., 2009). Mongolian gazelle population in
Hulun Lake National Nature Reserve is affected by anthropogenic
disturbance due to the existence of human facilities such as
grassland fence, and the habitat is fragmented. Affected by the
fragmented environment, the Mongolian gazelle formed a locally
isolated population in this area, which greatly increased the
risk of its local extinction. In contrast, the Mongolian gazelle
population in the China–Mongolia border area has been virtually
unaffected by anthropogenic disturbance, and the habitat is
complete. Therefore, we speculate that the composition and
function of gut microbiota would be altered in populations
restricted to fragmented habitats.

The present study aimed to explore gut microbial diversity
and function of Mongolian gazelle populations under fragmented
habitats by using the metagenomic sequencing. This research
will improve the understanding of the differences in gut
microbiota of the Mongolian gazelle in different conditions and
provide a scientific reference for the protection and management
of this species.

MATERIALS AND METHODS

Sample Collection
Samples were collected from China–Mongolia border area and
Hulun Lake National Nature Reserve. Detailed information
for all samples is shown in Supplementary Table 1. Eight
microsatellite loci (OArFCB304, SPS115, TGLA68, IOBT395,
PZE114, MNS72, BM1341, and MB066) were used to identify
individuals (Buchanan and Crawford, 1993; Reed and Beattie,
2001; Chu et al., 2002; Motavalian et al., 2002; Lv et al., 2008;
Fend et al., 2010; Nijman et al., 2010). This identification allows
all alleles identical or only one mismatch (Ning et al., 2018). It
was identified that the fecal samples of H group (n = 4) and
B group (n = 5) were all from different individuals. Detailed
information for microsatellite loci of Mongolian gazelle is shown
in Table 1. During the sampling period, the ambient temperature
was approximately −30◦C to ensure the quality of DNA from gut
microbiota. Fecal samples were placed in sterile containers and
stored at −80◦C until DNA extraction.

DNA Extraction, Library Construction,
and Metagenomics Sequencing
According to the manufacturer’s recommendations,
metagenomic DNA was extracted from the internal part of feces
using QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany).

Extracted DNA was monitored using 1% agarose gels to
determine degradation degree and potential contamination.
We measured the concentration of DNA with Qubit dsDNA

Assay Kit in Qubit 2.0 Flurometer (Life Technologies, CA,
United States). Only samples that meet the following criteria were
used to construct the library: (1) OD value is between 1.8 and 2.0;
(2) DNA contents above 1 µg.

The qualified DNA was fragmented to a size of 350 bp
using sonication. DNA fragments were end-polished, A-tailed,
and ligated with the full-length adaptor for sequencing and
further PCR amplification. The PCR products were purified with
AMPure XP system. Next, we analyzed the size distribution of
libraries by Agilent 2100 Bioanalyzer and quantified libraries by
real-time PCR. According to the manufacturer’s instructions, we
performed the clustering of the index-coded samples on a cBot
Cluster Generation System. After cluster generation, Illumina
HiSeq platform was used to sequence the library preparations and
paired-end reads were generated.

Sequencing Results Pretreatment and
Metagenome Assembly
Readfq was used to delete the reads in raw data with quality
threshold value ≤38, N base length ≥10 bp, and overlap length
≥15 bp. The reads from host origin were filtered by Bowtie2.2.4
software with the following parameters: –end-to-end, –sensitive,
-I 200, -X 400 (Karlsson et al., 2012, 2013). Clean data were
acquired for subsequent analysis.

Metagenome assembly was performed using SOAPdenovo
software (Luo et al., 2012). The parameters were as follows: -
d 1, -M 3, -R, -u, -F, -K 55 (Scher et al., 2013; Qin et al.,
2014; Brum et al., 2015; Feng et al., 2015). Scaffolds were
interrupted from N connection to obtain Scaftigs without N
(Mende et al., 2012; Nielsen et al., 2014; Qin et al., 2014). To
acquire unused PE reads, we mapped all samples’ clean data
to each scaffold respectively with Bowtie2.2.4 software. The
parameters were as follows: –end-to-end, –sensitive, -I 200, -X
400 (Qin et al., 2014).

Gene Prediction, Taxonomy, and
Functional Annotations
Open reading frame (ORF) predictions for Scaftigs (≥500 bp)
were produced using MetaGeneMark software (Zhu et al., 2010;
Karlsson et al., 2012, 2013; Mende et al., 2012; Nielsen et al., 2014;
Oh et al., 2014), and the length information (<100 nt) from the
predicted result was filtered (Qin et al., 2010, 2014; Li et al., 2014;
Nielsen et al., 2014; Zeller et al., 2014). CD-HIT software was
adopted to remove redundancy and obtain initial gene catalog
with the following parameters: -c 0.95, -G 0, -aS 0.9, -g 1, -d 0
(Li and Godzik, 2006; Fu et al., 2012; Zeller et al., 2014; Sunagawa
et al., 2015). We mapped the clean data of each sample to initial
gene catalog with Bowtie2.2.4 and calculated the number of reads
mapped in each sample. The parameters were as follows: –end-
to-end, –sensitive, -I 200, -X 400 (Li et al., 2014; Qin et al., 2014).
To acquire unigenes for subsequent analysis, the genes with the
number of reads ≤2 were filtered (Qin et al., 2012; Li et al., 2014).
According to the length of genes and mapped reads, we calculated
the relative abundance of the unigenes.

We blasted the unigenes to the sequences of bacteria,
fungi, archaea, and viruses from the NR database of NCBI

Frontiers in Microbiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 830321

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-830321 March 3, 2022 Time: 16:46 # 3

Shi et al. Gut Microbiota of Mongolian Gazelle

TABLE 1 | Detailed information for microsatellite loci of Mongolian gazelle.

Sample OArFCB304 SPS115 TGLA68 IOBT395 PZE114 MNS72 BM1341 MB066

H1 141 145 254 256 81 81 90 98 93 93 166 166 118 120 100 100

H2 141 145 252 254 81 111 90 94 93 111 164 166 120 120 100 100

H3 131 141 254 258 81 81 82 94 91 91 164 166 120 120 100 100

H4 141 145 252 252 81 81 88 94 93 93 166 166 118 120 100 100

B1 133 141 250 252 81 81 82 88 91 91 164 166 116 126 100 100

B2 131 145 252 252 81 81 90 94 93 93 164 166 118 122 96 100

B3 137 151 254 254 81 81 100 106 93 93 164 166 110 116 98 98

B4 145 147 254 256 81 81 94 94 93 93 164 166 116 132 98 100

B5 131 135 252 256 81 81 92 92 93 111 166 166 118 118 98 124

using DIAMOND software (Buchfink et al., 2015). According
to the result with e value ≤ the smallest e value × 10,
we obtained the species annotation information using LCA
algorithm of MEGAN software (Huson et al., 2011; Oh
et al., 2014). Based on the abundance table of species, we
evaluated the similarity of samples using principal component
analysis (PCA) (Avershina et al., 2013). Metastats analysis
was used to identify the different species between groups
(White et al., 2009).

For the functional annotations, we blasted unigenes to KEGG
database (version 2018-01-01) and CAZy database (version
201801) using DIAMOND software with the parameter setting
of blastp, -e 1e-5 (Kanehisa et al., 2006, 2014; Cantarel et al.,
2009; Feng et al., 2015). According to the result of function
annotations and the abundance table of genes, we obtained
the gene number table of each sample in each taxonomy
hierarchy. We also conducted the Metastats analysis of functional
difference between groups.

RESULTS

Summary of the Sequencing Data
A total of 114 Gb raw data were obtained from the samples. To
ensure the accuracy and reliability of downstream analysis, we
carried out quality control and filtering. The total amount of clean
data also remained at about 114 Gb, and the average efficiency was
more than 99.8% (Table 2).

TABLE 2 | The statistical table of sequencing data.

Sample Insert size
(bp)

Raw data Clean data Clean_GC
(%)

Effective
(%)

H1 350 12,522.26 12,502.69 46.00 99.844

H2 350 12,049.48 12,022.74 45.84 99.778

H3 350 13,709.28 13,678.95 46.18 99.779

H4 350 13,407.71 13,371.57 45.87 99.730

B1 350 13,027.58 13,011.22 47.22 99.874

B2 350 13,181.78 13,165.62 47.72 99.877

B3 350 12,952.45 12,922.11 46.67 99.766

B4 350 12,593.75 12,580.36 45.22 99.894

B5 350 13,044.61 13,021.91 45.86 99.826

Gene Prediction and Abundance Analysis
To evaluate whether the collected samples could meet the
requirements of subsequent bioinformatics analysis, we
conducted a rarefaction curve analysis. The results of rarefaction
curve analysis based on the core genes (Figure 1A) and pan
genes (Figure 1B) showed that our gene catalog captured all
the available gene information in our sample. The heatmap of
correlation coefficients showed that the correlation between
groups is smaller than the correlation within groups, indicating
reliable experimentation and reasonable sample selection
(Figure 1C). From the box-plot diagram, we found that the
number of genes was higher in B group compared with that in H
group (Figure 1D).

Taxonomy Prediction
Overall gut microbiota of the Mongolian gazelle comprised
141 phyla, 107 classes, 219 orders, 487 families, 1,968 genera,
and 9,559 species.

At the phyla level, the top five ranked abundance-based phyla
in the Mongolian gazelle were Firmicutes (49.17%), Bacteroidetes
(24.79%), Verrucomicrobia (3.41%), Proteobacteria (1.13%),
and Euryarchaeota (0.42%) at H group; and Firmicutes
(48.08%), Bacteroidetes (28.81%), Verrucomicrobia (1.71%),
Proteobacteria (0.85%), and Euryarchaeota (0.42%) at B
group (Figure 2A).

At the genera level, the top 10 genera are as
follows: Bacteroides, Akkermansia, Alistipes, Clostridium,
Faecalibacterium, Ruminococcus, Prevotella, Eubacterium,
Roseburia, and Lachnoclostridium (Figure 2B).

Human exploitation and destruction of resources are currently
threatening innumerable wild animal species, altering natural
ecosystems and, thus, food resources, with profound effects on
gut microbiota (Barelli et al., 2020). To assess the differences in
gut microbiota as affected by the anthropogenic disturbance, we
applied the Metastats analysis. H group and B group showed
significant differences (q < 0.05) in the following species:
Bacteroides sp. HPS0048, Chryseobacterium sp. CBo1, Afipia
broomeae, Pseudoscardovia radai, Microcystis phage MaMV–
DC, Chloroflexi bacterium CG_4_9_14_3_um_filter_45_9,
Anaerobacillus macyae, and Euryarchaeota archaeon SM23–78
(Figure 3). PCA at the species level showed that H group and
B group have distinct cluster regions (ANOSIM: p = 0.014,
R = 0.444) (Supplementary Figure 1).
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FIGURE 1 | Rarefaction curves of (A) core genes and (B) pan genes. The horizontal axis represents the number of samples selected; the vertical axis represents the
number of genes in the selected sample combinations. (C) The heatmap of correlation coefficients. The deeper the color, the greater the absolute value of the
correlation between samples. (D) Box-plot diagram of gene number difference between groups. The horizontal axis represents the grouping information; the vertical
axis represents the number of genes.

It is remarkable that the gut microbiota did not differ
significantly between H group and B group at the both
phylum and genus level. Anthropogenic disturbance only caused
some changes in the gut microbiota of Mongolian gazelle at
the species level.

Common Functional Database
Annotations
To explore the activity of genes in gut microbiota, we annotated
the functional and metabolic pathways based on the KEGG and
CAZy databases (Figure 4).

Based on the KEGG database, we found that the gut
microbiota of Mongolian gazelle has enriched activity for
metabolism of carbohydrates (gene number: 92205), amino
acid (68527), nucleotide (48992), and cofactors and vitamins
(42745) (Figure 4A). The third level of KEGG classification

indicated that the relative abundance of naphthalene degradation
(ko00626) was significantly higher in H group than in B
group (q < 0.05) (Figure 5A). Through Metastats analysis,
we found that the alcohol dehydrogenase (EC:1.1.1.1) was
significantly higher in H group than in B group (q < 0.05)
(Figure 5B). The enzyme is mainly involved in biological
processes, such as fatty acid degradation; glycine, serine,
and threonine metabolism; microbial metabolism in diverse
environments; and biosynthesis of secondary metabolites. For
the H group, alcohol dehydrogenase was related to naphthalene
degradation (Supplementary Figure 2).

From the first level of CAZy classification, we found that
most of the genes were annotated to the three functional
configurations: glycoside hydrolases (GHs), glycosyltransferases
(GTs), and carbohydrate-binding modules (CBMs) (Figure 4B).
At the second classification level, GH2 (B group: 0.28%; H group:
0.24%), GT2 (B group: 0.23%; H group: 0.24%), and GH43
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FIGURE 2 | Taxonomic composition of the gut microbiota communities on the (A) phylum and (B) genus levels. Each bar represents the 10 most abundant taxa.

(B group: 0.21%; H group: 0.19%) were the most abundant
enzyme families in gut microbiota of the Mongolian gazelle
(Supplementary Figure 3). Among families, 6 were significantly
more abundant in H group than in B group (q < 0.05),
including GH65/121/24/64/113 and CBM56; 7 were significantly
more abundant in B group than in H group (q < 0.05),
including GH138/142/106/2, GT5, polysaccharide lyase family
1 (PL1), and CBM62 (Figure 6). At the third classification
level, a total of 35 enzymes showed significant differences
(q < 0.05) (Supplementary Figure 4). Twenty-eight enzymes
were significantly more abundant in B group than in H group,
including 22 enzymes of GH, 5 enzymes of GT, and 1 enzyme
of PL; 7 enzymes of GH were significantly more abundant in H
group than in B group.

DISCUSSION

Complete habitats offer wild animal inhabitants a more diverse
diet than fragmented habitats. Furthermore, it has been suggested
that dietary variation promotes the changes in gut microbiota
(Clarke et al., 2014; Corlett, 2016). In this study, we compared
the differences in gut microbiota of the Mongolian gazelle in
the different habitat types. Our research showed that Firmicutes
and Bacteroidetes were the prominent phyla in the Mongolian
gazelle, which is consistent with previous studies of other
ruminants (Sundset et al., 2007; Guan et al., 2017; Li et al.,
2017). Firmicutes can degrade fibers into short-chain fatty acids,
while the main functions of Bacteroidetes are to degrade fats,
proteins, and carbohydrates (Jami et al., 2013). Ruminants rely on

gut microbiota to harness energy by fermenting dietary material
(Thoetkiattikul et al., 2013). Hence, the higher abundance of
Firmicutes and Bacteroidetes can be correlated with the dietary
choices of Mongolian gazelle. At the species level, we found that
Bacteroides sp. HPS0048 was significantly more abundant in B
group than in H group. The higher abundance of Bacteroides
might indicate a healthier gut microecosystem because it can
promote the improvement of immune system and maintain the
balance of gut microbiota (Hooper et al., 2001; Hooper, 2004;
Sears, 2005). We observe that the habitat fragmentation had no
significant effect on the gut microbiota of Mongolian gazelle at
both the phylum and genus level. The core gut microbiota of
Mongolian gazelle at the different habitat types was relatively
stable, suggesting that the effects of habitat fragmentation on gut
microbiota were limited. Previous studies on ruminants indicated
that 32 species had relatively stable core gut microbiota regardless
of variations in dietary choices (Henderson et al., 2016). These
results all indicated that ruminants had relatively stable core gut
microbiota, and environment might affect the abundance of gut
microbiota (Weimer, 2015).

To further understand the environmental adaptations of
Mongolian gazelle, we carried out the functional analyses
of gut microbiota. From the KEGG analyses, it was obvious
that the metabolic pathway of naphthalene degradation
has higher abundance in H group. Naphthalene belongs
to polycyclic aromatic hydrocarbons and is one of the
most prevalent contaminants (Mihelcic and Luthy, 1991;
Ghoshal et al., 1996; Marx and Aitken, 1999). Previous studies
have shown that the gut microbiota of snails can degrade
naphthalene (Hu Z. et al., 2018). Given that H group is
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FIGURE 3 | The abundance clustering based on significant differences in species at the species level. The horizontal axis represents sample information; the vertical
axis represents annotated information of species; the cluster tree on the left is the species cluster tree. The values corresponding to the intermediate heat map are
the Z values of the relative abundance of each row of species after standardized treatment.

FIGURE 4 | Common functional database annotations. (A) KEGG annotations and (B) CAZy annotations.
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FIGURE 5 | Metastats analysis of naphthalene degradation (A) and alcohol dehydrogenase (B) based on KEGG database. ∗Means that a significant difference was
found.

FIGURE 6 | Metastats analysis in the second classification level of the CAZy
database.

more affected by anthropogenic disturbance, we speculate
that the higher abundance of naphthalene degradation is
essential to maintain the stability of gut microbiota in the
Mongolian gazelle.

Based on the analysis of CAZy database, we found that the
GH families and CBM families have larger proportion differences
between the two populations of Mongolian gazelle. The relative
abundance of GH65/121/24/64/113 and CBM56 were higher in
H group, whereas GH138/142/106/2 and CBM62 were higher in
B group. GH families can facilitate the hydrolysis of cellulose so
that Mongolian gazelle had stronger capacity for fiber digestion
(Hess et al., 2011). CBM families do not show enzymatic activity,
but can help GH families bind to polysaccharides and strengthen
their activity (Du et al., 2018; Bernardes et al., 2019). GH families
and CBM families of Mongolian gazelle can help them maximize

energy from the cellulose, ensuring them to adapt to the wild
environments. Our data also showed that PL1 and GT5 were
significantly more abundant in B group than in H group. PL1 can
cleave glycosidic bonds of homogalacturonan (HG), which is a
multifunctional pectic polysaccharide of plant cell walls, and GT
families can use sugar donors containing nucleoside phosphate
or lipid phosphate leaving groups to catalyze the formation of
glycosidic bonds (Willats et al., 2001; Lairson et al., 2008; Abbott
et al., 2013). At the third classification level, we also observed
that five enzymes belonging to GT5 (UDP-Glc: alpha-1,4-glucan
synthase, ADP-Glc: starch glucosyltransferase, UDP-Glc: alpha-
1,3-glucan synthase, UDP-Glc: glycogen glucosyltransferase, and
NDP-Glc: starch glucosyltransferase) were significantly more
abundant in B group than in H group. Therefore, the high
abundance of PL1 and GT5 in B group showed their stronger
ability to absorb carbohydrates.

CONCLUSION

This study characterized the gut microbiota of Mongolian gazelle
under fragmented habitats using metagenomics sequencing.
Compositions of gut microbiota were similar between H group
and B group, but the functions of gut microbiota differed. In
the complete habitat, the high relative abundance of PL1 and
GT5 promoted the absorption of carbohydrates. The higher
abundance of naphthalene degradation in H group could enable
Mongolian gazelle to maintain the stability of gut microbiota in
the habitat that was more affected by anthropogenic disturbance.
After comparison, we speculated that the variation in functions
of gut microbiota in fragmented habitat might be from
anthropogenic disturbance. Therefore, we recommended that
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minimal human disturbance and complete habitats were crucial
for the survival of Mongolian gazelle.
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