
Epigenetic modification of genomic DNA and associ-
ated histone proteins are crucial regulatory signals allowing 
eukaryotic cells the ability to adapt to dynamic environmental 
conditions [1]. DNA methylation is the covalent addition of a 
methyl group to the C-5 position of cytosine bases in genomic 
DNA. This addition is catalyzed by structurally distinct DNA 
methyltransferase (Dnmt) enzyme family members [2,3]. In 
plant and vertebrate genomes, DNA methylation is required 
for normal development and function of organisms [4,5]. 
DNA methylation has been linked to many key processes in 
vertebrate genomes, such as X-chromosome inactivation [6], 
regulation of tissue-specific gene expression [7], and suppres-
sion of mobile element transposition [8]. Dysregulation of 
DNA methylation-related epigenetic mechanisms is associ-
ated with human disease [9,10]. Although DNA methylation 
has an increasingly appreciated role in complex genome 

regulation, the specific biochemical underpinnings of how 
this modification modulates the genome remain unclear.

Recent evidence demonstrates that DNA methylation 
regulates transcription within the retina. Cone and rod 
photoreceptor-specific genes display cell-specific patterns 
of DNA methylation, which appear to play an important role 
in the establishment and maintenance of retinal cell type–
restricted gene expression [11,12]. Furthermore, targeted 
retina-specific disruption of Dnmts in murine models result 
in abnormal development of retinal neurons and dysregula-
tion of global retinal gene expression [13-15]. Collectively, 
these findings hint at an important role for epigenetic modi-
fication of DNA during retinal differentiation and matura-
tion. However, deciphering the mechanistic detail of this role 
is vital for gaining insight into retinal function and retinal 
regeneration and developing novel therapeutic strategies for 
retinal degeneration.

The homeodomain transcription factor cone-rod 
homeobox (CRX) protein is required for proper maturation 
of rod and cone photoreceptors [16,17]. Mutations in CRX 
result in the blinding retinal degenerative diseases cone-
rod dystrophy, Leber congenital amaurosis, and retinitis 
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pigmentosa [18]. CRX mediates complex photoreceptor-
specific transcriptional networks through physical interac-
tion with evolutionarily conserved DNA sequence motifs 
[19,20]. Despite the presence of hundreds of thousands of 
these cis-regulatory elements in the mouse genome, fewer 
than 6,000 functional CRX binding regions (CBRs) have 
been identified in the murine retina. Furthermore, a subset 
of these CBRs display cell-type specific affinity in mouse 
rods and cones [19]. Beyond the nucleotide sequence context, 
genomic features responsible for regulating the spatial and 
temporal binding of CRX are poorly understood and repre-
sent a considerable gap in our knowledge of photoreceptor 
development. One potential model for this differential 
binding is the dynamic epigenetic modification of the genome 
influencing local chromatin conformation and accessibility 
to transcriptional regulators, such as CRX. Evidence in 
model systems demonstrates that several CRX-dependent 
genes have an inverse correlation between DNA methyla-
tion and gene expression [11,12]. Here, we expand on these 
findings by demonstrating a similar relationship for the first 
time in primary human retinal tissue. We also use molecular 
modeling to build evidence that reversible DNA methylation 
proximal to CRX binding motifs alters structural character-
istics of the DNA double helix, including minor and major 
groove width and DNA flexibility that may modulate CRX 
binding. Collectively, this study offers compelling evidence 
that DNA methylation plays a critical role in epigenetic regu-
lation of human photoreceptor neurons and provides insight 
into the biochemical interactions underlying this mode of 
regulation.

METHODS

Tissue collection: Deidentified post-mortem human donor 
eyes procured from three individuals with no reported ocular 
disease (National Disease Research Interchange, Philadel-
phia, PA) were used to collect ocular tissues for gene-specific 
quantification of DNA methylation. All donor tissue was 
collected within 8 h of donor death (Appendix 1). The tissue 
was shipped from the donor location submerged in saline on 
wet ice and received within 24 h of donor death (Appendix 1). 
A scalpel was used to pierce the limbus followed by collection 
of the cornea using scissors. Whole corneas were flash frozen, 
ground into a fine powder using a mortar and pestle, and then 
immediately transferred to nucleic acid extraction buffer and 
stored at −80 °C. Eyecups were further dissected with scissors 
by making four radial cuts exposing the retina. Cuts posterior 
to the ciliary margin were made liberating the retina from the 
anterior portion of the eye. The vitreous was removed, and the 
retina was carefully peeled away from the eyecup using fine 

forceps. Whole retina from each donor was briefly washed in 
Hank’s Balanced Salt Solution without calcium or magnesium 
to rinse away contaminating RPE cells, placed in nucleic acid 
extraction buffer, vigorously vortexed, and stored at −80 °C.

Nucleic acid purification: Genomic DNA was extracted from 
human ocular tissues using a Qiagen AllPrep Kit (Hilden, 
Germany) per the manufacturer’s instructions. Brief ly, 
lysates were homogenized using QIAshredder spin columns. 
Lysate flow-through was then transferred to silica-based spin 
columns where genomic DNA and RNA were sequentially 
purified. The quality and quantity of the DNAs were exam-
ined using ultraviolet (UV) spectrophotometry.

Bisulfite pyrosequencing: Quantitative analysis of DNA 
methylation was measured using bisulfite pyrosequencing 
performed as previously described [14,21]. Briefly, bisulfite 
conversion was performed on 200 ng genomic DNA using 
the EZ DNA Methylation-Gold Kit (Zymo, Irvine, CA). 
Following conversion, 30 μl PCR reactions were performed 
using 2X JumpStart Taq ReadyMix (Sigma-Aldrich, St. 
Louis, MO). 5′ biotinylated PCR primers were designed to 
the 5′ regulatory regions of the target genes using PyroMark 
Assay Design 2.0 software (Qiagen, Hilden, Germany). 
Commercially available 5′ biotinylated PCR primers were 
used to amplify the 5′ promoters of LINE1 retrotransposon 
repeats (Qiagen). The PCR cycling conditions were 95 °C for 
1 min, followed by 45 cycles of 95 °C for 30 s, 50–58 °C for 
30 s, and 72 °C for 30 s, with a final extension at 72 °C for 
1 min on a Bio-Rad C1000 Touch Thermal Cycler (Bio-Rad, 
Hercules, CA). Variable PCR annealing temperatures for 
different primer sets are indicated in Table 1. Biotinylated 
PCR products were purified and made single stranded to 
serve as a template in a pyrosequencing reaction using the 
PyroMark Q24 Vacuum Prep Tool (Qiagen) per the manufac-
turer’s instructions. A sequencing primer (0.3 μM final) was 
annealed to the purified single-stranded PCR product, and 
pyrosequencing reactions were performed using the Pyro-
Mark Q24 Pyrosequencing System (Qiagen) per the manu-
facturer’s instructions. Percent DNA methylation at each CpG 
dinucleotide in the bisulfite PCR amplicon was determined 
and averaged between biologic triplicates. Statistical signifi-
cance between the two sample groups was determined using 
a one-tailed t test with the significance threshold set at 0.01. 
All PCR and sequencing primers used in these experiments 
are shown in Table 1.

Bioinformatics analysis of CRX binding sites: Computation-
ally predicted CBRs in the human genome were generated 
from CBRs obtained from a previously published CRX chro-
matin immunoprecipitation study of mouse photoreceptors 
[19]. Genome coordinates from experimentally validated 
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CBRs in the mouse mm9 genome assembly were downloaded, 
aligned, and mapped to the human hg19 genome assembly 
using the LiftOver tool available within the UCSC Genome 
Browser [22]. These data were then built as a custom track in 
the UCSC Genome Browser’s hg19 genome assembly viewer 
and were overlaid with adult human retina RNA-sequencing 
transcriptome data as determined by Farkas and colleagues 
[23], vertebrate conservation data [24], and custom tracks 

created in the UCSC Genome Browser highlighting predicted 
and experimentally validated CRX binding sites [25].

Homology modeling of human CRX binding site: The UniProt 
accession number O43186 was used for modeling and 
assembly of human CRX [26]. The DNA binding domain of 
CRX, consisting of amino acids 39–98, was generated using 
SWISS-MODEL [27]. Models of the CRX DNA binding 
domains were energy minimized in Yet Another Scientific 

Table 1. Oligonucleotides used for bisulfite PCR and pyrosequencing analysis.

Primer 
Name Sequence (5′-3′)

Region 
Analyzed

Amplicon 
Size (bp)

Annealing 
temp (°C) Application

hLINE1F proprietary (Qiagen product # 970042)
LINE1 

promoters 146 50 BS PCR

hLINE1R proprietary (Qiagen product # 970042) LINE1 
promoters 146 50 BS PCR

hLINE1-
seq proprietary (Qiagen product # 970042) LINE1 

promoters N/A N/A pyrosequencing

hPax6-F1 TAGTTATAGGTYGGGTTAAGGAAGGTTAAA PAX6 
promoter 248 58 BS PCR

hPax6-R1 Bio-AACCTACCCCAAAATTTAAATATCAA PAX6 
promoter 248 58 BS PCR

hPax6-
seq1 ATTAGTYGGYGTAGAGTTGTGTTTA PAX6 

promoter N/A N/A pyrosequencing

hPde6b-F1 TGGGAAGTTTTAGGGTTTGAGG PDE6B 
promoter 120 58 BS PCR

hPde6b-R1 Bio-AAAACCCTATCATCAACAAAATCTTTCTTA PDE6B 
promoter 120 58 BS PCR

hPde6b-
seq1 TTTAGGGTTTGAGGAGA PDE6B 

promoter N/A N/A pyrosequencing

hRho-F3 TTGAGTTGGGATTTTGGGATAGATAAG RHO 
promoter 241 58 BS PCR

JhRho-R3 Bio-TATAAAATAACCTCCCCCTCCT RHO 
promoter 241 58 BS PCR

hRho-S3 TTTGGTTTTTTTTAGAAGTTAATTA RHO 
promoter N/A N/A pyrosequencing

hRho-F4 AGGGGTTTGTAAATAAATGTTTAATGA RHO 
promoter 258 56 BS PCR

hRho-R4 Bio-ACTTTCTAATTTATTCTCCCAATCTCT RHO 
promoter 258 56 BS PCR

hRho-
seq4-2 ATTGGATGATTTTAGAGGT RHO 

promoter N/A N/A pyrosequencing

hRER-F2 Bio-GTGGGTTAGTTTTGATTTAAGGTAT RHO 
Enhancer 284 58 BS PCR

hRER-R2 CCCAAAATTCCCAAATCTATCTACTCAA RHO 
Enhancer 284 58 BS PCR

hRER-
seq2-1 ACAAAACCAATAAAATAAAACCTCT RHO 

Enhancer N/A N/A pyrosequencing

Bio indicates a biotinylation modification on the 5′ end of oligos.
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Artificial Reality Application (YASARA) before the docking 
experiments [28,29].

Molecular modeling of the rhodopsin enhancer region and 
RHO promoter region: The human rhodopsin enhancer 
region (RER) and RHO (OMIM 180380; Gene ID: 6010) 
promoter sequences were obtained from UCSC Genome 
Browser and three-dimensional (3D) B-DNA structures 
generated using 3D-DART [30]. The 39-bp DNA construct 
for the RER consisted of the following bases: 5′-ACC TCA 
TTA GCG TTG GGC ATA ATC ACC AGG CCA AGC 
GCC-3′. The RHO promoter region consisted of the following 
37 bps: 5′-TCT GCA GCG GGG ATT AAT ATG ATT ATG 
AAC ACC CC-3′. The DNA sequences were numbered in the 
5′ to 3′ direction, continuing with the complementary strands. 
CpG methylation regions previously identified in this study 
were generated through YASARA. Methyl groups were 
built onto the C-5 position of the cytosine ring by using the 
“Swap>Atom” function. Molecular dynamics modeling was 
conducted using the AMBER14 force field in YASARA. The 
cutoff for electrostatic interactions was set at 10.5 Å. The cell 
boundaries were periodic and filled with 0.3% magnesium 
chloride and water molecules at pH 7.0. The simulation was 
run at 298.1 K. The save interval was every 0.1 ns over the 
100 ns of the simulation. All other parameters remained in 
the default setting.

Root mean square deviation (RMSD), Root mean square 
fluctuation (RMSF), and groove widths were calculated in 
YASARA. Groove widths were calculated by measuring 
the distance between the phosphate of one nucleotide to the 
phosphate of a nucleotide on opposite face of the groove. For 
the CRX binding sequence calculations, groove widths were 
localized to nucleotides 20–25 for the RER and 15–19 for the 
RHO promoter. Calculations and statistics were performed 
in R v3.4.0, and data were plotted using ggplot2, ggridges 
v0.4.0, and cowplot v0.9.2.9900 [31,32].

CRX docking: CRX was bound to the RER and RHO 
sequences through High Ambiguity-Driven protein-protein 
DOCKing (HADDOCK) to determine the interaction mecha-
nism [33,34]. The previously modeled CRX DNA binding 
domain structure consisting of residues 39–98 was used in 
the docking simulations with the energy minimized average 
structures from the promoter and RER simulations. Active 
residues for CRX include amino acids 40–46, 63, 69, 82, 
84–85, and 88–93 [26]. Active residues for the DNA mole-
cules were bases 20–25 for the RER and 15–19 for the RHO 
promoter. CRX was then docked to the sequences using the 
Prediction interface on the HADDOCK server. We then used 
YASARA to determine the interactions occurring between 
the residues and the consensus sequence.

RESULTS

DNA methylation is inversely correlated with gene expres-
sion of photoreceptor-specific genes in human ocular 
tissues: Previous reports in the literature have demonstrated 
an inverse correlation between DNA methylation and gene 
expression of photoreceptor-specific genes [11,12,35]. 
These studies have been limited, however, to murine model 
organisms or immortalized human cell lines and have yet 
to be characterized in primary human tissues. To determine 
whether this trend is also observed in human ocular tissues, 
corneas and retinas were collected from three sex-matched 
postmortem eyes procured from human donors 75 years or 
older (Appendix 1). DNAs extracted from these tissues were 
used for quantitative bisulfite pyrosequencing analysis of 
DNA methylation on 5′ regulatory regions upstream of the 
phototransduction genes RHO (Figure 1A) and PDE6B (Gene 
ID: 5158 OMIM: 180072; Figure 1B), the embryonic eye field 
transcription factor PAX6 (Gene ID: 5080; OMIM: 607108), 
and the multicopy long interspersed nuclear element (LINE1) 
retrotransposon repeats. The rod-specific genes RHO and 
PDE6B have been previously shown to have cell-specific 
patterns of gene expression in murine and human rod photo-
receptors [11,12,36]. Previous human retina RNA-sequencing 
transcriptome data demonstrate that these rod-specific genes 
are highly transcribed in the adult human retina (Figure 1) 
[23]. Bisulfite pyrosequencing analysis of conserved 5′ regu-
latory regions upstream of RHO and PDE6B demonstrate 
lower levels of DNA methylation in retinal tissue relative to 
the cornea, a tissue in which neither gene is expressed (Figure 
2A,B). Levels of global DNA methylation between retina 
and corneal tissues were determined to be similar based 
on measurement of the constitutively methylated and silent 
LINE1 retrotransposon repeats, as well as the unmethylated 
embryonic eye field transcription factor PAX6 (Figure 2C,D). 
Collectively, these data demonstrate an inverse correlation 
between DNA methylation and transcription of RHO and 
PDE6B in human ocular tissues. These findings are consis-
tent with previous observations of epigenetic regulation 
of phototransduction genes in the mouse retina, as well as 
immortalized cell lines derived from human retinal tissue.

Differentially methylated regions upstream of photoreceptor-
specific genes correspond to CRX binding sites: The epigen-
etic analysis of the human eye in this study demonstrates 
tissue-specific patterns of DNA methylation in 5′ regulatory 
sequences of photoreceptor-specific genes that are inversely 
correlated with mRNA expression. These and previous 
observations in other mammalian retinal model systems 
suggest a functional role for DNA methylation in repressing 
transcription at these loci. However, a mechanism for this 
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repression remains uncharacterized. A commonality between 
RHO, PDE6B, and many other photoreceptor-specific genes 
is that they are transcriptionally regulated by the homeodo-
main transcription factor CRX [19,36,37]. This observation 
led us to question whether DNA methylation plays a role in 
regulating temporal and cell-specific binding of CRX to cis-
regulatory regions within photoreceptor genomes. To test this 
hypothesis, we used a computational approach to align previ-
ously determined genome-wide CBRs in the rod-rich wild-
type mouse retina to the human hg19 2009 genome assembly 
(Figure 1; Predicted CBRs). To further assess the function-
ality of these presumptive regulatory regions, predicted CBRs 
were searched for sequences containing CRX binding motifs 
in the human PDE6B upstream promoter region (Figure 1) 
or experimentally validated CRX binding sites in the human 
RHO locus (Figure 3). These analyses demonstrated that 
differentially methylated regions (DMRs) identified in this 

study are adjacent to experimentally validated CRX binding 
sites in the well-characterized RHO 5′ promoter and RER, 
as well as predicted CRX binding sites in the PDE6B 5′ 
promoter. Given these results, we predict that differential 
methylation of these CpG sites may play a prominent role in 
modulating CRX binding to cis-regulatory elements upstream 
of RHO, PDE6B, and other CRX-regulated genes.

The CRX DNA binding domain interacts with DNA grooves 
but not known methylation sites: DNA methylation is known 
to alter the three-dimensional structure of double-stranded 
DNA and interactions with DNA binding proteins, such as 
transcription factors [38,39]. Computational modeling data 
suggest that the presence of a bulky methyl group in 5mC 
results in widening of the major groove and a concomitant 
narrowing of the minor groove [39]. Further, it has been 
experimentally validated that 5mC DNA bases biochemically 

Figure 1. UCSC Genome Browser views of the RHO (A) and the 5′ region of PDE6B (B) photoreceptor-specific genes in the human hg19 
genome assembly. Genes are oriented with the transcriptional start site on the left. From top to bottom, data tracks display 1) human hg19 
genome coordinates, 2) human adult retina RNA sequencing data displayed as determined by Farkas et al. [23], 3) predicted CRX binding 
regions (CBRs), 4) previously validated CRX binding motifs in the RHO locus (black) or predicted CRX binding motifs in the PDE6B locus, 
5) annotated genes and isoforms, and 6) evolutionarily conserved sequences averaged between 100 vertebrate species. Regions analyzed 
using bisulfite (BS) pyrosequencing are indicated with light blue highlighting.
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mimic thymine bases due to a similar hydrophobic interac-
tion with major groove edge methyl groups [40]. More recent 
evidence has demonstrated a structural basis for affinity 
modulation of human transcription factors to methylated 
DNA via interactions of hydrophobic amino acid residues 
with methyl groups [38]. Taken together, these observations 
suggest a mechanism for DNA methylation to narrow minor 
groove width and increase available hydrophobic interactions 
of cis-regulatory elements as a reversible mode of modulating 
CRX binding. However, a lack of CRX structural informa-
tion, as well as the interactions of CRX with DNA, has 
hindered development of a specific mechanism. To test the 
hypothesis that methylated DNA sequences are less favor-
able binding partners with CRX than their unmethylated 
counterparts, we generated a homology model of the human 
CRX DNA binding domain and models of the human RHO 
promoter and RER. The CRX binding domain model showed 
the expected three-helix bundle characteristic of a helix-turn-
helix homeobox protein (Figure 4). In the promoter and RER, 
the modeled DNA duplexes spanned one experimentally 
validated CRX binding site, as well as one (promoter) or two 
(RER) CpG cytosine substrates for DNA methylation. We 
then docked the model of CRX to the DNA models using 
HADDOCK (Figure 4A,B) [34]. The CRX binding site within 

the promoter is within the minor groove, and the C-terminal 
helix of CRX fits into the groove making contact with the 
DNA backbone. Glutamic acid 80, lysine 88, and arginine 
90 are known disease-causing mutations within CRX, and 
in our model of CRX bound to DNA, we saw that K88 and 
R90 make electrostatic interactions with DNA [41-43]. E80 
makes contact with R69 and Q84, which contact the minor 
groove of DNA, suggesting a structural role for this amino 
acid (Figure 4C,D). Thus, we felt confident that this CRX 
model could provide insight into how CRX interacts with 
DNA and is regulated by methylation. We next repeated the 
docking to the CRX binding sequence in the RER. The best 
interaction score produced by HADDOCK placed CRX in the 
major groove side of the CRX binding sequence. In addition 
to the previous backbone interactions noted for the promoter, 
CRX makes interactions with the DNA bases via N89 and 
K93 (Figure 4C,D). Given that there currently is no structural 
information on CRX or these DNA sequences beyond the 
models we present here, we cannot exclude either binding 
mode. What is clear is that CRX likely interacts with a single 
DNA groove and does not make direct contact with methyla-
tion sites at this locus. These data suggest a mechanism of 
inhibition based on direct interaction with the CpG methyl 
sites is unlikely.

Figure 2. Quantitative bisulfite 
pyrosequencing analysis of DNA 
methylation at CpG sites relative 
to the transcriptional start site of 
(A) RHO, (B) PDE6B, (C) LINE1 
ret rot ransposon repeats, and 
(D) PAX6. Data are presented as 
percentage methylation at the indi-
cated genomic positions relative to 
the gene’s canonical transcriptional 
start site (TSS) with the exception 
of LINE1 repeats in which the 
promoter CpG sites are arbitrarily 
labeled as positions 1–3. Error bars 
represent the standard error of the 
mean between three biological 
replicates of each sample (note that 
the error bars are present but too 
small to see in panels A, C, and D). 
Statistical significance between the 
retina and the cornea at each CpG 
site was determined with a t test 

with a p value of less than 0.01. All CpG sites analyzed at all four loci were found to have a p value of less than 0.01 between the sample 
groups.
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CpG methylation enhances DNA flexibility: The data showing 
that CpG methylation negatively regulates CRX binding 
raises the question of the molecular mechanism for binding 
inhibition. In addition to steric effects, CpG methylation have 
been proposed to change DNA dynamics and change the local 
structure of DNA; however, which of these scenarios applies 
to CRX was not clear [38,39,44]. To address this question of 
the inhibition mechanism, we created a second set of DNA 
models that were methylated at the known sites, and then, 
we equilibrated the models using molecular dynamics. We 
then analyzed the global and local effects of CpG methyla-
tion on the dynamics and structure of the DNA sequences 
and the CRX binding sites. Groove width statistics for these 
simulations are summarized in Table 2. Although the mean 
and median values for the groove widths are similar, global 
analysis of the major and minor grooves shows that the two 
structures are more dynamic (Table 2 and Figure 5). The 
increase in flexibility is indicated by the increased vari-
ance and standard deviations of the data measurements and 

visually by the wider distribution of values in the density plots 
(Table 2 and Figure 5). Analysis of the ensemble volume ratio 
shows that the structures of the methylated promoter have a 
larger volume, characteristic of higher dynamics. The effect 
of methylation is more apparent in the groove width measure-
ment for the CRX binding sequence bases, which show wider 
major grooves and narrower minor grooves (Figure 5). These 
data show that the binding site is part of the dynamic region 
of DNA suggested by the global values calculated from the 
simulation. Moreover, the observations indicate that methyla-
tion does not alter the structure of DNA or the CRX binding 
site within the RHO promoter but changes the dynamics of 
the structure.

We then performed molecular dynamics simulations and 
analyses using the human RER sequence, which is methylated 
at sites on either side of the CRX binding motif. Methylation 
of the RER induced increased bending of the RER sequence 
in simulations relative to the unmodified sequence (Figure 6). 
Further analysis of the groove widths in the RER sequence 

Figure 3. Single base resolution view of the human RHO promoter (top) and RER (bottom) in the UCSC Genome Browser’s hg38 human 
genome assembly aligned with five other vertebrate species. The experimentally validated CRX binding sites RET-1 and BAT-1 [17] in the 
promoter region and RHBS-1 and Ret-3 [53] in the enhancer region are indicated with light blue highlighting. The sequence used in the 
CRX/promoter binding simulations is indicated as a black custom track.

http://www.molvis.org/molvis/v24/218


Molecular Vision 2018; 24:218-230 <http://www.molvis.org/molvis/v24/218> © 2018 Molecular Vision 

225

showed that with methylation the major groove widens while 
the minor groove narrows relative to the unmodified form 
(Figure 6 and Table 2). The standard deviation and variance 
for the major groove also increase, indicative of increased 
dynamics. The ensemble volume ratio increased by about 25% 
suggesting drastic changes in the dynamics of the RER upon 
methylation. The effect of methylation is especially apparent 

in the density plots showing data for the CRX binding site 
(Figure 6). The bases in the major groove that include the 
CRX binding show a population of wider measurements 
that is not observed in the unmodified simulations. There 
are notable changes in the minor groove measurements upon 
methylation as well. Collectively, these data show that the 
presence of methylation alters the dynamics of DNA and the 

Figure 4. Model of human CRX bound to the human RHO promoter (A) and RER (B). The CRX binding domain is shown in red, the 
methylation sites in magenta, and the CRX binding sequence in green. C and D: Validation of the CRX model using disease-linked amino 
acids. Labeled amino acids are either in close proximity to DNA or interact with DNA binding amino acids.

Table 2. DNA groove width statistics.

Sequence Modification Groove Mean width 
(Å)

Std. Dev 
(Å)

Median 
(Å)

Variance 
(Å)

Ensemble 
Volume 
Ratioa

RER None Major 20.72 3.22 20.65 10.37 5.5
Minor 14.88 2.01 14.80 4.05

Methyl
Major 21.55 4.19 21.01 17.56

6.8
Minor 14.65 1.79 14.71 3.20

Promoter
None

Major 20.04 1.00 20.18 1.00
4.6

Minor 14.23 1.61 14.26 2.59

Methyl
Major 20.01 1.42 20.28 2.02

4.9
Minor 14.43 1.64 14.37 2.67

aRatio of the combined volume of the ensemble of structures to the average volume of each structure in the ensemble
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groove widths, possibly preventing efficient binding by CRX 
to the promoter and RER sequence.

DISCUSSION

Using cellular and in silico approaches, we addressed 
the regulation of CRX binding to genomic cis-regulatory 
elements and propose a model for epigenetic modulation of 
this interaction. Bisulfite pyrosequencing of human ocular 
tissue demonstrates that the RHO and PDE6B regulatory 
regions have lower levels of DNA methylation in the retina 
compared to corneal tissues (Figure 2). Given that CRX binds 
and regulates both genes, we postulated that CRX binding 
is inhibited by methylation of these regions upstream of the 
gene in non-expressing cells to block transcription. Although 
this hypothesis will be best tested using biochemical methods, 
molecular modeling of the CRX DNA binding domain docked 
to CRX binding motifs within human RHO cis-regulatory 
elements was used in this study to demonstrate a basis for this 
model and to guide future biochemical experiments. To this 
end, the modeling data suggest that CRX interacts with the 
grooves of DNA and does not appear to make direct contact 
with methylation sites. Though CpG methyl sites do not 

occur within the CRX binding motifs analyzed in this study 
(Figure 4), molecular dynamics simulations demonstrated an 
increase in the overall structural dynamics and flexibility 
of CRX motifs adjacent to methyl CpG sites relative to data 
simulations of unmethylated sequences (Figure 5, Figure 6, 
and Table 2). Collectively, these data indicate that regional 
methylation of the RHO promoter and RER cis-regulatory 
elements may occlude CRX binding through alterations in 
the structure and dynamics of adjacent CRX binding motifs. 
An additional possibility unexplored in this study is that DNA 
methylation is an indirect effector of CRX affinity to cis-
regulatory elements. Changes in DNA methylation are known 
to induce other repressive epigenetic modifications, such as 
histone deacetylation and histone methylation [45,46]. The 
present experiments of our group focus on validating these 
in silico data using in vitro binding assays between recombi-
nant human CRX proteins and methylated oligonucleotides 
to biochemically test a direct role for DNA methylation in 
modulating CRX binding affinity.

The role of DNA methylation in CRX affinity has not 
been previously explored; however, the effect of methyla-
tion on DNA structure and interactions with DNA binding 

Figure 5. Structural and dynamic effects of methylation on the RHO promoter. A: Density plots for the major groove. B: The methylated 
major groove. C: The minor groove. D: Methylated minor groove widths for the methylated. The nucleotides within the CRX binding 
region are shown in green, and the methylation site is indicated in magenta. The mean groove width for each groove during the simulation 
is indicated as a dashed vertical line. 
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proteins has been extensively studied. DNA methylation is 
known to affect local and regional DNA and nucleosome 
structure. Recent work indicates that DNA methylation 
reduces DNA flexibility and enhances nucleosome stability 
[44,47,48]. However, other findings suggest that DNA meth-
ylation increases DNA flexibility or acts as a physical block 
to transcription factor binding [49-51]. In a broad sense, the 
present results are consistent with methylation increasing 
DNA flexibility with a few important clarifications. The first 
clarification regards positioning of the CpG methyl sites. The 
methylation sites investigated in this study are outside the 
CRX binding motif and therefore, likely do not act as a direct 
physical barrier to protein binding as characterized in other 
studies [38]. Alternatively, the present findings indicate that 
CpG methyl sites adjacent to CRX binding motifs change 
the dynamics of the major and minor grooves over the entire 
sequence region, including the CRX binding motif (Figure 
5 and Figure 6). This mode of epigenetic regulation may 
be used by cells to dynamically modulate binding of many 
different transcription factors at a particular regulatory locus 
and represents a potentially new paradigm for exploring the 
role of DNA methylation in regulating gene expression.

The second clarification regards motif-specific epigen-
etic modulation of CRX-DNA interactions. Previous studies 
have indicated that the specific mechanism of interaction 
between proteins and CpG methyl sites appears to be highly 
sequence and factor dependent. Global analysis of the effects 

of DNA methylation on several transcription factors shows 
that CpG methylation can have positive, neutral, and negative 
effects suggesting that the molecular mechanism may be a 
combination of effects on specific proteins binding to specific 
loci [38]. The present data also support a model for DNA 
methylation influencing motif-specific effects on local DNA–
protein interactions. The molecular dynamics data indicate a 
methylated RHO promoter CpG site is less perturbed than the 
effect observed for methylated RER CpG sites (Figure 5 and 
Figure 6). Given that the RHO promoter and RER have little 
sequence similarity outside conserved transcription factor 
binding motifs, it is not surprising that we observed distinct 
effects on structure and dynamics. In fact, recent functional 
evidence has demonstrated that individual CRX binding 
motifs within the murine RHO locus encode differential tran-
scriptional responses to CRX ranging from strong inhibition 
of transcription to strong transcriptional activation [52]. The 
present data indicate that the methyl CpG adjacent to the CRX 
binding motif in the RHO promoter increases the width of the 
minor groove (Table 2). Inversely, CpG methyl sites adjacent 
to the RER CRX motif increase the width of the major groove 
in the present study simulations. This discrepancy may be 
due to several sequence-related differences between the two 
cis-regulatory elements controlling human RHO transcrip-
tion. Collectively, these data support that the effect of DNA 
methylation on CRX binding is likely a combination of local 
and regional DNA sequences, the distance of the CpG methyl 

Figure 6. Structural and dynamic effects of methylation on the RER sequence. A: Density plots for the major groove. B: The methylated 
major groove. C: The minor groove. D: The methylated minor groove widths for the methylated. The nucleotides within the CRX binding 
region are shown in green, and the methylation site is indicated in magenta. The mean groove width for each groove during the simulation 
is indicated as a dashed vertical line. 
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sites from CRX motifs, and the number of CpG methyl sites 
in or adjacent to CRX motifs. In this light, although these 
data support a negative effect of DNA methylation on CRX 
binding at the RHO promoter and the enhancer region, these 
findings do not preclude the possibility that DNA methylation 
may serve as a positive regulator of CRX binding at other 
loci in the genomes of retinal neurons. Future modeling 
studies of other CRX-regulated genes will be useful for 
further analyzing motif-specific epigenetic modulation of 
CRX affinity. The modeling data reported here and in future 
studies will guide precision biochemical analysis of the 
interaction between CRX with CpG methyl sites at diverse 
photoreceptor-specific cis-regulatory elements. In particular, 
these studies have informed our current ongoing biochemical 
analysis using recombinantly expressed human CRX proteins 
for in vitro binding assays measuring affinity to methylated 
and unmethylated regulatory sequences upstream of the 
human RHO gene. The in silico data reported here provide 
a single base resolution roadmap of cis-regulatory elements 
controlling the RHO locus to focus on for biochemical valida-
tion of our hypothesis.

APPENDIX 1. DONOR EYES WERE EXCISED 
WITHIN 8 H FROM THE TIME OF DEATH 
AND DELIVERED WITHIN 48 H FOR THE 
PRESERVATION OF NUCLEIC ACIDS.

Post-mortem human eye tissue collection strategy. (left) 
Whole globe image of human eye. (right) Cornea was 
dissected and collected followed by removal of anterior 
portion of the eye, flattening of the posterior pole, and collec-
tion of the retina. To access the data, click or select the words 
“Appendix 1”
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