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Complement is present mainly in blood. However, following mechanical damage or 
inflammation, serous exudates enter the mucosal surfaces. Here, the complement 
proteins interact with other endogenous molecules to keep microbes from entering 
the parenteral tissues. One of the mucosal proteins known to interact with the early 
complement components of both the classical and the lectin pathway is the salivary 
scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain 
tumors 1 and gp340. It is found both attached to the epithelium and secreted into the 
surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to 
C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regu-
lates activation of the complement system. In addition, SALSA interacts with surfactant 
proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn’s disease are 
examples of diseases, where complement activation in mucosal tissues may occur. This 
review describes the latest advances in our understanding of how the early complement 
components interact with the SALSA molecule. Furthermore, we discuss how these 
interactions may affect disease propagation on mucosal surfaces in immunological and 
inflammatory diseases.
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inTRODUCTiOn

Activation of the complement system is strongly involved in generating inflammation, combatting 
microbial infections, and participating in clearance of non-viable tissue. Although complement is 
present mainly in blood, it is also found in serous exudates on mucosal surfaces, such as in the oral 
cavity or the airways (1, 2). This is particularly seen after mechanical, infectious, or immune damage, 
e.g., in periodontal disease or SLE (3). When serous exudates enter the mucosal surfaces, innate 
immune proteins interact with mucosal surface proteins. Together, these molecules participate in 
clearance and defense against invading microorganisms. Although bleeding at the mucosal surfaces 
is observed daily, even in healthy individuals, the role of the complement system in this environment 
has so far been studied very little. Of particular interest would be the need to suppress complement-
mediated inflammation, while still mediating the antimicrobial defense functions.
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TABLe 1 | endogenous and microbial ligands of SALSA.

endogenous 
ligand

Suggested functional relevance

C1q Complement regulation (4)
MBL Complement regulation (6)
Ficolins Complement regulation (6)
SpD Microbial agglutination (9)
SpA Microbial agglutination (16)
IgA Microbial agglutination (8)
Lactoferrin Bacterial binding (20)
DNA Inflammation (21)
Heparan sulfate Inflammation (21)
Trefoil factors Tissue homeostasis (17)
MUC5B Microbial agglutination (22)
Fibrin Not known (19)
Fibrinogen Not known (19)
Erythrocytes Aggregation (19)
Platelets Aggregation (19)

Microbe Specific strains

Streptococcus S. pyogenes, S. agalactiae, S. pneumonia, S. mutans, S. mitis, 
S. oralis, S. salivarius, S. gordonii, S. crista, S. parasanguinis, 
S. vestibularis, S. intermedius, S. anginosus, S. suis (7, 23–25)

Lactobacillus L. rhamnosus, L. casei, L. reuteri, L. lactis (26)
Other bacteria Staphylococcus aureus, Bifidobacterium, Actinomyces, 

Salmonella enterica serovar Typhimurium, Helicobacter pylori, 
Haemophilus influenzae, Klebsiella oxytoca (23–28)

Viruses HIV, IAV (29, 30)

The listed ligands have been found to bind either human SALSA, the murine-ortholog 
of SALSA, or the recombinantly expressed bacterial-binding peptide, SRCRP2.
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Salivary Scavenger and Agglutinin
One of the molecules at the mucosal surfaces that interact with the 
early complement components is a protein that we named salivary 
scavenger and agglutinin (SALSA) (4–7). SALSA, also known as 
gp340, “deleted in malignant brain tumors 1” (DMBT1), and sali-
vary agglutinin (SAG), was first described as a 300–400 kDa strep-
tococcus agglutinating agent from saliva (8–10). Subsequently, 
SALSA has been suggested to function in epithelial homeostasis, 
innate immunity, inflammation, and tumor suppression (11–13). 
Many of these functions are mediated through interactions with 
endogenous ligands. SALSA has been shown to bind the comple-
ment components C1q, mannose-binding lectin (MBL), and the 
ficolins (4, 6). Furthermore, SALSA has been found to interact 
with surfactant proteins A and D (SpA and SpD, respectively), 
secretory IgA, lactoferrin, fibrin/fibrinogen, trefoil factors, and 
mucin-5B (Table  1) (9, 14–19). The multiple binding partners 
suggest that SALSA plays a central role in regulating inflamma-
tion and immune responses on mucosal surfaces.

SALSA in Antimicrobial Defense
Salivary scavenger and agglutinin is expressed at most mucosal 
surfaces, including the lungs, oral cavity, gastrointestinal tract, 
and vagina (31–35). It has been found both attached to the epi-
thelium and secreted into the lining fluids, such as saliva, tear 
fluid, and respiratory mucosal secretions (8, 9, 14, 36). Recent 
studies detected SALSA in the amniotic fluid and in the intestines 
of neonates (37). SALSA was estimated to constitute up to 10% of 
the total protein amount in meconium and in the saliva of young 

children (<3 years), making it one of the most abundant proteins 
in these environments (37, 38).

On the mucosal surfaces, SALSA has been shown to regulate 
the local immune system. On one hand, it scavenges invading 
microorganisms, whereas, on the other hand, it interacts with the 
mucosal epithelium to improve the integrity of this physical bar-
rier (Figure 1A) (13, 39). SALSA binds a broad range of microbes, 
including viruses and bacteria (Table 1). Studies have shown that 
SALSA in the oral and intestinal mucosal secretions is sufficient 
to suppress infection by agglutinating microorganisms and keep-
ing them from infecting the tissue. This has been observed for 
Salmonella enterica, HIV-1, and influenza A-virus (IAV) (27, 29, 
30, 40). These studies suggested that SALSA simply functioned by 
agglutinating the microbes. However, the role of SALSA appears 
to be more complex than that. SALSA binds, e.g., to epithelial and 
tooth surfaces in addition to being secreted into the fluid phase 
(23). The epithelium-attached localization of a protein with a solely 
bacteria-agglutinating function would not appear to be beneficial 
for the human host. This paradox has been made clear by studies 
showing that SALSA, in some cases, may actually be exploited 
by the invading microbes. A study of dental caries showed that 
certain variants of the SALSA protein correlated positively with 
Streptococcus mutans adhesion to SALSA-coated hydroxyapatite 
surfaces and the development of dental caries. Other SALSA 
variants displayed the opposite correlation (41). In the case of 
HIV-1 infection, the salivary fluid SALSA protein was found to 
interfere with oral transmission. However, SALSA expressed on 
the vaginal epithelium had an enhancing effect on the infectivity 
of the virus (35). These findings suggest that some microbes have 
evolved mechanisms to utilize SALSA to infect the human body.

isoforms of the SALSA Protein
As indicated above, various variants of SALSA may interact differ-
ently with microbes. Indeed, different SALSA isoforms have been 
identified on various mucosal surfaces. These have been shown to 
vary both in protein sequence and in the glycosylation patterns 
(23, 36, 37). The gene for SALSA (in chromosome 10q26.13) 
encodes 13 highly conserved scavenger receptor cysteine-rich 
(SRCR) domains. These 109-amino acid-long motifs are found 
as “pearls on a string” separated by SRCR interspersed domains 
(SIDs) (Figure 1B). The stretch of 13 SRCR domains is followed 
by 2 C1r/C1s, urchin embryonic growth factor and bone morpho-
genetic protein-1 (CUB) domains encompassing the 14th SRCR 
domain. Finally, a zona pellucida (ZP) domain is found at the 
most C-terminal end (31, 42). The repetitive sequence of SRCR 
domains may facilitate alternative splicing (43). Indeed, mRNA 
transcripts encoding between 8 and 13 of the N-terminal SRCR 
domains have been observed, all in all revealing up to 7 distinct 
alleles (31, 42, 44). It has been estimated that SALSA contains 
25–45% (w/w) of carbohydrate (8, 31). SALSA contains all the 
major sugar components. However, differences have been found 
to correlate to the secretor [Se(+/−)] status (±expression of the 
α1-2fucosyl-transferase). The blood group antigens, ABO, and 
Lewis antigens b and y (Leb and Ley) were found on SALSA from 
Se(+) individuals. In contrast, SALSA from Se(−) individuals did 
not contain ABO, Leb nor Ley antigens. Instead, Lewis antigens a 
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FiGURe 1 | Function and structure of SALSA at the mucosal surfaces. (A) At the mucosal surfaces, the SALSA protein is mainly found associated with the 
epithelium and secreted into the surrounding fluids. The known features and functions of SALSA are presented in four panels (I–IV). (I) SALSA is present on the 
epithelial cell surface and deposited in the extracellular matrix, where it is involved in maintaining epithelial homeostasis. (II) Fluid-phase SALSA binds a broad array 
of microbes. It has been shown to agglutinate viruses, as well as both Gram-positive and Gram-negative bacteria thus preventing them from invading the parenteral 
spaces. (III) SALSA interacts with other endogenous molecules present at the mucosal surfaces, such as surfactant proteins SpA and SpD as well as IgA. It is 
believed that these molecules cooperate in antimicrobial defense. (IV) In the case of epithelial damage, cells and molecules from the tissue become mixed with the 
luminal contents. In this context, SALSA may bind the complement sensor molecules C1q, MBL, and the ficolins, thereby SALSA could initiate complement 
activation against distinct microbes or participate in the clearance of injured tissue components. (B) In its molecular structure, SALSA contains a stretch of 13 
scavenger receptor cysteine-rich (SRCR) domains separated by SRCR interspersed domains. These are followed by two C1r/C1s, urchin embryonic growth factor 
and bone morphogenetic protein-1 (CUB) domains surrounding the 14th SRCR domain. Finally, a zona pellucida (ZP) domain is found at the most C-terminal end of 
the protein.
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and x (Lea and Lex) were present (45, 46). Thus, different forms 
of the SALSA protein exist. They are produced both by variations 
in the protein chain and in the extent and nature of glycosyla-
tion. The SALSA protein composition varies not only between 
individuals but also in different body compartments within the 
same individual (23, 36, 37).

SALSA AnD COMPLeMenT

interactions of C1q, MBL, and Ficolins 
with SALSA
C1q, MBL, and ficolins all form bouquet-like structures, where 
each subunit contains a collagen-like domain (stalk) and a carboxy-
terminal globular domain (the “flower”) (47, 48). C1q binds specifi-
cally to surface-attached IgG and IgM. However, other endogenous 
non-immunoglobulin ligands have been found, including SALSA 
(4, 6). Also, MBL, M-ficolin, H-ficolin, and L-ficolin were found 
to bind to SALSA (6). All interactions between SALSA and the 
complement molecules were calcium dependent.

C1q was shown to bind SALSA through the globular domain in 
a region close to the immunoglobulin-binding site (49). Similarly, 
it appears that MBL utilizes the globular carbohydrate recognition 

domain (CRD) for the interaction with SALSA. Due to the heavy 
glycosylation of SALSA, sugar structures may function as a target 
for the CRD of MBL (8, 31). When the binding of MBL was tested 
to SALSA purified from the saliva of a single donor up to 60% 
inhibition of the SALSA–MBL interaction was observed when 
5  mM fucose was added to the fluid phase (7). MBL binds to 
the Leb antigen, a fucose-containing oligosaccharide (7). A clear 
difference was observed in the binding of MBL to SALSA from 
secretors vs. non-secretors (7). This correlates to the finding that 
only SALSA from Se(+) individuals contains the Leb antigen (45, 
46). This strongly suggests that MBL binds via the CRD to the Leb 
antigen of SALSA.

Complement Activation and Regulation by 
SALSA
It has been shown that the binding of C1q to SALSA is sufficient to 
initiate activation of the classical complement activation pathway 
(4, 6). In addition, SALSA was shown to influence the activation 
of the lectin pathway through interactions with MBL and the fico-
lins (5, 6). The overall outcome of SALSA-mediated complement 
regulation varies with the specific location of SALSA (6). SALSA 
coated onto a microtiter plate surface activated complement as 
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measured by deposition of C4b and C3b after incubation with 
normal human serum (NHS). Using MBL-deficient serum, 
approximately 30% of the total complement activation was lost 
(6). The residual activation is likely mediated by C1q and possibly 
also by the ficolins (4, 6). In contrast to complement activation 
observed by surface-bound SALSA, SALSA in the fluid phase 
caused a dose-dependent inhibition of the lectin pathway (6). No 
such effect was observed on the classical pathway, which may be 
due to the almost 100 times higher concentrations of C1q vs. MBL. 
SALSA was able to interfere with the binding of the MBL–MASP2 
complex to surface-coated mannan. Candida albicans is a known 
target for MBL-mediated complement activation. When NHS was 
mixed with increasing concentrations of SALSA and incubated 
with C. albicans a dose-dependent inhibition of the deposition of 
both C4b and C3b was observed on the Candida surface (6). The 
dual effects of SALSA on the complement system appear con-
tradictory at first glance. On one hand, by binding to MBL and 
ficolins in the fluid phase, SALSA can prevent their binding to 
targets. On the other hand, when bound to a surface, SALSA can 
direct complement activation against appropriate targets, such as 
microbes. Overall, it appears that SALSA is a mucosal first line 
recognition molecule that can distinguish between targets to be 
cleared vs. structures to be tolerated.

Increased SALSA expression may alone and in concert with, 
e.g., C1q and MBL, lead to increased microbial clearance. In addi-
tion to the interactions with the complement proteins, SALSA 
can also mediate its anti-bacterial and inflammation regulating 
functions through interactions with IgA, SpA, and SpD (8, 9, 16). 
The functional outcome of these interactions is a cooperative 
effect on the microbial agglutination (Figure 1A) (50, 51). SALSA, 
SpA, and SpD have a dual effect against IAV: viral agglutination 
and inflammatory modulation (52). The binding of the SALSA 
ligand SpD to IAV has been shown to induce a strong respiratory 
burst response in neutrophils in vitro. This response was reduced 
by the addition of SALSA (51). It has been suggested that this 
allows a regulated response by the neutrophils, with an increased 
uptake of IAV but without an excessive and potentially harmful 
burst response (13). A similar feature is observed in the case of 
C-reactive protein and the other pentraxins. They target C1q to 
apoptotic and necrotic tissue, while simultaneously recruiting 
factor H to limit the complement activation (53, 54). This process 
is relevant during the removal of apoptotic debris at the mucosal 
surfaces, as well (55). The differential outcome of the interaction 
of SALSA with complement may represent a similar balanced 
effector mechanism against invading microbes.

SALSA AnD COMPLeMenT in 
inFLAMMATORY BOweL DiSeASe

Intestines are one of the primary sites, where an imbalance 
between activation and control of immune responses leads to 
disease. Inflammatory bowel disease (IBD) encompasses two 
chronic relapsing and remitting inflammatory conditions of the 
gastrointestinal tract. These are known as ulcerative colitis (UC) 
and Crohn’s disease (CD). Together, they affect up to 1:250 in 
the adult population (56). In children, the incidence of IBD is on 

the rise. Disease onset is during childhood or adolescence for up 
to 25% of the patients; although the mortality of the disease has 
been declining, it has a major impact on the development of these 
young individuals (57). The fundamental causes of the diseases 
are still obscure.

Several associations have been found between complement 
components and IBD. Specifically for the gut mucosa, the devel-
opment of CD has been associated with an altered expression of 
components of the lectin pathway. The frequency of the MBL2 gene 
allele, which results in MBL deficiency, was significantly elevated 
in pediatric patients with CD compared to healthy controls or 
adults with Sjögren’s syndrome (58, 59). Deficiencies in classical 
and alternative pathway components are rarer. Some patients 
deficient in C1 inhibitor, which is commonly associated with 
hereditary angioedema, were found to develop non-infectious 
enteritits and IBD (60–62). To further highlight an involvement 
of the classical and lectin pathways of complement, we recently 
observed an association of pediatric IBD to an MHC haplotype 
that involves a deficiency of two C4 genes (HLA-A03; HLA-B07; 
one C4A gene; one C4B gene; HLA-DRB115) (63).

A study of lectin pathway components during CD treatment 
found a dramatic impact on M-ficolin and MASP-3 levels in 
patients responding to anti-TNF-α therapy (64). However, how 
the complement components specifically affect the local inflam-
matory environment of the gut is not clear yet. The above described 
interactions with the SALSA molecule present a potential way 
for complement to affect a balanced mucosal immunological 
response. Current models of CD pathogenesis include an altered 
response to the local microbiota, and an increased SALSA expres-
sion has been linked to several of these responses (65). Studies 
have shown that SALSA can be strongly induced by various 
immunological stimuli (66, 67). The increased levels of SALSA in 
the intestinal epithelium of patients with IBD and in the ethmoid 
sinusoidal mucosa of patients with chronic sinusitis suggest that 
SALSA expression is part of the mucosal inflammatory response 
(66–68). Furthermore, a study of preterm infants revealed that an 
increase in the pulmonary SALSA levels was part of the mucosal 
response to neonatal infection (69).

Salivary scavenger and agglutinin expression by the intesti-
nal epithelium is induced by NOD2 and TLR4 activation (27). 
However, the outcome of an induced SALSA expression during 
IBD may not necessarily lead to enhanced clearance only. Rather, 
the interaction of SALSA with several endogenous molecules may 
be part of an efficient but limited immunological response. Failure 
in these processes could propagate an unbalanced and overactive 
local immune response in IBD. It has been shown that the previ-
ously described SALSA isoforms influence both the interaction 
with microbes and the endogenous ligands, such as IgA, C1q, 
and MBL (37). Interestingly, the specific bacterial-binding ability 
of SALSA has been found to depend not only on the isoform of 
the protein but also on the location of the protein. Fluid-phase 
SALSA can bind and aggregate some streptococcal strains, while 
SALSA coated to a hydroxyapatite surface does not (23). Thus, 
the association with the mucosal epithelium or the secretion 
into the lining fluids may further affect the local immunological 
environment differently. Finally, the described interaction of 
SALSA and trefoil factors, being important in maintaining the 
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mucosal epithelial barrier, has also been suggested to play a role 
in IBD (70, 71).

Salivary scavenger and agglutinin may be part of the normal 
immunological response of the mucosal epithelium during infec-
tion. Individual variations in the expression of SALSA isoforms 
alternate the ability of SALSA to interact with endogenous 
ligands, to invade microbes, and perhaps even to induce a limited 
burst response in neutrophils. It is therefore not surprising that a 
specific SALSA isoform, lacking the five most N-terminal SRCR 
domains, has been associated with CD (65, 67).

We speculate that the individual variations in the SALSA inter-
actions are key in understanding how this molecule could play 
a role in shifting the immunological balance toward increased 
inflammation at the mucosal surfaces, with detrimental effects 
for IBD patients.

FUTURe PeRSPeCTiveS

At the mucosal surfaces, a very tight immunological response 
to infection and inflammation is essential. The SALSA molecule 
is central player interacting with a multitude of endogenous 
molecules, invading microbes and the epithelial barrier. Due to 

the tightly linked interactions, a balanced function of the SALSA 
molecule is key in avoiding an overactive immune response. 
The interplay between the various SALSA isoforms, ficolins, 
MBL, and C1q with modified tissue components, carbohydrates, 
acetylated molecules, and microbes on mucosal surfaces provides 
an interesting area for future research that may open a new under-
standing of mechanisms underlying the development of mucosal 
immunological disorders.
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