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Characterizing and modeling the distribution of a particular family of graphs are essential

for the studying real-world networks in a broad spectrum of disciplines, ranging from

market-basket analysis to biology, from social science to neuroscience. However, it is

unclear how to model these complex graph organizations and learn generative models

from an observed graph. The key challenges stem from the non-unique, high-dimensional

nature of graphs, as well as graph community structures at different granularity levels. In

this paper, we propose a multi-scale graph generative model named Misc-GAN, which

models the underlying distribution of graph structures at different levels of granularity, and

then “transfers” such hierarchical distribution from the graphs in the domain of interest, to

a unique graph representation. The empirical results on seven real data sets demonstrate

the effectiveness of the proposed framework.

Keywords: multi-scale analysis method (MSA), graph generation, generative adversarial network, neural network,

cycle consistency

1. INTRODUCTION

A graph is a fundamental tool for depicting and modeling complex systems in various domains,
ranging frommarket-basket analysis to biology, from social science to neuroscience. Characterizing
and modeling the distribution of a particular family of graphs is essential in many real-world
applications. For example, in financial fraud detection, generative models are adopted to produce
synthetic financial networks, when the empirical studies need to be conducted by the third
parties without divulging private information (Fich and Shivdasani, 2007); in drug discovery and
development, sampling from the generic model can facilitate the discovery of new medicines
which equip new configurations while preserving the property of the existing medicines (Gómez-
Bombarelli et al., 2016); in social network analysis, the distributions on graphs can be used to
discover new graph structures and generate evolving graphs (You et al., 2018a).

Generative models of graphs have been studied well for decades. Traditional graph generative
models (Erdös and Rényi, 1959; Albert and Barabási, 2002; Leskovec et al., 2010) are usually built
upon some structural premises, e.g., heavy tails for the nodes’ degree distribution, small diameters,
and densification in graph evolution. More recent studies on deep generative models (e.g., Kingma
and Welling, 2013; Goodfellow et al., 2014), reveal a surge of research interest in modeling graphs.
For example, Liu et al. (2017) proposes a deepmodel for learning characteristic topological features
from the given graphs via generative adversarial networks (GAN); (You et al., 2018a) uses a deep
autoregressive model to efficiently learn the complex joint probability of all the nodes and edges
from an observed set of graphs.

However, real-world networks typically exhibit hierarchical distribution over graph
communities, while the existing graph generative models are either restricted to certain structural
premises (Erdös and Rényi, 1959; Albert and Barabási, 2002; Leskovec et al., 2010), or unable
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to capture the hierarchical community structures over the
graphs (Grover et al., 2018; Li et al., 2018; Simonovsky and
Komodakis, 2018). Developing graph generative models that
can capture not only the low connectivity patterns at the
level of individual nodes and edges, but also the higher-order
connectivity patterns, i.e., the hierarchical community structures
in the given graphs, will significantly improve the fidelity
of graph generative models and help reveal more intriguing
patterns in various domains. For instance, given an author-
collaborative network, research groups of well-established and
closely collaborated researchers could be identified by the existing
graph clustering methods in the lower-level granularity. While,
from a coarser level, we may find that these research groups
constitute large-scale communities, which correspond to various
research topics or subjects. Moreover, different from image data
or text data, a graph with n nodes can be represented by n!
equivalent adjacency matrices with node permutation, which
increases the difficulty of training the generative model in the
first place.

In this paper, we aim to address the following challenges:
(C.1) How to capture the community structures at different
levels of granularity and how to generate a unique graph
representation that preserves such hierarchical graph structures.
(C.2) How to alleviate the high complexity of modeling
numerous representations of graphs and how to ensure the
fidelity of the proposed graph generative model. To address the
preceding challenges, we propose a generic generative model
of graphs (Misc-GAN) to learn the underlying distribution of
graph structures at different levels of granularity. In particular,
our proposed framework consists of three key steps. First, it
coarsens the input graph into the structured representations
of different levels (i.e., granularity). Then, inspired by the
success of deep generative models in image translation (Kingma
and Welling, 2013; Goodfellow et al., 2014), a cycle-consistent
adversarial network (CycleGAN) (Zhu et al., 2017) is adopted to
learn the graph structure distribution and generate a synthetic
coarse graph at each granularity level. Last, the Misc-GAN
framework defines a reconstruction process, which reconstructs
the graphs at each granularity level and aggregates them into a
unique representation.

The main contributions of this paper can be summarized as
these three aspects:

1. A novel problem setting which aims to model the complex
distribution of community structures at different granularity
levels in the real networks.

2. A graph generative model which is capable of modeling
hierarchical topology features from a single or a set of
observed graphs producing high-quality domain specific
synthetic graphs.

3. Extensive experiments and case-studies on seven real-world
data sets, showing the effectiveness of the proposed framework
Misc-GAN.

The rest of this paper is organized as follows. We briefly review
some related work in section 2, formally define the multi-
scale domain adaptive graph generation problem in section
3 and present the formulation and implementation of our

proposed Misc-GAN framework in section 4. The empirical
studies are conducted in section 5. Finally, we conclude this paper
in section 6.

2. RELATED WORK

In this section, we briefly review the related studies on the
generative adversarial network, multi-scale analysis of graph and
cycle consistency.

2.1. Generative Adversarial Network
In Goodfellow et al. (2014), the authors propose the generative
adversarial networks (GANs) to create a generative model and a
discriminative model and compare them with each other in the
adversarial setting. The authors denote Pz(z) to be the prior of
the input noise variables z and G(z; θg) to represent a mapping
to data space, where G is a differentiable function represented
by a multi-layer perceptron with parameters θg . G(z) maps the
noise variables to data space and it aims to generate samples
as genuine as possible. The authors also define D(x; θd) to be
another multi-layer perceptron or discriminator distinguishing
whether the given samples are drawn from the real-world data
set or from the fake data set. D(x) is the probability of x coming
from the real-world data set rather than the generated data set.
In this min-max game, the discriminator D aims to maximize
the probability of assigning the correct label to both the real
samples and the faked samples generated by the generator G,
while the generator G aims to minimize the probability that
the discriminator D successfully distinguishes the faked samples
from the real samples. The objective of this min-max game is
written as:

min
G

max
D

V(G,D) = Ex∼Pdata(x)[logD(x)]

+ Ez∼Pz(z)[log(1− D(G(z)))]
(1)

More recently, a surge of research interest has been observed in
data mining and machine learning communities, with respect
to using GANs in various real applications. For example,
in Du et al. (2018), the authors proposed the adversarially
learned inference model to generate shared representation
by matching cross-domain joint distribution; the domain-
adaptation works in Ganin et al. (2016), Zhang et al. (2017),
and Tzeng et al. (2017) tried to minimize the domain-specific
latent feature representations in adversarial settings; someGANs-
based approaches have been proposed to minimize the distance
between feature distributions, such as Ganin et al. (2016), Zhang
et al. (2017), and Tzeng et al. (2017). In this paper, the generative
adversarial network is the basis from which to transfer graphs
from one domain to another, while the local valuable structures
of graphs are preserved.

2.2. Multi-scale Analysis of Graphs
Multi-scale analysis of graphs has been studied for years in
machine learning with wide applications in numerous areas,
such as simplification and compression of graphs (Cour et al.,
2005; Safro and Temkin, 2011), dynamics of graphs at different
resolutions (Lee and Maggioni, 2011; Gao et al., 2016), graph
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visualization (Stolte et al., 2003), recommendation systems (Gou
et al., 2011) and so on. The common assumption of multi-scale
analysis is that the given data in a high dimensional space has a
much lower dimensional intrinsic geometry. Take the document
text as an example, the dependencies among words constrain
the distribution of word frequency in a lower dimensional
space. Diffusion wavelets (Coifman and Maggioni, 2006) is one
common method used in multi-scale analysis which allows us
to construct functions on the graph for statistical learning tasks
by producing coarser and coarser graphs at different resolution
levels. In this paper, we adopt the concept of multi-scale analysis
to capture the local structure of graphs at different resolution
levels and then reconstruct the graph while preserving these
important local structures.

2.3. Cycle Consistency
The concept of cycle consistency has been applied to various
computer vision problems, including image matching (Huang
and Guibas, 2013; Zhou et al., 2015), co-segmentation (Wang
et al., 2013, 2014), style transfer (Zhu et al., 2017; Chang et al.,
2018), and structure from motion (Zach et al., 2010; Wilson and
Snavely, 2013). The idea of cycle consistency constrain is utilized
as a regularizer in these algorithms, such as cycle consistency
loss used in Zhou et al. (2016) and Godard et al. (2017) to push

TABLE 1 | Symbols and notations.

Symbol Definition and description

Gs,Gt The source domain graph and the target domain graph

G̃t The generated graph of the target domain

As,At, Ãt The adjacency matrices of Gs, Gt and G̃t

Vs,Vt The sets of nodes in Gs and Gt

Es,Et The sets of edges in Gs and Gt

G
(l)
s ,G

(l)
t The induced l-th granularity coarse graphs of Gs and Gt

ns, nt Number of nodes in Gs and Gt

ms,mt Number of edges in Gs and Gt

L Number of granularity levels

F (l),B(l) The generators in the forward and backward GAN at the l-th layer

D
(l)
F
,D

(l)
B

The discriminators in the forward and backward GAN at the l-th layer

the mappings to be as consistent with each other as possible
in the supervised convolution neural network training. Zhu
et al. (2017) proposes the Cycle-Consistent generative adversarial
network to learn two mappings or generators G :X → Y and
F :Y → X between two domains X and Y . The authors introduce
two adversarial discriminators DX and DY , where DX aims to
distinguish the images x drawn from the real data set X from the
fake images generated by F(Y); similarly, DY aims to distinguish
the images y drawn from data set Y from the fake images
generated by G(X). In this paper, we apply this concept to find
the graph transfer mappings between domain X and domain Y ,
such that the transferred graph from domain Y to domain X is
sufficiently similar to the graph in domain X.

3. PROBLEM DEFINITION

In this section, we introduce the notation and problem definition
of this paper. The main symbols and notations are summarized
in Table 1. We use ordinary lowercase letters to denote scalars,
boldface lowercase letters to denote vectors, and boldface
uppercase letters to denote matrices and tensors. Moreover, the
elements (e.g., entries, fibers and slices) in a matrix or a tensor
are represented in the same way as the Matlab, e.g., M(i, j) is the
element at the ith row and jth column of thematrixM, andM(i, :)
is the ith row ofM, etc.

The goal of this paper is to generate a synthetic target
domain graph G̃t , by learning mapping functions between
the source domain graph Gs and the target domain graph
Gt . Without loss of generality, in this paper, we assume
that a universal structure distribution pdata exists, which
defines the structural role of each entity, i.e., node, edge, and
subgraph, of the observed graphs.Many existing graph generative
models (Bojchevski et al., 2018; You et al., 2018b) are designed
to learn the structure distribution of G at a single scale, and
therefore they might overlook some intriguing patterns in the
underlying networks, e.g., the multi-level cluster-within-cluster

structures (Ravasz and Barabási, 2003). Figure 1 presents an

illustrative example of the hierarchical structures in collaboration

networks. In particular, the graph exhibits four-level hierarchies
including (L1) all the entities in the collaboration network,

(L2) early-stage researchers, (L3) mid-career researchers and

FIGURE 1 | An illustration example. (A) Presents a visualization of the collaboration network (Grandjean, 2016). (B) Shows the hierarchical structure of the research

communities, from early-stage researchers to mid-career researchers and senior researchers.
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(L4) senior researchers. It is unclear how to characterize such
hierarchical structures and generate domain-specific synthetic
graphs. Moreover, the generative model needs to be scalable
when modeling large-scale networks that have exponentially
many representations. In this paper, we aim to learn a graph
generative model that can automatically translate any source-
domain graph into the target-domain graph while preserving
the hierarchical structure distribution over the observed target
graph. In real cases, the source-domain graphs are sensitive
and hard to obtain, while only the target-domain graphs are
available to the analysts. For example, in financial fraud detection,
the source-domain graphs could be the online transaction
network that contains sensitive information (e.g., bank account,
personal identification information, transaction amount, etc.);
the target-domain graphs that are available to the analysts
could be outdated data (transaction data 100 years ago) or the
simulated graphs with user-defined graph statistics (e.g., the
number of nodes, the number of edges). Thus, by learning
such generative model, the third-party analysts can study the
data without divulging the sensitive information. With the
above notations and objects, we formally define our problem
as follows:

L = Lms + LF + LB + Lcyc

= KL(

L
∑

l=1

w(l)
F

(l)(G(l)
s )+ b,Gt)

︸ ︷︷ ︸

Lms : multi-scale reconstruction loss

+α

L
∑

l=1

E
G
(l)
t ∼Pdata(G

(l)
t )
[logD

(l)
F
(G

(l)
t )]+ E

G
(l)
s ∼Pdata(G

(l)
s )
[log(1− D

(l)
F
(F(G(l)

s )))]

︸ ︷︷ ︸

LF : forward adversarial loss

+β

L
∑

l=1

E
G
(l)
s ∼Pdata(G

(l)
s )
[logD

(l)
B
(G(l)

s )]+ E
G
(l)
t ∼Pdata(G

(l)
t )
[log(1− D

(l)
B
(B(l)(G

(l)
t )))]

︸ ︷︷ ︸

LB : backward adversarial loss

+γ

L
∑

l=1

E
G
(l)
s ∼Pdata(G

(l)
s )
[‖B(l)(F (l)(G(l)

s ))− G(l)
s ‖1]+ E

G
(l)
t ∼Pdata(G

(l)
t )
[‖F (l)(B(l)(G

(l)
t ))− G

(l)
t )‖1]

︸ ︷︷ ︸

Lcyc : cycle consistency loss

Problem 1. Multi-level Structure-Preserving Graph Generation

Input: (i) a target domain graph Gt = (Vt ,Et), (ii) a
source domain graph Gs = (Vs,Es), (iii) the number of
granularity levels L.
Output: (i) a mapping function F that can translate any
source-domain graphs to the corresponding target domain graphs
while preserving the hierarchical structure distribution over
the observed target graph Gt , (ii) a generated synthetic target
domain graph G̃t .

4. PROPOSED FRAMEWORK

In this section, we present our multi-scale graph generative
model Misc-GAN, which simultaneously characterizes and

models the structural distribution of the observed graphs at
multiple scales. In particular, we first formulate our framework
into a generic optimization problem, and then discuss the details
on three modules, i.e., multi-scale graph representation module,
graph generation module, and graph reconstruction module, in
our proposed framework Figure 2.

4.1. A Generic Joint Learning Framework
To address the proposed problem of multi-level structure-
preserving graph generation, our joint learning framework
should primarily focus on the following aspects. First (problem
setting), the existing methods are mainly restricted to a single
granularity level of graph structures, which might increase the
possibility of overlooking the hierarchical community structures
in the observed graphs. Thus, the graph generation model should
be able to capture the community structures at multiple levels of
granularity and generate a unique graph representation. Second
(graph generation performance), it is unclear how to alleviate the
high complexity and ensure the fidelity of the graph generation.
This is crucial especially if the observed graphs are noisy and
large-scale. With these objectives in mind, we propose a generic
graph generation framework as an optimization problemwith the
following objective function:

where the objective consists of four terms. The first term Lms

is the multi-scale reconstruction loss, which is designed to
minimize the Kullback-Leibler (KL) divergence (Moreno et al.,
2004) between the target graph Gt and the generated graph G̃t ,

i.e., G̃t =
∑L

l=1 w
(l)
F(G

(l)
s ) + b. We generalize the conventional

KL divergence to our problem setting to compare two
graphs as follows

KL(G̃t ,Gt) =

n
∑

i=1

n
∑

j=1

(At(i, j)+ ǫ) log
At(i, j)+ ǫ

Ãt(i, j)+ ǫ
(2)

where At and Ãt are the adjacency metrics of G̃t and Gt , ǫ is a
constant with a small value to avoid log(0) or division by 0. The
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FIGURE 2 | The proposed Misc-GAN framework.

second term LF learns a forward mapping function F from the

source graph Gs to Gt . The discriminator D
(l)
F

aims to figure out
whether the given graph is a real graph from the target domain
or a fake graph generated by the generatorF which is transferred
from the source domain graph. Similar to the second term, the
third term LB defines a backward adversarial loss, which aims
to learn the mapping function from the target domain to the
source domain. The fourth term Lcyc is the cycle consistency
loss, which is introduced to further reduce the space of possible
mapping function. We argue that learning such bi-directional
mapping can largely prevent the learnedmapping functions from
contradicting each other. At last, we also introduce three positive
constants, i.e., α,β , γ , to balance the impact of these four terms
in the overall objective function. Follow the min-max scheme of
GAN, we aim to solve:

F
∗(l),w∗(l), b∗ = arg min

F (l) ,B(l) ,w(l) ,b
max

D
(l)
F
,D

(l)
B

L, l = 1, . . . , L (3)

4.2. Network Architecture
Here, we present our Misc-GAN framework (Figure 2). Overall,
our framework can be separated into three stages (i.e., modules).
In the first stage, our framework takes the input graphs Gt and
explores the hierarchical structures by constructing the coarse
graphs in L levels of granularity (w.r.t. L layers in Figure 2). In
the second stage, our framework trains an independent graph
generative model and produces the multi-scale coarse graph in
each layer. In the third stage, our framework autonomously
combines the outputs from the previous stage to construct
the synthetic graph G̃t that preserves the hierarchical topology
features of the given graphs Gt .

4.2.1. Multi-Scale Graph Representation Module
In this module, we explore the hierarchical cluster-within-
cluster structures in order to better characterize the given
graph Gt , by using the multi-scale approaches, e.g., hierarchical
clustering (Johnson, 1967), algebraicmultigrid (AMG) (Ruge and
Stüben, 1987). The main idea of AMG-based coarsening is a
process of aggregating the strongly coupled nodes with a small
algebraic distance to form coarser nodes (Ron et al., 2011). Given

a symmetric matrix Gt , the coarser graph G
(l)
t at the first layer is

defined as follows:

G
(1)
t = P(1)′GtP

(1) (4)

TABLE 2 | Statistics of the network data sets.

Network Type Nodes Edges

Email Directed 1,005 25,571

Facebook Undirected 4,039 88,234

Wiki Directed 8,292 14,547,910

P2P Directed 10,876 39,994

Gnu Directed 6,301 20,777

Bitcoin Directed 5,881 35,592

CA Undirected 5,242 14,496

where P(1) is a coarser operator for generating G
(l)
t . This coarser

operator follows the weighted aggregation scheme used in Sharon
et al. (2000) by assigning the weight to the edge connecting two

coarse aggregates, where the weight of P
(1)
ij is the fraction of the

ith node that will belong to the jth aggregate. Extending this idea
to the lth layer, the multi-scale approaches recursively construct
a multi-scale hierarchy of increasingly coarser graphs at the l-th
layer as follows:

G
(l)
t = P(l−1)′ . . .P(1)′GtP

(1) . . .P(l−1) (5)

where l = 1, . . . , L, P(1), . . . ,P(l−1) are the coarsening operators,
andGl is the coarse graph at the l-th layer. Based on Equation (5),
we construct a set of coarse graphs with multiple scales from
the target domain graph Gt . These coarse graphs will be fed
into the following graph generative module in order to learn the
hierarchical structures of Gt .

4.2.2. Graph Generation Module
It is challenging to learn the underlying structure distribution
pdata of the target domain graph Gt , as the graph with n nodes
can be represented by n! equivalent adjacency matrices with
node permutations (You et al., 2018a). Some recent works have
been proposed to tackle this issue. For example, Simonovsky
and Komodakis (2018) proposes an approximate graphmatching
scheme that requires O(n4) operations in the worst case; (You
et al., 2018a) develops a tree-structure node ordering scheme,
which is based on breadth-first-search (BFS) to reduce the
computational complexity. However, these methods may either
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suffer from the intractable time complexity, or not well preserve
the hierarchical structures of the given networks.

Here, we propose a multi-scale graph generation scheme,
which models the complex distribution of graph structures over
a pyramid of coarse graphs rather than the original graphs.
The intuitions are in the following two aspects: (1) directly
training from the coarse graphs facilitates the learning process
of the generative model, as the coarse graphs serve as the
abstractions of the original graphs; (2) this scheme provides the
flexibility for the users to decide the granularity-level of the
coarse graphs to be learned, which could be attractive when we
need to model the large-scale networks. To be more specific,
the graph generation module at each layer (shown in Figure 2)
can be separated into three steps: First, we partition the graph

into multiple non-overlapping subgraphs using state-of-the-art
graph clustering methods (Ester et al., 1996; Schaeffer, 2007).
Then, based on the detected communities, we generate a set of
block diagonal matrices by shuffling community blocks over the
diagonals, which are used to characterize the community-level
graph structures. At last, the generated block diagonal matrices
are fed into an independent graph generative model to generate
the synthetic coarse graphs at each layer.

4.2.3. Graph Reconstruction Module
In this stage, we first adopt the multi-scale approaches to
reconstruct the graph from coarse to fine. Given a coarser matrix

G
(2)
t at the second layer, the fine graph G̃

(l)
t at the first layer is

FIGURE 3 | Effectiveness analysis. (A) AD (More similar to original graph is better). (B) LCC (More similar to original graph is better). (C) EPL (More similar to original

graph is better). (D) GC (More similar to original graph is better). (E) KL (Higher is better). (F) Graph Kernel (Lower is better).
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defined as follows:

G̃
(1)
t = R(1)′G

(2)
t R(1) (6)

where R(1) is a reconstruction operator mapping the coarser

graph back to the fine graph G̃
(l)
t . Extending this idea to multiple

layers, the multi-scale approaches recursively construct a multi-
scale hierarchy of increasingly refined graphs at the l-th layer
as follows:

G̃
(l)
t = R(1)′ . . .R(l−1)′G

(l)
t R(l−1) . . .R(1) (7)

where l = 1, . . . , L, G̃
(l)
t is the reconstructed adjacency matrix

from the l-th layer, and R(1), . . . ,R(l−1) are the reconstruction

operators that maps the coarser graph to the fine graph G̃
(l)
t .

After that, all the reconstructed graphs at each layer are in the
same scale as the target graph Gt , which could be aggregated

into a unique one by a linear function, G̃t =
∑L

l=1 w
(l)G̃

(l)
t + b,

where w(1), . . . ,w(L) are the non-negative weights, and b is a
bias. Compared with the existing graph generative models (Erdös
and Rényi, 1959; Albert and Barabási, 2002; You et al., 2018a),
the advantages of using such multi-scale graph reconstruction
models are twofold. First, by reconstructing the graph form
the multiple coarse graphs, the graph generated by Misc-GAN
naturally preserves the hierarchical community structures at
the different levels of granularity. Moreover, we claim that our
proposed Misc-GAN framework is more scalable than most
existing GAN-based graph generative models, as our model
provides the flexibility of being trained from the coarse graph
of input networks at a user’s preferred scale. In particular,
given an online transaction network with millions of nodes,
the running and space complexity could be intractable for
either GAN or CycleGAN to store and perform computations
at the original scale of the input graph. Instead, Misc-GAN
allows end users to learn from a pyramid of the coarse
graphs (e.g., ten thousands of nodes) that preserves the key
information of community structures but requires less memory
and computational resources.

4.3. Training Details
We applied the technique of cycleGAN to the transfer graph
from one domain to another domain. Different from the density

FIGURE 4 | Running time (s) on email dataset.

property of images, the adjacency matrix for a graph is much
sparser. In our algorithm, two convolution layers are used to
capture the hierarchical structure information of the graph.
Because the adjacency matrix of a graph is sparser than the dense
matrix of an image, we set the size of stride to four, the size
of kernels to 4 × 4 matrices, and the number of kernels to 32
for each convolution layer. Then, k iterations of ResNet (He
et al., 2016) are applied to accelerate the convergence. Finally,
two deconvolution layers were used to reconstruct the adjacency
matrix with similar settings used in convolution layers.

Second, following the strategy mentioned in Shrivastava et al.
(2017) and Zhu et al. (2017), we updated two discriminators with

the history of the generated graph Ã
(l)
t in the l-th layer to reduce

the vibration of the model. For all the experiments, we set the
training iterations to 250. Adam solver (Kingma and Ba, 2014),
with a batch size of one, is used to minimize the loss function
and all networks are trained with a learning rate of 0.0002 in the
tensorflow deep learning framework.

5. EXPERIMENT

In this section, we demonstrate the performance of our proposed
Misc-GAN framework on real networks. Moreover, we present a
case study to illustrate the effectiveness ofMisc-GAN in learning
the topological features at different levels of granularity.

5.1. Experiment Setup
5.1.1. Data Sets
We evaluated our proposed algorithm on seven real-world
networks from the Stanford Network Analysis Project
(SNAP) (Leskovec and Krevl, 2015). The statistics of data
sets are summarized in Table 2. In particular, Email is a
communication network, where an edge exists if one person
sends at least one email to another person; Facebook is a social
network, where each edge represents a social connection between
the users in Facebook; Wiki is a voting network, which is used by
Wikipedia to elect administrators among the huge contributors;
P2P is a file-sharing network, where each node represents a
host and each edge represents a connection between hosts;
GNU is another Gnutella peer-to-peer file sharing network,
which is similar to P2P network; Bitcoin is a who-trusts-whom
network that covers the bitcoin trading information on the
Bitcoin OTC platform, where each node represents a user and
each edge represents the trustfulness between two users; CA is a
collaboration network from arXiv, where each node represents
an author and each edge represents the collaborations between
authors. For different weights in a graph, i.e., Bitcoin graph, we
convert the values of edges to binary values in order to feed them
to our model.

5.1.2. Comparison Methods
We compared Misc-GAN with two random graph models, i.e.,
Erdös-Rényi (E-R) model (Erdös and Rényi, 1959) and Barabási-
Albert (B-A) model (Albert and Barabási, 2002), and one recent
deep graph generative model, i.e., GAE (Kipf and Welling,
2016). All the graph statistics are outlined in Table 2. In our
setting, the graphs in Table 2 are target domain graphs, and the
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FIGURE 5 | Graph reconstruction at multiple scales.

source domain graphs are generated under a random normal
distribution with the same numbers of nodes and edges as the
target domain graphs.

5.1.3. Repeatability
All the data sets are publicly available. We will release the code
of our algorithms through the authors’ website after the paper
is published. The experiments are performed on a Windows
machine with four 3.5 GHz Intel Cores and 256 GB RAM.

5.2. Quantitative Evaluation
The comparison results, in terms of effectiveness across a diverse
set of real networks, are shown in Figure 3. In particular, we
present the results regarding the following metrics: (1) AD: the
average degree of all nodes in a graph; (2) LCC: the size of
the largest connected component of the graph; (3) EPL: the
exponent of the power law distribution of the graph; (4) GC: the
Gini coefficient of the degree distribution of the graph; (5) KL:
the symmetric Kullback-Leibler (KL) divergence (Moreno et al.,
2004) between the local clustering coefficient distributions of the
original graphs and the generated graphs; (6) Graph Kernel: the
similarity between the original graph and the generated one by
using the random-walk based graph kernel (Kang et al., 2012).
From these figures, the x-axis of each figure represents a data
set, and the y-axis is the value of metrics. From Figures 3A–D,
we mainly compare various graph statistics between the original

graph and the generated ones using baseline methods. If the value
of the metric of the generated graph is close to that of the original
graph, it means the generated graph is much more similar to
the original graph. We observed that the AD of our proposed
algorithm is almost identical to the AD of the original graph for
all data sets; for the other three metrics, our proposed algorithm
also outperformed the others in most cases. In Figures 3E,F, we
present the divergence and similarity score between the original
graphs and the generated graphs. Note that, for presentation
purposes, all the results in Figures 3E,F are presented using a
negative log function, i.e., f (x) = − log(x). In general, we observe
that (1) our proposed Misc-GAN outperforms the comparison
methods across most of the datasets and evaluation metrics in
most cases. For example, in the Email data, Misc-GAN is 66%
smaller on the clustering coefficient distribution evaluation; (2)
our proposed Misc-GAN framework better preserves the local
topological features (e.g., the largest connected component and
local clustering coefficient) and the global features (e.g., mean
degree, the power law coefficients of the degree distribution of
graphs) than other deep generative models (e.g., GAE). It is
because our method explores the network structures at multiple
resolutions and automatically learns the weight of the importance
of topological features at different levels, while the existing
deep generative models may fail to model such fine-grained
topological features.
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Moreover, we present the comparison results regarding
running time (s) on the Email dataset in Figure 4. In particular,
we show the running of Misc-GAN learning from the original
graph (i.e., Misc-GAN (L1)), the Layer 2 coarsen graph with
around 700 nodes (i.e., Misc-GAN (L2)), the Layer 3 coarsen
graph with around 500 nodes (i.e., Misc-GAN (L3)), by
comparing the two neural network based methods (i.e., GAE and
NetGAN). Due to the random graph algorithms (e.g., E-R and
B-A) do not have a certain training process, we do not include
them in Figure 4. In general, we observed the following: (1)
Misc-GAN (42s) have comparable running time with GAE (38s),
and way faster than NetGAN (1092s); (2) by learning from the
Layer 2 coarse graph and Layer 3 coarse graph, the running
time of Misc-GAN dramatically reduced from 42 s to 26 s and
12 s, respectively.

5.3. A Case Study With Respect to the
Impact of Multi-scale Analysis
A simple but intuitive way to evaluate the generated graphs is
to visualize the network layout in a two-dimensional space. In
Figure 5, we compared the multi-scale network representations
of the original graph (i.e., Email) and the generated graphs.
In particular, we selected the deep generative model GAE
and NetGAN as our baseline methods and constructed coarse
graphs at four different scales based on Equation (4). In
general, we found that (1) our framework preserved the
graph structures at multiple levels of granularity well; (2)
NetGAN only preserved the lower-level connectivity patterns
(e.g., clusters within a loop pattern) in Layer 1, but failed
to capture the higher-level connectivity patterns (e.g., the
cluster of super-nodes) in Layer 3, Layer 4 and Layer 5.
The reason for the preceding phenomenon is that NetGAN
is trained at a single level (i.e., a single granularity of
nodes), which results in the coarse reconstruction of high-
level network structures. GAE also has a similar problem,
due to the failure of capturing higher-level connectivity
patterns(i.e., in Layer 5).

6. CONCLUSION

We propose a multi-scale generative model named Misc-
GAN for graph-structured data, which explores the network
structures at multiple resolutions and automatically generates
a unique graph representation that preserves such fine-grained
topological features. The empirical studies show that Misc-
GAN achieves significantly better performance than state-of-the-
art models do on real networks. However, various challenges
remain in this problem, such as how to make the deep
generative model scale to massive graphs, and how to generate
the domain-specific graph with complex connectivity patterns
(e.g., modeling the online transaction networks with money
laundering patterns).
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