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Abstract: Assessing causes of population decline is critically important to management of threatened species.
Stochastic patch occupancy models (SPOMs) are popular tools for examining spatial and temporal dynamics of
populations when presence–absence data in multiple habitat patches are available. We developed a Bayesian
Markov chain method that extends existing SPOMs by focusing on past environmental changes that may have
altered occupancy patterns prior to the beginning of data collection. Using occupancy data from 3 creeks, we
applied the method to assess 2 hypothesized causes of population decline—in situ die-off and residual impact
of past source population loss—in the California red-legged frog. Despite having no data for the 20–30 years
between the hypothetical event leading to population decline and the first data collected, we were able to
discriminate among hypotheses, finding evidence that in situ die-off increased in 2 of the creeks. Although the
creeks had comparable numbers of occupied segments, owing to different extinction–colonization dynamics,
our model predicted an 8-fold difference in persistence probabilities of their populations to 2030. Adding a
source population led to a greater predicted persistence probability than did decreasing the in situ die-off,
emphasizing that reversing the deleterious impacts of a disturbance may not be the most efficient management
strategy. We expect our method will be useful for studying dynamics and evaluating management strategies
of many species.
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Uso de Modelos Estocásticos de Ocupación de Fragmentos de la Rana Californiana de Patas Rojas para la Inferencia
Bayesiana con Respecto a Eventos Pasados y su Persistencia en el Futuro

Resumen: La evaluación de las causas de la declinación poblacional es de importancia cŕıtica para el
manejo de especies amenazadas. Los modelos estocásticos de ocupación de parches (SPOMs, en inglés) son
herramientas populares para examinar las dinámicas espaciales y temporales de las poblaciones cuando
están disponibles los datos de presencia-ausencia para múltiples parches de hábitat. Desarrollamos un método
bayesiano de cadena de Markov que extiende a los SPOMs existentes al enfocarse en los cambios ambientales
pasados que podŕıan haber alterado los patrones de ocupación previos al inicio de la recolección de datos.
Con los datos de ocupación de tres arroyos, aplicamos este método para evaluar dos causas hipotéticas
de la declinación poblacional – muerte in situ e impacto residual de causas anteriores de pérdida de una
poblacion fuente – de la rana californiana de patas rojas. A pesar de no tener datos para 20 – 30 años
entre el evento hipotético que derivó en la declinación poblacional y los primeros datos recolectados, pudimos
discriminar entre las hipótesis, encontrando evidencia de que la muerte in situ incrementó en dos de los
arroyos. Aunque los arroyos tuvieron un número comparable de segmentos ocupados, debido a diferentes
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dinámicas de colonización – extinción, nuestro modelo predijo una diferencia ocho veces mayor en las
probabilidades de persistencia de las poblaciones hasta el 2030. La suma de una población fuente resultó en
una mayor probabilidad de persistencia pronosticada que con la reducción de la muerte in situ, enfatizando
que la reversión de los impactos dañinos de una perturbación puede no ser la mejor estrategia de manejo.
Esperamos que nuestro método sea útil para el estudio de las dinámicas y para la evaluación de las estrategias
de manejo de muchas especies.

Palabras Clave: anfibios, arroyos, conectividad, estad́ıstica, metapoblaciones
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Introduction

Occupancy models, which consider observations of
presence or absence of a species across habitat patches,
have been used to test ecological hypotheses on
metapopulations (Hanski 1994), species invasions (Yack-
ulic et al. 2012), disease dynamics (Adams et al. 2010),
species distributions (Gormley et al. 2011), population
trends (With & King 1999), abiotic relationships (Cole &
North 2014), and community-level interactions (Welsh
et al. 2006). Stochastic patch occupancy models (SPOMs)
(Gyllenberg & Silvestrov 1994; Hanski 1994) are a family
of occupancy models that describe transitions between
occupancy states in terms of extinction and colonization.
This class of models has advanced to accommodate
imperfect detection, demographic dynamics, sparse
data sets, and spatially explicit data. Some early SPOMs
considered incidence-function methods, in which the
stationary probability of occupancy was used to infer
extinction and colonization rates (Hanski 1994; ter Braak
et al. 1998), based on the assumption they are time
independent. To address this oversimplification, several
researchers developed Markov chain models that permit
time-varying extinction and colonization probabilities
dependent on values from other patches (O’Hara et al.
2002; ter Braak & Etienne 2003; Moilanen 2004) and
that accommodate imperfect detection (MacKenzie
et al. 2003; Johnson et al. 2013). A recent method with
demographic dynamics is spatially explicit and allows
imperfect detection (Sutherland et al. 2014).

Our study was motivated by the population decline of
the U.S. federally threatened California red-legged frog
(Rana draytonii) and a desire to recover an R. draytonii
metapopulation on Stanford University lands. The species

has declined by 70% in its range (Hayes & Jennings 1988;
Fisher & Shaffer 1996). On Stanford lands, R. draytonii
was reported in 23 stream segments in 1997 and in 12 in
2012. Factors at multiple spatial scales may influence the
populations: habitat loss (Davidson et al. 2002), predation
by exotic species (Lawler et al. 1999), disease (Fisher et al.
2012), and climate change (Davidson et al. 2002).

We found existing SPOM methods imperfectly suited
to our study system. Our data set had missing data in the
sampling period 1997–2016, and did not include any data
from before 1997, when events relevant to the decline
likely took place. Many current spatially implicit methods
use a Bayesian framework and allow years of missing
data (Royle & Dorazio 2008; Fiske et al. 2011; Kéry &
Schaub 2011; Bailey et al. 2014), but do not estimate
parameters for those years. Although Markov methods
can be used to infer parameters during missing years,
they have not previously been designed to infer changes
in parameter values during missing-data periods (O’Hara
et al. 2002; ter Braak & Etienne 2003; Risk et al. 2011).

We developed a Bayesian Markov chain method for
inference under a novel SPOM that permits substantial
missing data, handles imperfect detection, and explicitly
models periods predating sampling, allowing temporal
parameter changes owing to disturbance prior to sam-
pling. The method enables inference of extinction and
colonization rates and detection probabilities, hypothe-
sis testing, and prediction of extinction risk. It entails
a likelihood of model parameters given occupancy data
and incorporates prior parameter information to obtain
posterior probabilities and credible intervals. The frame-
work uses inferred parameter distributions for probabilis-
tic imputation of missing occupancy data and to estimate
future probabilities of extinction. For the period before
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sampling, we compared 2 causes of decline in R. dray-
tonii: increased in situ die-off (e.g., due to disease or
introduced predators) and source population loss (e.g.,
through habitat loss). We evaluated possible management
actions and their impact on extinction risk. This example
illustrates the potential of the new method for a variety
of problems.

Methods

Data

From 1997 to 2016, up to 2 visual encounter surveys
per year were completed in prespecified segments of
3 creeks known to contain California red-legged frog
(Fig. 1). The creeks are often partially dry during the
summer dry season and are continuously wet during the
winter wet season. The proportions of a creek that have
pools, riffles, and runs vary over time and shift with flood
events; the locations of these features also vary.

Surveys focused on presence and absence of adult
frogs, the life stage most closely linked to long-term
population persistence in r-selected species such as R.
draytonii (Biek et al. 2002; Vonesh & De la Cruz 2002).
Summer surveys, when water levels are low, maximize
detection probability of adult frogs and surveyor safety.

We designed our model for the annual life cycle of
R. draytonii. Breeding and dispersal happen during the
wet season. Breeding occurs in permanent or seasonal
ponds or stream pools, then tadpoles metamorphose in
subsequent months. Dispersal of metamorphosed frogs
occurs both upstream and downstream. Mean disper-
sal distance is 50–500 m (Lannoo 2005), and dispersal
can occur across interstitial habitats (Bulger et al. 2003).
We assumed the population was closed during summer
(Supporting Information); therefore, surveys that did not
detect R. draytonii were regarded as detection failures
if occupancy was detected in the same segment in other
surveys of the same year.

Stream segments were numbered from upstream to
downstream and had a mean length of 202 m (SD 41).
There were 11 segments in Matadero Creek, 10 in Deer
Creek, and 26 in San Francisquito Creek (Supporting
Information). Missing data rates were 17% in Matadero
Creek, 22% in Deer Creek, and 13% in San Francisquito
Creek (Supporting Information).

General SPOM

In our model (Fig. 2a), we divided a linear habitat into
N patches. The distance between patches i and j is
denoted by dij. In a discrete time period t, each patch is
in 1 of 2 states, either occupied or unoccupied. Because
our system has an annual cycle, we considered years
rather than a generic time unit. We defined variables

as follows: pj is per-patch detection probability of the
species during survey j; Ji,t is number of surveys in patch
i and year t; Yi,j,t is detected occupancy (1, presence;
0, absence) in the jth survey of patch i in year t, and Yt

= (Y1,1,t, . . . , YN,1,t, Y1,2,t, . . . , YN , J N ,t ,t ) is the vector of
observations of all patches in all surveys of year t.

In our model of sequential extinction-colonization dy-
namics, we assumed occupancy measurement precedes
extinction. First, patches are surveyed, providing Yt.
Following MacKenzie et al. (2003), survey results were
assumed to depend on the detection probability pj and
the occupancy state zt = (z1,t, . . . ,zN,t). Conditional on
presence of the species (zi,t = 1), the probability of
observing presence in survey j of patch i in year t is pj,
and the probability of observing absence is 1 − pj. The
probability of Yi,j,t = 1 given the species is absent (zi,t

= 0) is 0, and the probability of Yi,j,t = 0 given species
absence is 1. We assumed independence of surveys, so Yt

has probability equal to the product of the probabilities
of the Yi,j,t across surveys j and patches i. We henceforth
assumed pj was constant across all j and equal to p for all
surveys. The framework can be extended easily to allow
the detection probability to vary spatially and temporally.

In the cycle corresponding to each discrete time step,
after occupancy measurement, extinction occurs. The
extinction phase represents the dry season in which some
patches become empty. We denote by Ei the extinction
probability of patch i (i.e., the probability the patch
converts from occupied to unoccupied in the extinction
phase of a discrete time unit) (Fig. 2a). Following Hanski
and Ovaskainen (2000), we assumed extinction rates are
inversely proportional to population size and colonized
patches instantly reach carrying capacity (Ki) for patch i.
Thus, Ei = e/Ki, where e is a global extinction parameter
that is constant across patches; e but not Ei may exceed 1.

After the extinction phase of a time step, the
colonization phase occurs, corresponding to the wet
season in which patches are recolonized. We denote
by Ci,t the colonization probability of patch i in year t
(Fig. 2a). Following Hanski and Ovaskainen (2000), we
assumed colonization rates are proportional to the total
number of migrants entering from occupied patches.
We also assumed an exponential dispersal kernel. Thus,
the colonization rate of patch i at time t is Ci,t = c
�j�i exp(-αdij)Kjz’j,t, where c is the global colonization
parameter (a constant across patches independent of i
and t), α is the inverse of the mean dispersal distance
of the species, and z’j,t is the occupancy of patch j after
the extinction phase of year t. Although Kj values are
unaffected by the extinction phase, Ci,t is indirectly
affected because extinction leads to z’j,t = 0 for some
segments, j, and thus decreases Ci,t. The c but not Ci,t may
exceed 1.

Model likelihood computation is in Supporting
Information. In the likelihood computation, the Ei and
Ci,t are used to compute ɸt, the 2N × 2N transition matrix
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Figure 1. Locations of 3 creeks
(Matadero, Deer, and San
Francisquito) sampled for the
California red-legged frog on
Stanford University lands.

from all possible states in year t to states in year t+1,
where entry ɸtkl represents the transition probability
from state k to state l. The exact likelihood function
of model parameters (�0) given a series of detections
measured from data Y1997, . . . ,Y2016 is

L (
�0|Y1997, . . . , Y2016

)
= �1997

[
2015∏

t=1997
D

(
qt

)
�t

(
�0

)]
q2016. (1)

In this equation, ɸt denotes the 1 × 2N probability vec-
tor of all 2N possible states in year t; qt denotes the 2N

× 1 column vector whose elements correspond to the
probabilities of observing Yt given each state; and D(qt)
denotes the 2N × 2N diagonal matrix for which diagonal
entries are the elements of qt (Supporting Information).
Thus, Eq. 1 matches Eq. 5 of MacKenzie et al. (2003),
but our computation of ɸt is related to that of O’Hara
et al. (2002) and ter Braak & Etienne (2003) instead of
that from MacKenzie et al. (2003).

To reduce computation time when the number of
segments N is large, we built an approximate likelihood
function, L̃(�0|Y1, . . . , YT ) (Supporting Information).
The approximate likelihood function considers only the
most likely occupancy states.

Hypothetical Causes of Population Decline

We built models corresponding to 2 hypothetical causes
of population decline for R. draytonii: in situ die-off and
loss of a source population (Fig. 2b–c). For both models,

we assumed an event changed the model parameters
in the past, before the first survey that produced
occupancy data. We assumed parameters were constant
for a long time before the event of interest; thus, the
initial occupancy state was assumed to have limited
impact on occupancy at the time of the event. We also
assumed parameters were constant after the event.

Under hypothesis 1 (in situ die-off), population
declines result from sudden mortality increases in all
patches at time tD, prior to the first sampling time. In situ
die-off could result from disease, introduced predators, or
reductions in habitat quality or availability. We assumed
population sizes were equal in all patches. The per-patch
population size before in situ die-offs is labeled KD and
the subsequent size is denoted K. Because extinction
and colonization are treated as functions of population
size, we assumed in situ die offs increase population
extinction rates and decrease colonization rates. See
Supporting Information for derivation of the likelihood
under hypothesis 1 from the general likelihood (Eq. 1).

Under hypothesis 2 (source population loss), habitat
destruction or local extinction leads to loss of a
neighboring source population (e.g., a pond not subject
to seasonal disappearance) at time tL, before the
first sampling time. Stanford lands are bordered on 3
sides by urban developments that have increased in
density and spatial scope over the last 50 years. We
hypothesized that a source population of size KL was
formerly near the current habitat, at distance dL, and
that it became extinct at time tL. We assumed this
source population was simply present and not subject
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(a) (b)

(c)

Figure 2. (a) General stochastic patch occupancy model (SPOM) (t, year; z’i,t and zi,t+1, hidden random variables
describing occupancy states at the end of extinction and colonization phases, respectively; Yi,j,t, observed
occupancy in survey j of patch i in year t; p, detection probability; quantities on arrows, probabilities). (b)
Hypothesis 1: In year tD, in situ die-off (e.g., due to infection) reduces the population size of each patch from KD to
K. (c) Hypothesis 2: In year tL, a source population of size KL at distance dL from the creek is lost (e.g., due to
anthropogenic disturbance). In (b) and (c), year considered for the initial condition is 1882. In (c), curved arrows
indicate direction of flow.

to extinction-recolonization dynamics before the loss
(e.g., a pond). We assumed equal population size for all
patches other than the source population. The difference
in hypothesis 2 compared with hypothesis 1 is that the
past event is localized rather than occurring as a global
event affecting all patches similarly. Under hypothesis
2, global parameters e and c do not change following
source population loss. Within-patch population sizes or
extinction rates also do not change; these depend only
on e and the population size. However, change occurs for
the patch colonization rates—which depend on dispersal
from the source population. The source-population-loss
hypothesis encodes reduced colonization by preventing
population rescue from the source population.

We computed the likelihood of the 2 hypotheses
(see Supporting Information). With �h denoting the
parameters under hypothesis h, under hypothesis 1,
�h = (KD, tD), and, under hypothesis 2, �h = (KL, dL,
tL). With t0 denoting the initial year, the probability

vector of all possible states in t0 is �t0 . Because transition
probabilities after the past event of interest do not depend
on �h, we denote the event date tD or tL by te. Then

L (
�h, zt0 |Y1997

) = �t0

[
te−1∏
t=t0

D
(
qt

)
�t

(
�0,�h

)]

×
[

1996∏
t=te

D
(
qt

)
�t

(
�0

)]
q1997. (2)

Special cases of Eq. 2 corresponding to hypotheses 1
and 2 are in Supporting Information. The null hypothesis
is a special case of hypothesis 1, with KD = 1.

Bayesian Parameter Estimation

Estimation proceeded in 2 steps. First, using the
whole occupancy data set, we inferred the detection
probability p and the unknown parameters shared in
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both hypotheses: the mean dispersal distance 1/α and
the global extinction and colonization parameters, e and
c. The Bayesian estimation yielded posterior distributions
of the parameters given the data set by multiplying the
model likelihood (Eq. 1) by the prior distributions of
model parameters (Supporting Information). We then
used the mode of the joint posterior distribution to
obtain maximum a posteriori estimates of α̃−1, ẽ, and c̃
in each creek. We identified 95% credible intervals (CI)
as the 2.5% and 97.5% quantiles of marginal posterior
distributions. We used the posterior to perform missing
data imputation (details in Supporting Information).

Second, we inferred the unknown parameters distinct
to the 2 hypotheses: population size before infection KD

and infection timing tD (hypothesis 1) and size of the lost
habitat KL, its distance to the creek dL, and loss timing tL
(hypothesis 2). We multiplied the prior distribution of the
parameters by the likelihood under the hypothesis (Eq. 2)
to obtain the posterior distribution of �h (Supporting
Information). Maximum a posteriori parameter estimates
and CI were computed as in the analysis used for both
hypotheses. Our method provided a posterior distribu-
tion for the initial occupancy z1882; however, this value
is not of interest, and we integrated the joint posterior
for the other parameters over all possible values of z1882.

The numerical implementation of the inference
method and an approximate method for the case of
a large number of patches, which we used for San
Francisquito Creek, are in Supporting Information.
We implemented the method in software MIDASPOM
(Supporting Information).

Parametrization

Model parameters and prior distributions are in Table 1
(details in Supporting Information). The mean dispersal
distance 1/α was unknown and assumed equal for
all creeks. The detection probability p and the global
extinction and colonization parameters e and c were also
unknown and differed by creek. The size of the popu-
lations under hypothesis 1 (KD), source population size
under hypothesis 2 (KL), and timing of the hypothetical
increase of in situ die-off (tD) and of the hypothetical
source population loss (tL) were also unknown, and
we assumed events occurred between 1902 and 1982
(Padgett-Flohr & Hopkins 2009; Fofonoff et al. 2017).
Occupancies before tD and tL were unknown, and we
assumed the species was present in 1882 (Hayes &
Jennings 1988; Fellers 2005), so likelihood computation
incorporated at least 20 years before tD and tL. The
position of the hypothetical source population under
hypothesis 2 was unknown. We assumed its distance dL

to the first creek segment was between 200 m and 4 km.
Elements of the vector ɸ1997 represent possible states
z1997, and their values provide prior probabilities of each
state in 1997; we considered a Bernoulli prior.

We assumed all other parameters were known. Patches
corresponded to creek segments, and distances dij be-
tween segment pairs were assumed known from ge-
ographic data. Because the habitat is linear and dis-
tances between midpoints of consecutive segments
were similar (Supporting Information), we assumed
consecutive segments had fixed distance d. The rel-
ative carrying capacities Ki were treated as known
from geographic data, and we assumed proportion-
ality between patch area and population size (Han-
ski & Ovaskainen 2000). As a first approximation, we
assumed K1 = K2 = . . . = KN = 1 (Supporting
Information).

Hypothesis Testing

To quantify fit of hypotheses to data, we performed
Bayesian model selection. For hypotheses i and j, we
computed Bayes factors by numerically integrating under
each hypothesis the product of the model likelihood
and the prior probabilities of parameters, considering all
possible parameter values:

Bi, j = Pr
(
Y1997|Hi

)
Pr

(
Y1997|Hj

)
=

∫�i

∑
zt0

L (
�i, zt0 |Y1997

)
Pr

(
�i

)
Pr

(
zt0

)
d�i

∫� j

∑
zt0

L (
� j , zt0 |Y1997

)
Pr

(
� j

)
Pr

(
zt0

)
d� j

, (3)

where i and j equal 0 under the null hypothesis,
1 under hypothesis 1, and 2 under hypothesis 2,
the likelihood was computed from Eq. 2, and the
prior probabilities were computed from equations in
Supporting Information. We interpreted B as follows
(Jeffreys 1998): |log10(B)|<0.5, little support for either
hypothesis; 0.5<|log10(B)|<1, substantial evidence for
one hypothesis; and 1<|log10(B)|, strong evidence.

Extinction Probability Under Management Scenarios

We predicted future extinction probabilities in each
creek under each of 4 management scenarios: no manage-
ment, mortality reduction, habitat creation, and a com-
bined scenario with both mortality reduction and habitat
creation. In the mortality reduction scenario, local causes
of mortality were controlled within every stream segment
(e.g., non-native predator removal) to increase carrying
capacity K. This scenario is equivalent to reversing the
deleterious effects of the population decline that occur
under hypothesis 1. In the habitat creation scenario, a
population of size KS was restored at distance dS from the
creek. This scenario is equivalent to reversing the delete-
rious effects of the decline that occur with source popula-
tion loss in hypothesis 2. The combined strategy both re-
duced local causes of mortality and created new habitat.
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Table 1. Summary of parameters of the stochastic patch occupancy model.

Hypothesis
and variable Interpretation Rangea Value usedb Reference

Parameters shared across hypothesesb

P probability of detection [0,1] uniform prior none
E global extinction parameter [0,1] uniform prior none
C global colonization parameter [0,1.5] uniform prior none
D distance between consecutive

segments (m)
[164,256] in MCc;

[147,249] in DC;
[152,446] in SFC

200 m Supporting Information

1/α mean annual dispersal distance [50,500] uniform prior Bulger et al. 2003; Lannoo
2005; Fellers & Kleeman
2007

z1997,i occupancy state in patch i in 1997 [0,1] Bernoulli prior none

Hypothesis 1 In situ die-off
tD timing of infection or increased

predation
[1902,1982] uniform prior Padgett-Flohr & Hopkins 2009;

Fofonoff et al. 2017
KD per-patch population size prior to

infection
[0.1,100] log-uniform prior none

Hypothesis 2 Source population loss
tL timing of source population loss [1902,1982] uniform prior Google Historical Imageryd

KL population size of extinct population [0.1,100] log-uniform prior none
dL distance to source population (m) [200,4000] uniform prior none

aRanges correspond to the maximal and minimal values of the prior distributions detailed in Supporting Information.
bValues of parameters with priors are inferred using our Bayesian method, and distributions are detailed in Supporting Information.
cAbbreviations: MC, Matadero Creek; DC, Deer Creek; SFC, San Francisquito Creek.
dUsed to identify years when rapid expansion of human habitation in San Mateo and Santa Clara Counties around MC, DC, and SFC occurred.

To implement these scenarios, we performed Monte
Carlo simulations from the current state p2016 with
patch extinction (Ei) and colonization (Ci) probabilities
computed from e and c values sampled from their joint
posterior distribution (Supporting Information). For each
creek, we recorded the proportion of simulations with all
segments unoccupied (total extinction of the population
within a creek) from 2016 to 2065. This quantity is
the probability that extinction has occurred by a given
year when applying the transition probabilities from the
observed state in 2016 and assuming that occupancy data
are missing in all future years (Supporting Information).

To account for the difficulty of implementing
management plans, for each management scenario, we
chose parameter values that corresponded to reversing
some but not all effects of disturbance events (hypotheses
1 and 2; parameter estimates in Supporting Information).
For the mortality-reduction scenario above, this meant
considering an increased local population size smaller
than the estimated size before the event (K̃ D ≥ 1.45 for
hypothesis 1, from Fig. 4). We thus tested the impact of
a small increase (K = 1 to 1.05) and a larger increase in
population size (K = 1 to 1.25). For the habitat-creation
scenario, this meant considering an increased source
population size smaller than the estimated size before
the event (K̃ L = 66.1 for hypothesis 2, from Supporting
Information). We thus tested the impact of the addition
of a small population (K = 1) either near (200 m) or
farther from (600 m) the creek.

Results

Estimation of Shared Model Parameters

We estimated the value of the mean dispersal distance
at α̃−1 = 175 m (95% CI, 125–425) (Supporting Infor-
mation). In addition, we estimated similar probabilities
of detection in Matadero and Deer Creeks (Fig. 3a,c):
p̃ = 0.77 in Matadero (95% CI, 0.69–0.82) and 0.75 in
Deer (95% CI, 0.64–0.81). Values were lower in San
Francisquito (Fig. 3e), p̃ = 0.69 (95% CI, 0.57–0.77).

The extinction and colonization parameter estimates
differed among creeks (Fig. 3b,d,f). In Matadero
Creek, point estimates of both parameters were
small, ẽ = 0.12 and c̃ = 0.46. The marginal posterior
distributions were narrow, indicating the data set was
informative about extinction and colonization dynamics
(95% CI, 0.06–0.24 for e and 0.22–0.96 for c).

By contrast, point estimates in Deer Creek were large:
ẽ = 0.39 and c̃ = 1.34. The marginal posterior distribu-
tions of e (95% CI, 0.21–0.52) and c were also wider
(95% CI, 0.75–1.87). The choice of either an informative
or an uninformative prior for the missing data in the
initial year (1998) had little effect on point estimates and
credible intervals (Supporting Information).

In San Francisquito Creek, the extinction point
estimate was the largest among all creeks, ẽ = 0.47,
and the colonization estimate was between those of
Matadero and Deer Creeks, c̃ = 0.81. The marginal
posterior distributions of e and c were both moderately
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(a) (b)

(d)(c)

(e) (f)

Figure 3. In Matadero, Deer, and
San Francisquito Creeks, Bayesian
parameter estimation of (a, c, e)
detection probability parameter and
(b, d, f) joint distribution of
extinction and colonization
parameters. In (a, c, e), gray is prior
distribution (Supporting
Information), red is posterior
distribution given observed data
(from Eq. 1 for Matadero and Deer
Creeks and from Supporting
Information for San Francisquito
Creek), and red dashed line is
maximum a posteriori estimate. In
(b, d, f), red is joint posterior
distribution (posterior density scale
0–22) and red dashed lines are
maximum a posteriori estimates (ẽ,
c̃, respectively, extinction and
colonization). An informative prior
(Bernoulli, Supporting Information)
was used for the missing data in the
initial state of Deer Creek.
Supporting Information contains
the posterior distribution under an
uninformative prior.

large (95% CI, 0.33–0.62 for e, 0.43–1.30 for c).
Supporting Information provides an assessment of the
accuracy of the estimation in Fig. 3.

Hypothesis Testing

The Bayes factor strongly supported the in situ die-off
hypothesis H1 in Deer Creek (log10 B0,1 = −0.944, log10

B0,2 = −0.387, log10 B1,2 = 0.558) and San Francisquito
Creek (log10 B0,1 = −44.616, log10 B0,2 = 0.087, log10

B1,2 = 44.680) (Supporting Information). In Matadero
Creek, it did not reject the null hypothesis H1 (log10

B0,1 = 0.058, log10 B0,2 = −0.011, log10 B1,2 = −0.069).
Assessment of the accuracy of the hypothesis testing is
in Supporting Information.

Parameter Estimation

For Deer Creek, the posterior probability of KD plateaued
above a threshold K̃ D of 1.45. For San Francisquito Creek,
it was highest for K ≥ K̃ D = 95.5 (Fig. 4). Current de-
clines in Deer and San Francisquito Creeks, respectively,
could therefore be explained by decreases of at least 31%
and 98% of the population size in each segment due to
increased in situ die-off. The posterior distribution of the
event timing was relatively flat for Deer Creek, indicating
the data contained little information about this quantity
(Supporting Information), and was largest in 1982 for
San Francisquito Creek (Supporting Information).

For Matadero Creek, because H0 was not rejected,
parameter estimation under H1 was not relevant
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(a) (b)

Figure 4. Bayesian estimation of model parameters under the hypothesis of in situ die-off of California red-legged
frogs (H1) in (a) Deer Creek and (b) San Francisquito Creek (KD, population size before the event that increases
in situ die-off; gray, prior distribution of KD [Supporting Information]; red, posterior conditional on the observed
data [Supporting Information]; red dashed lines, mode K̃ D of the posterior distribution used as a point estimate
under hypothesis H1). Model parameters are defined in Table 1. Only parameter estimates under the hypotheses
with the greatest support (based on the Bayes factor, see Supporting Information) are shown. Parameter estimates
under the (less strongly supported) source population loss hypothesis (H2) and under hypothesis H1 for Matadero
Creek are in Supporting Information.

(Supporting Information). Parameter estimation under
H2 in the creeks is in Supporting Information.

Extinction Probability Under Management Scenarios

The Deer Creek population was more likely to go extinct
than the Matadero Creek population (8-fold higher
extinction probability by 2030, black line in Fig. 5a–b).
The San Francisquito Creek population was probably
already extirpated by 2008 (Supporting Information).

All management interventions decreased the ex-
tinction probability in Deer and Matadero Creeks.
In San Francisquito Creek, only source-population
creation restored the population and lowered the future
extinction probability below 1. In the 3 creeks, source-
population creation 200 m from the creek generated the
lowest extinction probability.

Discussion

We developed a method to use temporal patch
occupancy data to infer extinction and colonization rates
and to test hypotheses under a Bayesian framework and
applied the method to 3 populations of R. draytonii.
With the method, we were able to test for changes in pa-
rameter values that occurred before the first occupancy
survey. It also enabled tests of hypotheses of past distur-
bance and estimates of future population trajectories.

A key innovation is that our method detects
disturbances that predate data collection. Many spatially
implicit SPOM methods (Royle & Dorazio 2008; Bailey
et al. 2014) use a Bayesian framework, allow arbitrary

missing data, and detect temporal parameter changes;
however, they neither detect changes before the first
survey nor test explicit hypotheses concerning such
changes. Although the spatially explicit SPOMSIM (Moila-
nen 2004) and O’Hara et al.’s (2002) method permit years
of missing data, they do not allow temporal parameter
changes or missing data years before the first survey. The
spatially explicit Bayesian method from ter Braak and
Etienne (2003) allows years of missing data prior to data
collection by setting a prior for the initial occupancy
state, but it does not implement parameter changes prior
to data collection. We extended their framework by
using the whole data set to estimate current parameter
values and the first year of data to estimate past values.

Past Influences on California Red-Legged Frogs

Our method identified local variation in R. draytonii pop-
ulations. Despite the proximity of 3 creeks, we found dif-
ferences in extinction and colonization (Fig. 3). Local vari-
ation in parameter estimates might reflect differences in
community structure, habitat quality, or disease dynam-
ics. For example, non-native predators are most abundant
in San Francisquito Creek (A.E.L. and E.M.C. data).

We estimated the mean dispersal distance of the
species at 175 m (Supporting Information). This
estimate accords with movement studies in Point Reyes,
California, which report a median of 185 m (Fellers
& Kleeman 2007). However, this value may not be
appropriate here because Point Reyes frogs breed in
freshwater ponds rather than creeks.

We compared 2 past population-decline scenarios: in
situ die-off and source-population loss. An in situ die-off
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(a) (b) (c)

Figure 5. Cumulative probability of complete within-creek extinction of California red-legged frogs in 50 years
computed using the maximum a posteriori estimates of extinction and colonization parameters: (a) Matadero,
(b) Deer, and (c) San Francisquito Creeks. Maximum a posteriori extinction and colonization parameters are in
Fig. 3.

starting between the 1960s and the early 1980s was
the most likely explanation for decline in Deer and San
Francisquito Creeks (Supporting Information). Several
factors could contribute to in situ die-off. Unfortunately,
our model does not distinguish the effects of disease
and introduced predators, phenomena that could have
had similar impacts on in situ die-off. Infection by Bd
(Batrachochytrium dendrobatidis), a fungal pathogen,
is widespread in amphibians in California (Padgett-Flohr
& Hopkins 2009) and worldwide (Fisher et al. 2012).
Infections with Bd were observed in 1961 on the Stanford
campus (Padgett-Flohr & Hopkins 2009), but might have
begun in California as early as the late 1800s (Huss et al.
2013). Bullfrogs (Lithobates catesbeianus), a non-native
predator of R. draytonii, were introduced into California
around 1900 (Stebbins & McGinnis 2012), and signal
crayfish (Pacifastacus leniusculus) were introduced
in San Francisco watersheds as early as 1898 (Fofonoff
et al. 2017). Non-native predators present in Stanford
creeks, including mosquitofish (Gambusia affinis)
(Lawler et al. 1999), bullfrogs (Moyle 1973), and signal
crayfish (Allan and Tennant 2000), have contributed to
similar R. draytonii declines elsewhere in California. The
trajectory of population decline suggests extinction debt,
where local extinction occurs after substantial delay
following habitat degradation (Kuussaari et al. 2009).

Predicted Dynamics and Conservation

Our method predicted future persistence probabilities
for the R. draytonii populations. Interestingly, despite

similar ratios of extinction and colonization rates
in Matadero and Deer Creeks, stochastic dynamics
produced a greater 50-year persistence probability in
Matadero Creek (Fig. 5). In Deer Creek, large estimated
extinction and colonization rates magnified variability
in occupancy. Thus, successive years of substantial
occupancy reduction could lead to chance extinction.
In 1 year, only 2 segments were occupied in Deer
Creek. With extinction parameter e = 0.39, because
extinction precedes colonization, the probability of
complete extinction in the next year depended only on
the extinction rate (0.392 = 0.1521). In Matadero Creek,
however, smaller extinction and colonization parameters
and consequent lower occupancy variation made
successive years of substantial occupancy reduction
unlikely. For example, in 3 recent instances, 3 segments
were occupied (e = 0.12), and the extinction probability
was a relatively safe 0.123 = 0.001728. Sensitivity to years
with substantial occupancy reduction raises concerns
for persistence under unpredictable climate change:
a warming trend in California, where precipitation
deficits and increased incidence of extreme drought
(Diffenbaugh et al. 2015) have occurred, potentially
threatens aquatic species (Meyer et al. 1999).

Our results suggest a preferred approach to main-
tenance of R. draytonii populations, predicting that
establishment of a source population <200 m from
Matadero and Deer Creeks would reduce extinction
risk (Fig. 5). The greatest threat is stochasticity of
extinction and colonization; adding a source would
facilitate survival by population rescue. The Stanford
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Conservation Program has pursued this management
approach in a similar project, creating ponds that support
California tiger salamander (Ambystoma californiense)
reproduction. Recovery results have also been seen in
other similar projects (Petranka et al. 2007; Rannap et al.
2009). Perhaps surprisingly, among possible conserva-
tion actions, the preferred action (adding a source) did
not most directly reverse the most likely past disturbance
(increased in situ die-off). Our results suggest prioritizing
management actions for Deer Creek is likely to provide
the most risk reduction for a given level of effort.

Extensions

Incorporating life-stage or demographic data by modeling
local population sizes as temporally varying rather than
constant could enable modeling of disturbances
affecting specific life stages. It may also enable modeling
of phenological shifts in life-history dynamics, such
as differing dispersal by life stage. However, when
data on population size are unavailable, as in our frog
example, models integrating local population dynamics
are not applicable (Sutherland et al. 2014). Another
extension would allow patches to have different carrying
capacities Ki, if estimates of these quantities are known.
This change would simply rescale expressions for
extinction and colonization rates E and C.

Our model permits nonlinear habitats and unequal
patch sizes. Computations require only pairwise
distances between populations and could therefore be
applied to many geometries. Scenarios beyond increased
in situ die-off and source population loss can be
examined. For example, reductions affecting only certain
patches would reduce some population sizes Ki, cyclic
droughts would periodically push certain population size
values Ki to 0, and so on. A covariate x that influences
extinction or colonization can be accommodated by mak-
ing the associated parameters in patch i at time t, ei,t and
ci,t, functions of xi,t, for example with a logit link ei,t(xi,t)
= [exp(a0+a1xi,t)]/[1+ exp(a0+a1xi,t)]. Posterior dis-
tributions of parameters a0 and a1 can then be inferred.

In summary, our method enables assessments of
influences on population persistence of complex
scenarios, including local (e.g., adding new patches)
or global actions (e.g., reducing predation or disease).
It can both assess precise scenarios (e.g., specifying
new habitat locations) and perform exploratory analyses
(e.g., predictions across a range of possible locations). In
our system, it showed that the best management action
for reversing population decline was not the action that
most directly reversed the original cause of decline. This
observation is particularly important for management of
species for which threats are hard to address and suggests
that alternative strategies can improve persistence. We
encourage use of our framework for advancement of
ecological theory and management.
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