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ABSTRACT Healthy development and function of essentially all physiological sys-
tems and organs, including the brain, require exposure to the microbiota of our
mothers and of the natural environment, especially in early life. We also know that
some infections, if we survive them, modulate the immune system in relevant ways.
If we study the evolution of the immune and metabolic systems, we can understand
how these requirements developed and the nature of the organisms that we need
to encounter. We can then begin to identify the mechanisms of the beneficial effects
of these exposures. Against this evolutionary background, we can analyze the ways
in which the modern urban lifestyle, particularly for individuals experiencing low
socioeconomic status (SES), results in deficient or distorted microbial exposures and
microbiomes. Thus, an evolutionary approach facilitates the identification of practical
solutions to the growing scandal of health disparities linked to inequality.
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It is well known that life expectancy and many health problems discussed below are
closely linked to socioeconomic factors (1–3). Interestingly, many aspects of life for

individuals experiencing low socioeconomic status (SES) lead to diminished exposures
to microorganisms that play important roles in the development and function of
numerous organs, including the crucial establishment of the regulatory pathways of
the immune system, and the establishment of a biodiverse symbiotic microbiota. In
addition to SES-linked differences in microbial exposures, other SES-linked factors,
such as pollution, diet, exposure to stress, smoking, and vaccine hesitancy, cause
changes to the eventual composition of the microbiome. Thus, at least some of the
health deficit in low-SES populations is likely to be mediated via changes in microbial
exposures and microbiomes (4). There is some direct epidemiological evidence for links
between SES and the gut microbiome. Fecal samples were collected from American
subjects during sigmoidoscopy, while the subjects’ addresses were used to generate a
composite indicator of SES, based on income, education, employment, and home
value. A positive correlation was found between SES and the alpha-diversity of the co-
lonic microbiome (5). Recent studies have concentrated on children. A study of the gut
microbiomes of children with a mean age of 4.5 years found that the bacterial compo-
sition was significantly influenced by the SES of parents as determined by educational
level (6). Similarly, a study of fecal samples from a subset (n = 1,672) of a large cohort
of British twins for whom SES data were available (7), and another study of 139 Arab
children of various SESs in Israel (8), found significant relationships between SES and
fecal 16S rRNA microbiome composition. Examination of the data from these studies in
terms of bacterial taxonomy is unhelpful, perhaps because dietary factors such as meat
eating correlate differently with SES in different communities. Nevertheless, the data
indicate cumulatively that SES modulates the microbiota in adults and importantly in
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children. This paper uses an evolutionary approach to outline some of the ways in
which low SES interrupts and/or distorts microbial exposures.

EVOLUTION OF RELATIONSHIP TO MICROBES

Eukaryotic life evolved about 1.5 billion years ago when an organism resembling an
alphaproteobacterium started to live inside another organism (9). This suggests that
humans, like all eukaryotic life forms, evolved from a blend of 2 or more microbes.
Moreover, about 65% of human genes appear to have originated in bacteria, archaea,
and eukaryotic microbes (10), including, for example, the genes enabling synthesis of
neurotransmitters (11) and the proteins that mediate pyroptosis (12).

This early microbial origin of the ancestral forms of many genes is a fundamentally
crucial point in another context that is important for this review. If early versions of so
many genes evolved long ago in microbes, then essentially all life forms are con-
structed from closely related building blocks. This may explain why exposure to a very
broad diversity of microorganisms, even if entirely harmless, can prime memory T cells
that recognize previously unencountered pathogens such as HIV (13) or the COVID-19
virus (14).

Inevitable exposures to microorganisms. So, we evolved from microorganisms,
but we also evolved with them. Expressed in terms of the carbon they contain, bacteria
are second only to plants in terms of total biomass on our planet, and the biomass of
bacteria and archaea is about 1,200� greater than the total biomass of all humans
(15). So, massive exposure to microorganisms throughout evolution was inevitable,
and evolution tends to convert the inevitable into a necessity. Thus, a complex symbi-
otic microbiota is a necessity for vertebrates, though it is possible that some inverte-
brates with short life spans have not evolved this requirement (16).

The complex microbiota of vertebrates is necessary, both in order to populate the
symbiotic microbiotas, notably in the gut, and in order to provide signals and data
described below (17–20). The resident microbiota also provides metabolites with pro-
found effects on our physiology and on the development of most, perhaps all, organs
(21). It has been estimated that 30% or more of the small molecules in our peripheral
blood are products of microbial metabolism (22).

Early in evolution, organisms that entered the gut were separated from the host by
a chitin barrier (23). This structure persists in annelids and arthropods, but in mammals
the chitin layer is lost and several mucus layers nourish a much more complex assem-
bly of microorganisms, many of which adhere to the mucus and modulate the function
of the underlying cells (23). This parallels the situation in plants where organisms are
attracted by molecules secreted from the roots. These molecules nourish the organ-
isms which take part in symbiotic two-way signaling and exchange of nutrients (24).
Moreover, in addition to the well-known physiological roles of microbial products such
as short-chain fatty acids (SCFA), bile salt metabolites, and metabolites of tryptophan
and tyrosine, there is now evidence that small noncoding RNAs present in exosomes
(membrane-bound extracellular vesicles [EV]) derived from the host gut epithelium
and similar small noncoding RNAs present in membrane vesicles (MVs) from Gram-pos-
itive bacteria or outer membrane vesicles (OMVs) from Gram-negative bacteria may be
involved in 2-way mutual gene regulation (25, 26; reviewed in reference 27).

EVOLUTION OF THE IMMUNE SYSTEM

This evolutionary background helps us to understand the evolution of the immune
system. The role of symbiosis in the evolution of the immune system has been exten-
sively covered elsewhere (28–31) and is reviewed very briefly here. The development
of the complex vertebrate microbiota necessitated an upgrading of the immune sys-
tem that would enable it to “manage” the very large and diverse community of organ-
isms in the gut while simultaneously protecting the host from pathogens. The existing
innate immune system recognized microorganisms by using germ line-encoded pat-
tern recognition receptors (PRR). The repertoire of these receptors is small and cannot
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be expanded rapidly enough to cope with fast-evolving microbes. Moreover, a large
expansion of PRR genes would constitute a problematical increase in genetic complex-
ity (32). The adaptive immune system evolved to solve these problems. It creates a
large number of lymphocytes by somatic mutation of the receptors of B cells and T
cells, so that each new individual generates a repertoire of novel lymphocyte clones.
Some of these lymphocyte clones will be autoreactive while others will recognize noth-
ing at all, and so the clones that express them must be eliminated. Then, microbial
exposures are absolutely necessary for further education and selection of the clones to
be retained (33, 34). For example, some clones will recognize organisms that need to
be tolerated (such as most of the gut microbiota derived from the mother) and expo-
sure to the gut microbiota can cause them to become regulatory cells. Microbial
metabolites and components help to expand these cell populations (Fig. 1) (35, 36).
Similarly, exposure to a very diverse range of microorganisms from the environment
can prime memory T cells that by chance recognize even novel organisms that the
individual has never previously encountered, such as HIV or the pathogen causing
COVID-19 (13, 14). Some of the types of organisms and information that microbial
exposures supply to the immune system are listed in Fig. 1 and discussed further in
sections below.

EVOLUTION AND NECESSARY MICROBIAL EXPOSURES

Humans evolved in small hunter-gatherer groups close to streams, rivers, lakes, or
the sea. Exposure to the microbiota of family, animals, and the environment was there-
fore inevitable, while early humans were not exposed to anything like the microbiota
of the modern home. Similarly, exposure to infections was mostly limited to organisms
that could persist in small groups and would have excluded the “crowd infections”

FIG 1 A simple classification of the variety of inputs provided by microbes that influence organ
development, physiology, metabolism, and the immune system. References are in the main text. LPS,
lipopolysaccharide.
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discussed below (37). SES-associated factors that limit necessary microbial exposures
are summarized in Fig. 2 and discussed below.

Mother/family. Mother and siblings are major sources of the microorganisms that
establish the infant’s microbiome and provide signals driving development of the
infant’s immune and metabolic systems (38). The major lifestyle factors that reduce
this transfer and correlate with increased immunoregulatory disorders are caesarean
deliveries, lack of breastfeeding, and lack of mother-baby intimacy (38–40), together
with antibiotic use and poor diet, which are discussed in detail below. A recent very
large epidemiological study revealed that caesarean section was associated with an
increased risk of asthma, laryngitis, gastroenteritis, ulcerative colitis, celiac disease,
lower respiratory tract infection, and juvenile idiopathic arthritis (41), all of which are
linked to disturbed mucosal immunity.

Lack of breastfeeding and caesarean deliveries can be associated with low SES in
high-income contexts, but there is likely to be variation in different cultures. A random
sample of 10,519 women delivering live births in California between 1999 and 2001
revealed that lack of breastfeeding was strongly associated with low SES and particu-
larly with low educational level (42). However, low SES may correlate with increased
breastfeeding in developing countries in South America or Africa (43, 44).

Similarly, caesarean deliveries are not available everywhere, but in France, a high-
income country, where they are readily available, women of low SES are more likely to
have caesarean deliveries and less likely to participate in prenatal education, so per-
haps they are less aware of the disadvantages (45).

Maternal diet, obesity, gestational weight gain, and gestational diabetes mellitus
are additional factors that modulate the nature of the microbiota that is transferred to

FIG 2 Factors associated with low SES that have profound effects on microbial exposures and on the
composition of the microbiota and the consequent microbiota-mediated effects on health. References
are in the main text.
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the fetus and neonate. This topic has been extensively reviewed elsewhere (46, 47),
and overweight and other aspects of diet are discussed below.

Microbiota of the home. Much of the literature on the badly named “hygiene hy-
pothesis” focuses on the microbiota of the home, but an evolutionary approach tells
us that the microbiota of the modern home, constructed with synthetic and biocide-
treated materials, does not resemble the microbiota to which our ancestors were
exposed (48, 49). Caves, shelters, and premodern houses built with untreated natural
materials such as timber and thatch and rendered with straw, mud, dung, and clay
would have housed a microbiota similar to that of the natural environment, even
when damp and deteriorating. In sharp contrast, modern houses, especially if remote
from the natural environment, develop an unusual microbiota (50). This microbiota
can become toxic if the modern home is damp and deteriorating, as homes of low-SES
residents frequently are, because it can include bacteria and fungi that produce sec-
ondary metabolites toxic to humans, resulting in “sick building syndrome” (51–54) and
a greater risk that children will be hospitalized for respiratory infections (55). From an
evolutionary point of view, it is therefore unlikely that the unnatural microbiota of the
modern home is a necessary exposure for infants, except to the extent that it also con-
tains some microbiota from mother, family, and nature.

Th2 adjuvanticity of cleaning agents. Why then do some studies find epidemio-
logical links between cleaning the home and allergic disorders (56), whereas other
extremely detailed studies do not (57)? The probable explanation for this conflict has
emerged recently and again points to the major role of SES. It is well established that
cleaning personnel exposed every working day to agents such as detergents and qua-
ternary ammonium compounds, often used as sprays, are at risk of developing asthma
(58). Infants from low-SES homes are much more likely to be exposed to aerosols of
these cleaning materials than infants from large, wealthy homes where cleaning is
undertaken by paid employees rather than by a mother who is simultaneously caring
for small children. It is now understood that intake of toxic materials via the airways or
gut can cause local cell death (59) and increased epithelial permeability (60). Such
“danger signals” activate a Th2 response to whatever antigens happen to be present at
the time, and these will often be common aeroallergens or foods (59, 60). Then, the
next time this allergen is taken in, an allergic response occurs, because the allergen is
being treated as a proxy for the toxic material. Laboratory studies of adjuvants that
drive Th2 responses have demonstrated the probable mechanism of this Th2 adjuvant
effect of domestic cleaning agents (61, 62), and this is discussed and illustrated else-
where (63).

Microbiota of the natural environment. On the other hand, as an evolutionary
approach would suggest, the microbiota of the home does become beneficial when it
resembles that of the natural environment, at least where asthma and other disorders
associated with faulty immunoregulation are concerned (64–67). Much of the best evi-
dence has come from studies of farming environments (17), but a recent well-controlled
intervention experiment has demonstrated that deliberately exposing children to biodi-
versity from the natural environment in their school playgrounds results in changed
microbiome and increased peripheral blood biomarkers of immunoregulation (68).

The direct evidence for the protective effect of exposure to the natural environment
is weaker for the other chronic inflammatory disorders, but there is suggestive evi-
dence for inflammatory bowel diseases (69) and for autoimmune diseases (70). It is
worth noting that autoantibodies, including those that neutralize type I interferons
(IFNs), are associated with breakthrough COVID-19 infections, mortality, and distinct
patterns of postacute COVID-19 syndrome (PACS; also known as “long COVID”) (71).
PACS is accompanied by unusual composition of the microbiota (72). Moreover, in
some contexts COVID-19 mortality is associated with low SES (73). So, perhaps SES-
related defects in the microbiota are linked to susceptibility to COVID-19.

There is also strong evidence that exposure to the natural environment protects
from metabolic syndrome, obesity, and cardiovascular disease, which are health prob-
lems that plague modern humans, particularly those of low SES (74, 75).
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Psychiatric disorders have also increased in rich urban societies. A study of approxi-
mately 1 million Danish citizens found that the risk of a wide variety of mental illnesses
in later life was 55% higher in those most deprived of green space in childhood, com-
pared to those who had lived close to green space during childhood (76), and similar
results for depression and anxiety were reported in a large study in the Netherlands
(77). It is not certain that a similar link between lack of exposure to green space in
childhood and subsequent psychiatric disease would be found in developing coun-
tries. Some of the effect seen in the Danish study was associated with low SES (76).
Clearly, there are many possible explanations for the relationship seen in wealthy
countries, but evidence suggesting roles for the microbiota and SES in the develop-
ment, function, and pathology of the brain is presented below.

(i) Spores from the natural environment. Spores of gut-adapted strains are an im-
portant input from the environment. About 60% of the bacterial genera in the gut
make spores, but many of these are strictly anaerobic (78, 79). Therefore, direct trans-
mission from mother via the air is limited, and transmission as spores via feces and the
natural environment facilitates necessary transfer from one individual to another (78,
79). Spore-forming organisms may be among the components of the child’s microbiota
that accumulate slowly throughout infancy and are still accumulating at 5 years of age
(80). They are important because they drive formation of SCFA (81) and proliferation of
regulatory T cells (Treg) (35, 70, 82).

(ii) Bacteriophages from the natural environment. There are about 109 phages/g
of soil (83) and in drinking water, so vast numbers of bacteriophages are taken in every
day and form ;90% of the gut virome (84). These phages can modulate the metabo-
lism, antibiotic resistance, and turnover of gut bacteria and archaea (85), so they must
influence the composition of the microbiota. Moreover, it is thought that every day
about 30 billion phages from the gut enter human tissues and circulation (85), and
since they can evoke antibody responses, there may be complex interactions between
the host immune system, phages, and gut microbial turnover. It is interesting that
Clostridioides difficile infection can be treated using 0.2-mm-filtered, bacterium-free
fecal material (86), raising the possibility that phages were involved in the treatment.

(iii) Horizontal gene transfer from environmental microbial DNA. A large pro-
portion of the genes found in the human microbiome seem to have been acquired
from organisms in the environment via horizontal gene transfer (87–90). This empha-
sizes another crucial role of environmental microbiota as a source of genetic diversity,
allowing the human microbiota to adapt to a changing diet (88, 91) or allowing envi-
ronmental strains to adapt to the human gut (92).

Infections and immunoregulation. Up to this point, this paper has considered ex-
posure of mostly harmless microorganisms from mother, home, and environment. But
what about infections?

(i) Are the “crowd infections” immunoregulatory? The original “hygiene hypoth-
esis” suggested that protection from hay fever by contact with older siblings might be
due to exposure to the common infections of childhood (93). However, epidemiologi-
cal studies rapidly demonstrated that these infections do not provide such protection
and more often exacerbate allergic conditions of the respiratory system (94, 95) and of-
ten actually trigger them (96). Thus, the common infections of childhood do not seem
to prime the essential immunoregulatory negative feedback mechanisms that are fail-
ing in the chronic inflammatory disorders such as allergies and autoimmunity.
Moreover, these infections are mostly “crowd infections” that did not exist in human
populations until large human communities evolved so it is unlikely that humans are
in a state of evolved dependence on them. (Measles, for example, might not have
emerged until the 11th or 12th century (97), or perhaps a few hundred years earlier
(98)). Crowd infections are therefore more relevant to nonspecific innate immune sys-
tem activation that to immunoregulation, a role now at least partly replaced by the
nonspecific effects of vaccines discussed below.

(ii) Immunoregulatory “old infections.” In contrast to the “crowd infections,” sev-
eral “old infections” that establish lifelong carrier states or subclinical infections were
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able to survive within small hunter-gatherer groups and were present in human popu-
lations before the migrations out of Africa (37) and coevolved and spread over the
globe with human populations (37, 99, 100).

(a) Helicobacter pylori. Helicobacter pylori is a persistent “old infection” that might sup-
press childhood asthma (101). It was associated with low SES in the United Kingdom in
the 1990s (102), and it is still associated with low SES in Cameroon (103). A recent study
reported that in humans, in addition to its local effects in the stomach, H. pylori infection
caused increased relative abundance of a variety of bacterial species and a notable
increase in Candida glabrata and several unclassified fungi. The authors suggest that
these changes might influence mucosal barrier integrity in the lower intestine and con-
tribute to the risk of colorectal carcinoma (104). In mouse models H. pylori causes expan-
sion of Treg subsets expressing CXCR3 or RORgt and demethylation of the FOXP3 locus
(105). H. pylori has been carried by humans throughout much of our evolutionary past,
but antibiotic use has caused H. pylori seroprevalence to fall below 10% in native-born
citizens of Western urbanized countries (101). In modern societies, any possible immunor-
egulatory benefit of Treg induction by H. pylori in the context of asthma is now overshad-
owed by the multiple pathologies associated with it.

(b) Helminths. Helminth infections, because they persist for a lifetime, tend to down-
regulate the immune system in order to avoid immunopathology that would endanger
the host. Some authors believe that lack of helminths is contributing to the rise in
immunoregulatory disorders and that we need to reintroduce helminth infections into
contemporary citizens (106). However, the multitude of helminth species, the diverse
tissue sites involved, the diverse range of immunoregulatory mechanisms employed
(107), and the greatly varying prevalence of infection (108) make it unlikely that we are
in a state of evolved dependence on helminths (109). I have stated elsewhere that evo-
lution turns the inevitable into a necessity (31). However, since there was nothing inevi-
table or constant about helminth infection during human evolution, it is unlikely that
there is a germ line-encoded evolved necessity for helminth infection. It is more probable
that if, and only if, a mother and her infant are infected, then there is epigenetic modifica-
tion of the developing child’s immune system tailored to the helminths that are present.
Interestingly, clinical trials of the administration of helminths to treat multiple sclerosis
(MS) have worked convincingly in Argentina, where the subjects would have been
infected with the same endemic helminths in childhood (110). But such trials consistently
fail in developed countries where helminths have not been endemic for generations, so
the population does not have an epigenetically encoded requirement for helminth-medi-
ated immunoregulation (111, 112). This does not mean that certain individuals suffering
from a specific chronic inflammatory disorder for a specific immunoregulatory reason
might not benefit from treatment with a helminth that targets that particular mechanism,
but without more research on mechanisms, rational selection of the appropriate combi-
nation of individual, disorder, and helminth is not possible.

Infections and immunostimulation. Some infections are less relevant to anti-inflam-
matory and immunoregulatory functions discussed above in relation to chronic inflam-
matory disorders but instead confer nonspecific health benefits by nonspecifically activat-
ing the immune system. This has been known since 1936 when Pullinger showed that
Mycobacterium tuberculosis conferred resistance to Brucella abortus and suggested that
the phenomenon was attributable to activated monocytes (113). Subsequent workers
amplified this concept by showing cross-protection between unrelated parasite species,
between bacteria and parasites, or between Listeria monocytogenes and influenza virus
(114). Sometimes the effect occurs intermittently throughout life when a persistent infec-
tion reactivates. Three examples are provided.

(i) Herpesviruses.Most adults are latently infected with one or more of the five com-
monest species (herpes simplex virus 1 [HSV-1], HSV-2, varicella-zoster virus, Epstein-Barr
virus, and cytomegalovirus [CMV]). Periodic reactivation can modulate the immune sys-
tem. For example, mice latently infected with herpesviruses were found to be resistant to
infection with Listeria monocytogenes and Yersinia pestis (115). A recent study in the
United States found higher rates of seropositivity for HSV-1, HSV-2, and CMV in people of
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lower SES (116), but it is not clear that the putative immunostimulatory effects overcome
the other disadvantages of these infections or of low SES.

(ii) Tuberculosis. As observed by Pullinger in 1936 (113), M. tuberculosis exerts non-
specific immunostimulatory effects. Latent tuberculosis infection (LTBI) is often associ-
ated with low SES, particularly in developing countries. The latent organisms have
been demonstrated by in situ PCR in multiple tissues (117). The crucial point is that
treating LTBI in individuals who are not HIV infected, despite reducing the incidence of
clinical tuberculosis, fails to provide a survival benefit because of increased mortality
from other causes (118). This suggests that in this case the putative immunostimula-
tory effects are significant and beneficial, but interestingly, the benefit can be repli-
cated by Mycobacterium bovis BCG vaccine (see below).

(iii) Vaccines. Research since the 1980s, initially in Africa but recently confirmed in
high-income countries such as Italy, Denmark, the Netherlands, and the United States,
has demonstrated that several live vaccines including measles, polio, and BCG decrease
childhood mortality more than can be explained by protection from the targeted infec-
tion, apparently by enhancing resistance to unrelated infections (119–121). Similarly, a
recent clinical trial demonstrated that vaccinating elderly subjects with BCG can
decrease their risk of virus infections (122). This suggests some nonspecific activation
of the innate immune system, and it has emerged that these nonspecific vaccine
effects operate via NK cells and monocytes (123, 124), as the much earlier work of
Pullinger and of Gregorio et al. had suggested (113, 114). This activation of innate
immune cells is attributable to epigenetic modification of hematopoietic stem cells
(123, 124). Clearly, therefore, vaccine refusal or hesitancy, which is associated with low
SES (125, 126), is not only depriving people of protection from the targeted infection
but also depriving them of a more general upregulation of the innate immune system.

SES-LINKED FACTORS THAT FURTHER DISTORT THE MICROBIOTA

In addition to SES-linked variation in microbial exposures outlined above, numerous
lifestyle and environmental factors influence the composition of the microbiota, either
directly by affecting the microorganisms or indirectly via effects on physiological sys-
tems. Some of the most obvious factors are listed in Fig. 2 and described below.

Pollution and SES. A recent study of exposure to PM2.5, nitrogen dioxide (NO2),
and ozone (O3) concluded that even at levels officially regarded as safe, exposure to
these pollutants for long periods increases mortality (127), and clearly such exposures
are greater for citizens of low SES. Moreover, Danish children exposed to high levels of
PM2.5 were more likely to develop asthma and persistent wheezing, the risk being
increased further if the mother smoked and the parents were of low SES (128). How
many of these SES-related effects are mediated by changes to the microbiota?

Air pollutants may act directly on gut epithelial cells to drive intestinal inflammation
and changes to the microbiota (129). A recent study of young Californian adults indi-
cated that exposure to air pollution, notably ozone (O3), had a large effect on the com-
position of the gut microbiome, with lower Shannon diversity index and changes in
multiple gene pathways (130).

Metabolic dysfunction and type 2 diabetes are increased in populations exposed to
air pollution from traffic (131). However, these metabolic disturbances are also associ-
ated with abnormal gut microbiomes (132), suggesting that pollution might damage
health at least partly via the microbiota.

Pollutants might also act indirectly by changing the microbiota of the natural envi-
ronment. Polycyclic aromatic hydrocarbons (PAH; derived from coal, crude oil, vehicle
exhaust, cigarette and wood smoke, and fumes from asphalt roads) accumulate in
urban soils where concentrations can be 10 to 100 times higher than in unpolluted ru-
ral soils (133). Another example is the use of unpurified reclaimed wastewater to irri-
gate parks in China. The levels of antibiotics in this water were sufficient to modify the
soil microbiome (134).

In addition to changing the microbial environment, many pollutant chemicals, par-
ticularly pesticides to which workers of low SES are more exposed, have direct
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antibacterial properties and can be detected in the blood or urine of most people (135,
136). For example, glyphosate, which was initially patented as an antimicrobial (137),
was detected in 93% of a cohort of pregnant women in the United States (138), though
it is unclear whether the levels found would alter the microbiota or exert other harmful
effects.

Smoking and SES. Smoking, which can be regarded as voluntary exposure to air
pollution, is increasingly associated with low education and low SES and with a remark-
able range of illnesses including cardiovascular disease, periodontitis, chronic obstruc-
tive pulmonary diseases (COPD), Crohn’s disease, and various cancers (139). Low SES is
also associated with a lower brain volume and increased risk of dementia. A study
using magnetic resonance imaging identified smoking as the major causal factor (140).
The fact that smoking is also associated with autoimmune disorders such as MS and
rheumatoid arthritis suggests compromised immunoregulation. Are some of these
effects mediated via changes in the microbiota? Smoking causes clear changes in the
oral, nasopharyngeal, airway, and gut microbiomes (139). Some of these smoking-
induced changes in the microbiome could be direct effects on microorganisms of
chemicals in smoke, but smoking also modulates both the innate and adaptive
immune systems (141), partly via epigenetic modifications (142). I will not review this
topic here.

Diet and SES. Numerous dietary factors are associated with low SES in modern
urban contexts (143–145). Three of the most obvious are outlined here. Artificial sweet-
eners change the composition of the murine gut microbiome in vitro, and this modi-
fied microbiota causes glucose intolerance following transfer into germfree mice (146).
In a human study, some volunteers developed altered microbiomes after consuming
saccharin and also developed an elevated glycemic response. Germfree mice that
received transplants of microbiota from these individuals similarly developed altered
glycemic responses (146).

Consumption of fructose has increased enormously during the last century, particu-
larly in fruit juices. Excessive consumption may be associated with low SES (147) and is
linked to nonalcoholic fatty liver disease, obesity, and diabetes (148). The microbiota of
the small intestine metabolizes fructose and so blocks uptake (148), but if too much
fructose is consumed, it enters the colon and distorts the microbiome (149). In rat
models the resulting metabolic disturbances can be corrected by fecal transplantation
or antibiotics (150).

Low vitamin D levels are associated with systemic autoimmune conditions, and vita-
min D levels correlate with SES (151). Importantly, vitamin D has effects on the immune
system, including promotion of Treg, and modifies the gut microbiome (152, 153), so at
least some of the effects of vitamin D deficiency may be mediated via the microbiome.

Antibiotic misuse and SES. It is not clear how SES affects misuse and overuse of anti-
biotics in developing countries because availability and costs are not uniform. However,
in countries such as Denmark with good documentation of medical interventions and rel-
atively uniform access to antibiotics, the risk of receiving multiple antibiotic prescriptions
in pregnancy and childhood is related to poor parental educational level (154), and in
Finland changes in the microbiota have been linked to early-life antibiotic use (155). This
is a serious issue since early antibiotic exposure is associated with an increased risk of a
large number of disorders, and the risk increases with the number of courses of antibiot-
ics received (156). It is interesting that most or all of these disorders are associated with
immunoregulatory problems or with biomarkers of inflammation. The conditions include
overweight, obesity (157), childhood-onset asthma and allergic disorders (rhinitis, atopic
dermatitis) (158), celiac disease, attention deficit hyperactivity disorder (ADHD), and au-
tism (156).

Antibiotics, sex hormones, and abnormal development. A neglected side effect
of antibiotic use is disturbance of the enterohepatic circulation of sex hormones. Sex
hormones conjugated to sulfate or glucuronide in the liver are secreted into the gut
where the microbiota can then deconjugate them and also modify them in functionally
significant ways (159). Deconjugated hormones are then reabsorbed, while conjugated
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forms are mostly lost in the feces, so antibiotics can block reabsorption and modulate
circulating levels of sex hormones (159). The interaction of early microbial exposures,
sex hormone levels, and progression to autoimmunity has been demonstrated in the
NOD mouse model of type 1 diabetes (160). Interestingly, the levels of sex hormone
metabolites that are relevant to the risk of breast cancer in postmenopausal women
are influenced by the biodiversity of the gut microbiome (161). Early menarche in black
and Hispanic girls in the United States seems to be related to low SES, as is early
appearance of some secondary sexual characteristics in German children (162).
Therefore, modulation of sex steroids by the microbiota of low-SES children might
hold the key to the finding that early puberty is associated with increased risk of breast
cancer (163).

Brain development and SES. In an evolutionary context, the brain and gut work as
an intimately connected food-gathering/processing partnership, and there is abundant
literature on the role of the microbiome on brain function and development (36, 164–
166). Children from low-SES backgrounds tend to show abnormal brain development,
with lower cognitive, language, and memory abilities (167), often correlating with dif-
ferences in development of the areas of the brain associated with these functions,
including the surface area of the cortex, the frontal lobe, the temporal lobe, and the
hippocampus (168–170).

Some of these SES-related cognitive and structural differences are apparent in the
early months of life, and a study using in vivo magnetic resonance imaging (MRI)-com-
puted 3-dimensional images of fetal brains found that the volume of the fetal white
matter was greater when the mother was of high SES (167, 171, 172). These effects are
too early to be attributable to reduced intellectual stimulation in low-SES environ-
ments and suggest other environmental factors. Some SES-associated factors already
discussed above are known to affect the brain and certainly have major effects on the
microbiome. For example, smoking clearly mediates the relationship between low SES
and reduced brain volume (140), and antibiotic misuse is associated with autism and
ADHD (156). Similarly, a recent meta-analysis reported that most studies (but not all)
find that maternal obesity is associated with reduced biodiversity of the infant micro-
biome (173), and reduced biodiversity has been linked to behavioral abnormalities in a
recent prospective cohort study (174).

Evidence that various forms of pollution affect the microbiome was outlined above,
and many studies link such pollution to the brain. For example, a study of children
born less than 400 m or more than 1,500 m from a polluting major highway revealed
that those with higher levels of exposure during the first year of life had significantly
reduced cortical thickness and gray matter volume compared to children with low lev-
els of exposure (175), and similar effects have been seen in children exposed to high
levels of several air pollutants during pregnancy or childhood (176). There are, how-
ever, many other ways in which pollution could affect the developing brain, and more
research is needed.

AD and SES. As mentioned above, smoking mediates the relationship between low
SES and reduced brain volume (140). Similarly, in a cohort of women aged 70 to 89, expo-
sure to PM2.5 was associated with atrophy of gray matter, indicating an increased risk of
Alzheimer’s disease (AD) (177). AD is characterized by raised levels of proinflammatory
cytokines in the peripheral blood and by activated microglia and innate immune cells in
the brain. There is also extraneuronal accumulation of amyloid-b (Ab), an antimicrobial
peptide associated with the innate immune system (178). Could the microbiome be
involved in this inflammatory background? It has been reported that the gut microbiome
has decreased diversity in patients with Alzheimer’s disease and shows decreased
Firmicutes, increased Bacteroidetes, and decreased Bifidobacteria compared to controls
without dementia (179). A recent study has suggested microbiome-mediated pathways
that might connect this changed microbiome to the inflammation (178).

Stress and SES. Many effects of low SES on the composition of the microbiota are
difficult to disentangle from the effects of stress, but it is clear that childhood adversity
is associated with increased mortality in later life (180), and it is likely that the
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microbiota is involved. For example, separating rat pups from their mothers in the neo-
natal period had long-term effects on the biodiversity of their microbiomes that per-
sisted into adulthood (164), and stressing adult rodents also causes an altered micro-
biome (181). Similarly, the microbiomes of severely stressed sick humans show
prolonged changes (182). The mechanisms include changes in gut mobility and func-
tion and redirection of blood away from the gut mediated by signals from the vagus
nerve and enteric nervous system (183), and stress causes release both systemically
and in the gut of mediators such as catecholamines that modulate microbial growth
(184). Moreover, since the immune system has a role in “farming” the microbiota, it is
clear that stress-mediated changes in immune function will also impact the microbiota
(166). There are many SES-associated stressors, such as drug abuse, violence, fear, heat,
noise, poverty, and sleep disorders (Fig. 2). Some of these are outlined below.

(i) Noise. Noise is an important cause of stress, though its effects are not easily dis-
tinguished from other stressors that occur in low-SES neighborhoods such as pollution
and poverty. Nevertheless, it is interesting that a major study of 504,271 individuals in
Norway, the Netherlands, and the United Kingdom found that local road traffic noise
was associated with markers of obesity (185).

(ii) Heat. An important review has summarized evidence that excessive heat caused
296,000 deaths globally in 2018, particularly in India and Indonesia but also in Europe
(186). In low-SES contexts there are correlations between rises in temperature, increased
hospitalizations, and risks of preterm births and stillbirths (187, 188). Individuals of low SES
are less likely to benefit from air conditioning and may also suffer from the heat output
from the air conditioners of their wealthier neighbors. Are these detrimental effects on
health mediated via changes in the microbiota? It is difficult to disentangle the effects of
heat from the effects of the psychological stress resulting from discomfort. Interestingly,
heat stress reduced the biodiversity of the fecal microbiomes of cows and chickens (189,
190). Could similar effects occur in humans?

(iii) Sleep disorders. Sleep disturbance is associated with altered microbiota and
decreased abundance of SCFA-producing strains both in humans (191) and in labora-
tory rodents (discussed in reference 192). The prevalence of sleep disturbances such as
very short or long sleep correlated with SES in both African Americans and whites
(193). Moreover, the direct involvement of the microbiota is suggested by the finding
that fecal microbiota transplantation (FMT) from experimentally sleep-disturbed mice
to normal mice can induce sleep disturbances in the recipients (192).

CONCLUSIONS

Low SES is associated with illness and reduced life expectancy (1–3) and also with
abnormal microbiomes (6–8). This paper summarizes evidence that these two observa-
tions are linked and that lifestyle factors that accompany low SES can reduce and dis-
tort microbial exposures and cause them to diverge from the exposures with which
humans coevolved. This can explain at least part of the SES-associated health deficit.
Awareness of the involvement of microbial exposures may enable better targeting of
societal measures to improve the health of the deprived. These measures obviously
include reduced pollution; better housing; better education about the value of breast-
feeding, natural birth, and vaccines; encouragement of lifestyle adjustments that maxi-
mize exposure to nature; dietary guidance; and abandonment of broad-spectrum anti-
biotics in favor of antibiotics that target an identified pathogen. We now have the
technology for this. Microbiological approaches will be particularly helpful for dietary
supplementation with well-researched laboratory-grown communities of beneficial
microorganisms as a safer, standardizable alternative to fecal microbiota transplanta-
tion (FMT). Unfortunately, designing such a standardized microbial preparation for
FMT presents major challenges. Comparing the microbiomes of low- and high-SES indi-
viduals reveals differences but not a consistent high-SES-related composition, perhaps
because the relevant studies span different methods, countries, diets, and cultural
backgrounds. It is possible that the metabolic pathways (metabolome) provided by the
gut microbiota are more relevant than the constituent species (194). Moreover, there
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may be more than one stable microbial composition that can yield an appropriate
metabolome, and different microbial compositions might be stable in individuals with
different genetic, immunological, and dietary backgrounds. We still have a lot to learn.

Microbiology will also help us to devise strategies for the greening of cities and homes.
The selection of soils and plants for ubiquitous minigardens (https://theediblebusstop
.com/) and the development of “bioreceptive” materials for building new homes (http://
www.richard-beckett.com/) can be guided by increasing understanding of the organisms
that we need to encounter. How, for example, do we ensure contact with the spores of
human gut-adapted strains? It is worth noting that all the microbe-focused strategies sug-
gested by this text overlap the 17 Sustainable Development Goals (SDG) of the United
Nations (https://sdgs.un.org/goals), so perhaps microbiologists can provide additional im-
petus to the achievement of these goals.
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