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Abstract

Development and guidance of dosing schemes in children have been supported by physiology-based pharmacokinetic (PBPK) modeling for many
years. PBPK models are built on a generic basis, where compound- and system-specific parameters are separated and can be exchanged, allowing
the translation of these models from adults to children by accounting for physiological differences. Owing to these features, PBPK modeling is a
valuable approach to support clinical decision making for dosing in children. In this analysis, we evaluate pediatric PBPK models for 10 small-molecule
compounds that were applied to support clinical decision processes at Bayer for their predictive power in different age groups.Ratios of PBPK-predicted
to observed PK parameters for the evaluated drugs in different pediatric age groups were estimated. Predictive performance was analyzed on the basis
of a 2-fold error range and the bioequivalence range (ie, 0.8 ≤ predicted/observed ≤ 1.25). For all 10 compounds, all predicted-to-observed PK ratios
were within a 2-fold error range (n = 27), with two-thirds of the ratios within the bioequivalence range (n = 18). The findings demonstrate that the
pharmacokinetics of these compounds was successfully and adequately predicted in different pediatric age groups. This illustrates the applicability of
PBPK for guiding dosing schemes in the pediatric population.
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During the past 15 years, physiology-based pharma-
cokinetic (PBPK) modeling has been the scientific
foundation to match the exposure in a pediatric pop-
ulation to the target exposure, that is, a known refer-
ence exposure clinically observed in an adult patient
population at a safe and efficacious dose. PBPK mod-
els are mechanistic models that separate compound-
specific properties (such as lipophilicity and molecular
weight) from system-specific parameters (such as organ
volumes and blood flows). Therefore, PBPKmodels are
built on a generic basis and can be reparameterized,
allowing the translation to a population with a different
physiology. Because of these features, PBPK modeling
is an increasingly popular approach to support decision
making for dosing in relevant subpopulations of special
clinical interest, such as children. This is also supported
by regulatory authorities.1,2

PBPK models incorporate age-dependent changes
of relevant anthropometric and physiological
parameters and apply ontogeny and variability of active
processes involved in the absorption, distribution,
metabolism, and elimination of pharmaceutical
compounds.3,4 As most of these changes occur in
the first 2 years of life, such as maturation of the liver

and kidney function, in contrast to other changes that
occur later in a child’s life, for example, during puberty,
a good understanding of this age dependency is of
utmost importance. An overview of relevant processes
and properties that are known, less known, or need
further elucidation has been previously described.5

Already in the early phase of drug development
in adults, dosing in children is discussed. In the ab-
sence of clinical data in children, a PBPK model is
first built based on physicochemical information and
concentration-time data from adult pharmacokinetic
(PK) studies. As a next step, the translation of the adult
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Figure 1. Building blocks of a PBPK model for adults and the parameters adjusted when translating to a PBPK model for the pediatric population.
PBPK, physiology-based pharmacokinetic. (Adapted from Kuepfer et al, Figure 2.7)

PBPK model to children—initially purely predictive—
is made on the basis of the existing knowledge on
age-related anthropometry, physiology, and active pro-
cesses, such as enzyme and transporter activities.5,6

Subsequently, when clinical data become available dur-
ing the pediatric development program, PBPK-based
predictions transition into a descriptive mode as the
PBPK model may be refined and is used to integrate
and interpret the observed clinical data.

To date, PBPK predictions from several studies
informed dosing decisions and streamlined the clinical
study design for 10 Bayer small-molecule compounds.
In this analysis, we evaluate the predictive performance
of pediatric PBPK models for these compounds in
different age groups. These models were applied to
support clinical decision processes, such as identifying
dose levels and dosing intervals, sampling schemes, and
cohort sizes.

Methods
The workflow for constructing and translating a PBPK
model from adults to children is well described.6–11

An overview of relevant building blocks to construct
a PBPK model for adults and the parameters adjusted
during translation to children for use in pediatric clin-
ical development is exemplarily illustrated in Figure 1.
The building blocks of a PBPK model are categorized
into drug- and system-specific properties, study proto-
col, and formulation characteristics. Some parameters
are dependent on a combination of both drug- and
physiology-specific parameters (drug-biology interac-
tion), such as fraction unbound or membrane per-
meability. For the parameterization of the adult and

pediatric PBPK models and for the simulation of PK
parameters of 10 small-molecule Bayer compounds,
the existing model for each compound was applied
for this analysis (Table 1). The PBPK models for
amikacin, gadovist, andmagnevist were updated to PK-
Sim version 9,20,21 as additional simulations needed to
be performed for this analysis, which is described in
more detail below. As the developed PBPKmodels that
were applied for clinical decisionmaking have been filed
for regulatory request, most of these models are also
already published, whereas some of them are still part
of the ongoing drug development program.3,12–17

To evaluate the predictive performance of the PBPK
models, we calculated the ratio of PK parameters
predicted by PBPK before study conduct vs PK pa-
rameters estimated by population pharmacokinetics
(PopPK) and noncompartmental analysis (NCA) post
hocs after clinical pediatric study data became available.
For clinical studies in children, especially when small
children are included, the collected data are typically
very sparse, and PopPK assessment was preferred over
NCA for comparison. However, PopPK-derived PK
parameters were not always available (eg, for amikacin,
riociguat). The aggregation of PK parameters derived
from PBPK and PopPK simulations is outlined below
for each compound. Integral exposure measures, clear-
ance, or concentrations at specific times after dosing
were explored depending on the availability of pediatric
study data per compound. The PK parameters for each
compoundwere selected on the basis of the relevant pri-
mary PK parameter applied for the respective analyses
for calculating pediatric doses.

The ratio of the PK parameters for each compound
was calculated and categorized into the predefined age
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Table 1. An Overview of 10 Small-Molecule Bayer Compounds Applied in Children Since 2005, the Age Ranges of Children With Available Clinical
Data, and the Clearance Processes Included in the PBPK Model

Compound Name Age Range, y Source Published
Clinical Data

Involved Processes in PBPK Model Route of Administration In
Children

Amikacin 0.01-16 27,28 GFR IV
Ciprofloxacin 0.2-6.6 36,37 CYP1A2, TS, GFR, Bil.CL PO
Copanlisib 13-17 … CYP3A4, P-gp, BP IV
Gadovist 0.2-18 38,39 GFR IV
Levonorgestrel 12-18 … Hepatic clearance IU
Magnevist 0.2-2 … GFR IV
Moxifloxacin 0-18 44,45 UGT1A1, SULT2A1, Bil.CL, GFR PO
Regorafenib 2-17 47 CYP3A4, UGT1A9, Bil.CL PO
Riociguat 6-18 … CYP1A1, CYP3A4, CYP3A5, CYP2C8, CYP2J2,UGT1A2,

UGT1A9, Bil.CL (P-gp, BCRP), TS/GFR
PO

Rivaroxaban 0.5-18 52 CYP3A4, Plasma Hydrolysis, GFR, TS, CYP2J2 PO

BCRP, breast cancer resistance protein; Bil.CL, biliary clearance; BP, hypothetical binding partner; CYP, cytochrome P450; GFR, glomerular filtration rate; IU,
intrauterine; IV, intravenous; P-gp, P-glycoprotein; PO, per os; SULT, sulfotransferase; TS, tubular secretion; UGT, uridine 5’-diphospho-glucuronosyltransferase.

groups: neonates and infants from 0 to <2 years of age,
preschool children from 2 to <6 years of age, school
children from 6 to <12 years of age, and adolescents
from 12 to <18 years of age.18,19

Data
An overview of Bayer small-molecule compounds ap-
plied in this analysis is shown in Table 1. This table also
illustrates the available clinical data for the compounds,
including the age ranges of children that were used
in this analysis. Compounds were considered for this
retrospective analysis in case clinical data has already
been obtained in pediatric age groups.

Software
All PBPK models were built using the Open Systems
Pharmacology (OSP) software, formerly known as
commercial software tools PK-Sim and MoBi, which
is now freely available as OSP Suite under the GPLv2
License, where source code and content are public.
For the calculation and illustration of the PK ratios,
Rstudio (R version 3.6.2; R Foundation for Statistical
Computing, Vienna, Austria) was used.

Building and Evaluating the Adult PBPK Models
For amikacin,3 ciprofloxacin,15 copanlisib,14

levonorgestrel,12 moxifloxacin,17 regorafenib,13 and
rivaroxaban,16 building and evaluation of the PBPK
models have been presented or published previously.
The other PBPK models have been used to inform
clinical trials. For all compounds that are used in this
analysis, an adult PBPKmodel was created initially and
evaluated, as described more recently in the workflow
by Maharaj et al9 and illustrated previously.5

Translation of Adult PBPK to Children
Pediatric PBPK models were established using the
developed and verified (adult) PBPK model for each
compound by translating the adult physiology, clear-
ance process(es), protein binding, and the process-
specific variabilities to children (Figure 1). A pediatric
translation workflow for constructing a PBPKmodel in
pediatric clinical development has been also illustrated
previously.5 No fitting of the pediatric model param-
eters was performed. During the translation of adult
PBPK models to children, the following assumptions
(if unknown) and considerations were made:

• When translating the adult model to children, it is
assumed that the contributing metabolism and excre-
tion pathways are qualitatively the same in children
as in adults.

• No further changes to model parameters
describing drug or drug-biology interacting
properties (eg, lipophilicity, intestinal permeability,
solubility) are allowed in the PBPK models for
children.

• There is identical pathophysiology in children as in
adults.

The predictions of the PK parameters in the pedi-
atric subgroups by the PBPK model and the PopPK or
NCA of clinical data-based calculations were summa-
rized for each compound as geometric means and used
to evaluate predictive performance. Ratios of predicted
to observed PK parameters for the evaluated drugs
in different pediatric age groups were then investi-
gated for being within a 2-fold error range and within
the bioequivalence range (ie, 0.8 ≤ predicted/observed
≤ 1.25). Although a bioequivalence range assessment
is meant to demonstrate 2 different formulations to be
“equivalent” at a certain dose level, in this analysis it
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was applied for PK exposure matching. Therefore, a
match-failure would not mean that the whole pediatric
dosing approach failed.

Anthropometric and Physiological Information
PK-Sim incorporates literature-based age dependencies
of anthropometric (eg, height, weight) and physiologi-
cal (eg, blood flows, organ volumes) parameters, which
were generally used as default values for the simulations
in children.3,4

The applied ontogeny and variability of active pro-
cesses and plasma proteins that are built-in into PK-Sim
for translation to children are described in the publicly
available PK-Sim Ontogeny Database Version 7.3,22 or
otherwise referenced for the specific process for each
compound.

For each compound, the estimates of the predicted
PK parameters in the pediatric subgroups were derived
from PBPK modeling. PopPK or NCA models of
clinical data were aggregated as geometric means and
used for ratio calculation.

Drug Examples
Building and evaluation of the adult PBPKmodels, and
the translation to children for 10 small-molecule Bayer
compounds was performed as described in theMethods
section. Below, a summary of key parameters of the
adult PBPK models relevant for development of the
pediatric models, and the evaluation of the pediatric
models are described.

Amikacin. Amikacin is an aminoglycoside antibi-
otic used for the treatment of a number of serious
infections.23

AdultModel Development. Amikacin is excreted pri-
marily by glomerular filtration.24,25 The PBPK model
for amikacin was previously built for adults and
preterm neonates.3,26 As the lattermodel was built more
recently, this PBPK model was evaluated in adults first
before predicting the PK in the different pediatric age
groups without further changes. Only amikacin PK
data after intravenous administration were applied for
this analysis, using PK-Sim version 9.1. The available
clinical PK data were derived from different literature
sources and were here used for PBPK prediction and
verification purposes.

Pediatric Model Evaluation. The clearance of
amikacin in children was predicted purely based on
knowledge about kidney maturation3 and, accordingly,
developmental changes in glomerular filtration rate
(GFR). For evaluating the predictive performance in
children, all available reported PK data in children
were used. Individual simulations were performed

on the basis of the demographics of each child. The
predicted clearances were aggregated as geometric
means for each predefined age group as described
for their comparison with the aggregated reported
clearances from literature.27,28 As the clinical study
data for amikacin were based on literature data only,
the individual PK ratios were additionally calculated
and plotted (Figure 2).

Ciprofloxacin. Ciprofloxacin belongs to the
quinolone antibiotics class, that is used to treat a
wide variety of bacterial infections.

Adult Model Development. A ciprofloxacin PBPK
model was built and evaluated for the predictive per-
formance toward pediatric and geriatric patients, using
PK-Sim and MoBi version 7.2.0.15 Both intravenous
and orally administered ciprofloxacin PK data were
available for analysis. To reflect the known elimina-
tion pathways of ciprofloxacin,17 the PBPK model
included renal clearance and hepatic clearance. The
renal clearance processes were glomerular filtration and
an unspecific tubular secretion (TS) accounting for the
exceeding renal clearance.29,30 The hepatic clearance
processes were cytochrome P450 (CYP) 1A2-mediated
elimination31 and an unspecific biliary secretion to
account for a suggested rapid gastrointestinal tran-
scellular secretion of ciprofloxacin.32–35 Based on oral
PK data in adults, the net active drug uptake and
dissolution profiles were estimated, by means of esti-
mating a multiplier for the intestinal permeability of
each gastrointestinal tract segment. The formulation
and granulate disintegration and dissolution of the oral
dose forms were described by a Weibull function. The
available reported clinical PK data were derived from
different former studies and used to evaluate the PBPK
prediction for verification purposes.

Pediatric Translation. For evaluating the predictive
performance in children, the available reported mean
exposures (area under the concentration-time curve
[AUC] from time 0 to infinity) in each pediatric
age group, mean individual PBPK predictions were
made on the basis of the mean demographics of the
children.36,37 The estimated exposures were aggregated
as geometric means for each predefined age group for
their comparison with the aggregated means of the
reported exposures.

Copanlisib. Copanlisib is a phosphatidylinositol 3-
kinase inhibitor that is approved by the US Food and
Drug Administration for the treatment of adult pa-
tients experiencing relapsed follicular lymphoma who
have received at least 2 prior systemic therapies.14
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Figure 2. Individual ratios of predicted to observed clearance for amikacin at different ages.The open circles represent the individual clearance ratios.
Black dotted lines indicate 0.5, 1- and 2-fold prediction intervals. Red dotted lines indicate 0.8- and 1.25-fold prediction intervals.

Adult Model Development. A PBPK model for co-
panlisib in adults was created and evaluated using PK-
Sim version 8.0.14 The copanlisib PBPKmodel includes
a hepatic clearance process mediated by CYP3A4, a P-
glycoprotein–mediated drug transport, and a hypothet-
ical tissue-binding partner.

Pediatric Translation. The adult PBPK model was
translated to children to support clinical decision mak-
ing of copanlisib application in pediatric patients.
Available individual PK data in adolescents were used
to calculate an aggregated geometric mean exposure
(area under the concentration-time curve from time 0
to 168 hours after the last dose). The PBPK predictions
for each individual matched to the adolescent’s demo-
graphics were aggregated by calculating the geometric
mean of the individual AUC from time 0 to 168 hours
after the last dose for the adolescent age group.

Gadovist and Magnevist. Gadovist and magnevist are
gadolinium-based extracellular contrast agents and
have been proven to be effective contrastmedia in adults
and children for contrast-enhancedmagnetic resonance
imaging.

Adult Model Development. Gadovist and
magnevist are both excreted primarily by glomerular
filtration.38–40 Therefore, the clearance of both contrast
agents was predicted solely on the basis of knowledge
about kidney maturation and developmental changes
in GFR built in PK-Sim. The PBPK models for

gadovist and magnevist that have been applied to
support clinical decision making were updated to
PK-Sim version 9.0 before simulating the PK for each
predefined pediatric age group.

Pediatric Translation. Compared to the original PK-
Simmodels (version 4) that were used elsewhere, in PK-
Sim version 9.0, the method of Hayton,41 as modified
by Edginton et al,42 is built in to scale glomerular filtra-
tion to children. Thereafter, the aggregated geometric
mean clearance for each age group was calculated and
compared to the available reported (aggregated) clear-
ances for gadovist38,39 and magnevist after intravenous
administration.

Levonorgestrel. Levonorgestrel is a progestin hor-
mone used in a variety of contraceptive products.43

AdultModel Development. A PBPKmodel was built
in PK-Sim version 4.1 for the levonorgestrel contracep-
tive system intrauterine device in female adults using
observed data from clinical studies after intravenous
or oral administration of levonorgestrel.12 An unspe-
cific clearance to account for metabolism was used.
The PBPK model included all relevant physiological
properties of the uterus and the administration of
levonorgestrel by an intrauterine device.

Pediatric Translation. The adult PBPK model was
translated to adolescent girls and respective PK param-
eters for the adolescent postmenarche population were
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predicted.12 The aggregated levonorgestrel concentra-
tions after 365 days (geometric mean) were compared
to the observed aggregated concentrations (geometric
mean values) of the clinical study data.

Moxifloxacin. Moxifloxacin is fluoroquinolone and is
applied for the treatment of bacterial infections, such as
complicated intra-abdominal infections.

Adult Model Development. A PBPKmodel for mox-
ifloxacin was built using PK-Sim version 4.2 and MoBi
version 2.3 after both oral and intravenous administra-
tion of moxifloxacin. The PBPKmodel includes a renal
clearance process mediated by glomerular filtration
and 2 hepatic processes, mediated by sulfate conjuga-
tion via sulfotransferase 2A1 and glucuronidation via
uridine 5’-diphospho-glucuronosyltransferase (UGT)
1A1.17 An unspecific biliary secretion was included to
account for the gastrointestinal transcellular secretion
of moxifloxacin and itsmetabolites.17 The specific clear-
ance via sulfotransferase 2A1, UGT1A1, and biliary
excretion was assumed to be independent of age (ie, the
same activity per gram tissue weight as in adults).

Pediatric Translation. The method of Hayton,41 as
modified by Edginton et al,42 was used to scale the
adult GFR to children. For evaluating the predic-
tive performance in children, the PopPK-based results
were applied as representative of the observed data,
by aggregation of the calculated geometric mean of
the individual PopPK clearance estimates17 from the
individual patients for each age group.44,45 The PBPK
predictions for each individual matched to the individ-
ual’s demographics were aggregated by calculating the
geometric mean of the individual clearances for each
predefined age group.

Regorafenib. Regorafenib is an approved oral mul-
tikinase inhibitor for the treatment of patients with
advanced cancer (colorectal carcinoma, gastrointesti-
nal stromal tumors, and advanced hepatocellular
carcinoma).46

Adult Model Development. A PBPK model for re-
gorafenib and its active metabolites was built using
PK-Sim version 4.2.5 to support dose selection for the
pediatric dose-finding study and to estimate exposure
based on sparse PK sampling.13 The PBPK model
includes the different processes representing phase I
(CYP3A4) and phase II metabolism (UGT1A9) for
the parent drug and metabolites implemented in the
liver, kidney, and gut lumen. The transport processes
for one of the metabolites mediated by P-glycoprotein
are covered by clearance processes as well. The model
includes estimated individual dissolution profiles to
capture the observed high variability in the absorption

of regorafenib in adults, considered to be caused by
variability in luminal dissolution resulting from in-
terindividual variability in intestinal liquid volumes and
bile salt concentrations.

Pediatric Translation. For evaluating the predictive
performance in children, the PopPK model–based re-
sults were applied, by aggregation of the calculated
geometric mean of the individual simulated exposure
(AUC from time 0 to 24 hours after the last dose in
steady state [AUC24,ss]) estimates13 from the individual
patients for each age group.47 The PBPK predictions
for each individual matched to the demographics of
the individual patients were aggregated by calculating
the geometric mean of the individual AUC24,ss for each
predefined age group.

Riociguat. Riociguat is a direct stimulator of the
soluble guanylate cyclase and is used to treat 2 forms of
pulmonary hypertension: pulmonary arterial hyperten-
sion (PAH) and chronic thromboembolic pulmonary
hypertension in adults.48

Adult Model Development. Among other indica-
tions, riociguat is under investigation for treatment of
PAH in children.49 A PBPK model for riociguat in
adults was built using PK-Sim version 4.2 to predict the
PK of riociguat in children of various age groups suf-
fering from PAH following oral administration of mul-
tiple doses. The riociguat PBPK model includes renal
clearance processes mediated by glomerular filtration
and TS.Metabolism of riociguat occurred via oxidative
biotransformation by CYP2C8, 2J2, 3A4/3A5, and
CYP1A1 into its major metabolite, and to account for
the gastrointestinal transcellular secretion unspecific
biliary secretion were included.50

Pediatric Translation. For evaluating the predictive
performance in children, available individual through
plasma concentrations at steady-state (Ctrough,ss) in ado-
lescents were aggregated into geometric mean Ctrough,ss

for each cohort. The PBPK predictions for each indi-
vidual matched to the individual’s demographics were
aggregated by calculating the geometric mean of the
individual Ctrough,ss for the adolescent age group.

Rivaroxaban. Rivaroxaban, an oral anticoagulant (a
direct factor Xa inhibitor) used to treat and prevent
blood clots, has been approved in adult patients for
several thromboembolic disorders.16,51

Adult Model Development. A PBPK model for ri-
varoxabanwas developed using PK-Sim version 4.2 and
MoBi version 2.3 and evaluated in adults and children
to inform the dosing regimen of rivaroxaban in pedi-
atric patients.16,52 The PBPK model already included
a model for gastrointestinal transit and absorption,
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Figure 3. Ratios of predicted to observed PK parameters for the evaluated drugs in different pediatric age groups. The age groups are sorted in
descending order from adolescents (left) to neonates and infants (right).The different colors represent the different compound PK ratios.The different
symbols represent the different PK parameters. Black dotted lines indicate 0.5, 1-, and 2-fold prediction intervals. Red dotted lines indicate 0.8- and
1.25-fold prediction intervals. AUC0-168h, area under the concentration-time curve from time 0 to 168 hours; AUC24,ss, area under the concentration-
time curve from time 0 to 24 hours after the last dose in steady state; AUCinf, area under the concentration-time curve from time 0 to infinity; C365,
levonorgestrel concentration after 365 days; CL, clearance; Ctrough, trough concentration.

which is part of PK-Sim version 5.0 and higher.53,54

The rivaroxaban PBPK model includes 2 renal clear-
ance processes mediated by glomerular filtration and
an unspecific TS accounting for the exceeding renal
clearance, and 3 hepatic clearance processes, 2 of which
are mediated by CYP3A4, CYP2J2, and another CYP-
independent hydrolysis of rivaroxaban.55–57

Pediatric Translation. PBPK predictions for children
from term neonates (≥2 kg) to adolescents aged 18
years were aggregated by calculating the geometric
mean of the individual exposure (AUC24,ss) for each
predefined age group and compared to the aggre-
gated geometric mean of the PopPK-based individual
AUC24,ss estimates for each age group, that were used
as representative of the observed data.52

Results
The available clinical study data and their reported
PopPK or NCA of clinical data-based calculations of
the compounds were collected for available age groups
(Table 1).

For the individual clearances of amikacin, resulting
overall predictivity of the PBPK model in children is

exemplarily shown in Figure 2. All individual clearance
ratios (n = 33) fell within a 2-fold error range, with 64%
(n= 21)within the bioequivalence range (Figure 2). The
overall geometric mean fold error was calculated to be
1.22.

The aggregatedmean ratios for each compoundwere
successfully predicted for all age groups where observed
data were available (neonates and infants, preschool
children, school children, and adolescents). Figure 3
shows themean PKparameter ratios of the investigated
compounds predicted in different pediatric age groups.
Figures 4 and 5 additionally illustrate the results sepa-
rately for drugs where either the primary or secondary
PK parameters were used for their evaluation in dif-
ferent pediatric age groups. For all compounds, the 27
calculated PK ratios in all pediatric age groups were
predicted within a 2-fold error range, with 67% (n= 18)
of the predicted ratios being within the bioequivalence
range. The highest overestimation and underestimation
of an observed PK parameter was observed in the
youngest age group (for rivaroxaban and moxifloxacin,
respectively).

Comparing PK ratios of only passively eliminated
compounds (9 ratios for 3 compounds) with actively
eliminated compounds (18 for 7 compounds), as shown
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Figure 4. Ratios of predicted to observed primary PK parameters for the evaluated drugs in different pediatric age groups.The age groups are sorted
in descending order from adolescents (left) to neonates and infants (right). The different colors represent the different compound PK ratios. The
different symbols represent the different PK parameters. Black dotted lines indicate 0.5, 1-, and 2-fold prediction intervals. Red dotted lines indicate
0.8- and 1.25-fold prediction intervals. CL, clearance.

in Figure 6, it was evident that the prediction was
slightly better for passively eliminated compounds com-
pared to actively eliminated compounds, with 78%
being within the bioequivalence range vs 61%, respec-
tively.

Discussion
PBPK predictions for small-molecule drugs in children
are well established in drug development, in particular
to support and streamline clinical decisions during drug
development in children (eg, specification of dosing
regimens, sampling schemes, cohort size). This is also
reflected by the constantly high number of this applica-
tion scenario in submissions to the US Food and Drug
Administration.1 The aim of this methodological study
was to further evaluate the application of pediatric
PBPK models in drug development. To this end, this
study evaluated the predictive performance of pediatric
PBPK models for 10 small-molecule compounds de-
veloped by Bayer with clinical data in pediatrics. An
evaluationmetric, the ratio of predicted to observed PK
parameters estimated in different pediatric age groups,
was selected and used to assess, visualize, and compare
the overall predictive power of the 10 PBPKmodels for
the different age groups (Figure 3).

In case of ratio comparison with calculated PK
parameters such as AUC and clearance, when data
were sparse, observed PK parameters were not de-
rived through NCA of clinical data but from PopPK
simulations. The PopPK estimates were assumed to
adequately represent the actual PK of the respective
study data.

All 27 estimated PK parameter ratios (100%) fell
within a 2-fold error range, and 18 ratios (67%) fell
within the bioequivalence range, indicating that the
overall predictive performance of the pediatric PBPK
models was adequate (Figure 3). The error in the pre-
dicted PK ratios appeared to increase as age decreased,
but it also did not exceed the 2-fold error range in
the youngest group. Among the investigated drugs, no
bias for systematic over- or underestimation of the
PK ratios was evident (Figure 4 and 5). Overall, these
findings are comparable to those previously presented
in a retrospective analysis on CYP-metabolized drugs
using PK-Sim.58

For drugs eliminated exclusively via glomerular fil-
tration (amikacin, gadovist, and magnevist), observed
PK data were available for all 4 age groups, al-
though not for every drug in each of these age groups
(Figure 4). The comparison of the individual ratios
of predicted to observed PK parameters for amikacin
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Figure 5. Ratios of predicted to observed secondary PK parameters for the evaluated drugs in different pediatric age groups. The age groups are
sorted in descending order from adolescents (left) to neonates and infants (right). The different colors represent the different compound PK ratios.
The different symbols represent the different PK parameters. Black dotted lines indicate 0.5, 1-, and 2-fold prediction intervals. Red dotted lines
indicate 0.8- and 1.25-fold prediction intervals. AUC0-168 h, area under the concentration-time curve from time 0 to 168 hours; AUC24,ss, area under
the concentration-time curve from time 0 to 24 hours after the last dose in steady-state; AUCinf, area under the concentration-time curve from time
0 to infinity; C365, levonorgestrel concentration after 365 days; Ctrough, trough concentration.

illustrated that passive elimination over the entire pe-
diatric range was well described (Figure 2). Ontogeny
of absorption, distribution, metabolism, and elimina-
tion processes implemented in PK-Sim were previ-
ously evaluated,3,4,42 and are documented on the OSP
GitHub website.21 In the applied PBPK models, either
only passive (renal) elimination or combined passive
and active elimination was involved. In this analysis,
the PBPK approach was successfully applied for the
intended use as illustrated in Figure 4 using compounds
developed by Bayer.

For most of the investigated compounds, total body
clearance comprised several elimination pathways (eg,
biliary clearance, metabolism via multiple enzymes),
which lessens the suitability of using these drugs as
marker compounds for the maturation of a specific
clearance process. Additionally, for most of the com-
pounds, not all active processes were known. In these
cases, elimination was modeled partly via processes
that were not fully characterized, for example, as
metabolismwithout further specification of the respon-
sible enzyme or TS mediated by an unknown efflux
transporter. In doing so, the specific activity of the
enzyme/transporter normalized to organ weight of the

adult PBPK model was assumed to be unchanged
in the pediatric model. Absolute clearance was then
affected only by age-related changes in the weight
of the organ where the process occurred (eg, liver
or kidney), but not by additional maturation of the
intrinsic clearance (eg, enzyme tissue concentration).
The adequate predictive performance for these drugs
corroborates the assumption that at least themajor part
of total clearance is not qualitatively different between
children and adults, as this would have likely resulted
in substantial over- or underestimation of a drug’s PK
ratio.

As not all possible active processes (eg, differ-
ent transporters or other CYP substrates), or large
molecule drugs were evaluated, additional studies for
other compounds could further evaluate the predic-
tive model performance in children. Especially in the
youngest age group where the maturational changes are
highest, and where, although predicted within 2-fold
error range, the highest overestimation and underesti-
mation of the observed PK parameter was observed
(Figures 3–5). This could help to fill the knowledge
gaps in ontogenies that were not addressed here, as
reported elsewhere.5 Additionally, a subcategorization
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Figure 6. Ratios of predicted to observed PK parameters for the evaluated drugs in different pediatric age groups. The age groups are sorted in
descending order from adolescents (left) to neonates and infants (right). The different colors represent all compounds with active (blue) or passive
(green) elimination route. Black dotted lines indicate 0.5, 1-, and 2-fold prediction intervals. Red dotted lines indicate 0.8- and 1.25-fold prediction
intervals.

of children <2 years of age, which are most affected by
maturation, should be explored.

Although interindividual variability was included in
the PBPK predictions, in this methodological study, the
focus was set on the mean predictive performance of
PBPK to support adequate dosing in pediatric clinical
trials. As a next step, prediction of variability could
be further investigated to not only cover the typical
pediatric patient, but the full population range as shown
exemplarily for amikacin (Figure 2).

The presented findings demonstrate that the confi-
dence in pediatric PBPKmodels is generally reasonable
for small-molecule drugs. Although oral absorption
was not in the focus of the present analysis, a limita-
tion of pediatric PBPK models is the lack of a fully
mechanistic description of the processes pertaining to
drug dissolution and absorption. Although numerous
pediatric PBPK model for orally administered drugs
can be found in the literature,10 important knowledge
gaps remain.10,59 For the orally aministered compounds
in this analysis (eg, rivaroxaban and ciprofloxacin) ,
dissolution was described by an empiricalWeibull func-
tion with relevant parameters in this function being
fitted in the adult PBPK model.13,15 Typically, new
(suspension) formulations need to be developed for
children who cannot swallow the tablet given to adults
(eg, for rivaroxaban and riociguat). For the majority

of published models, the drug release kinetics imple-
mented in the model were not reported, and specific
oral dosage forms administered to children were rarely
explicitly accounted for.

With the recently increasing interest in developing
(semi)mechanistic models for drug dissolution and
absorption,60–62 many efforts are now directed
at further improving dissolution and absorption
modeling.63,64 Adopting a more mechanistic approach
to drug release in children, dissolution kinetics could
be measured in vitro in biorelevant media that reflect
the gastrointestinal physiology in children65,66 and
described using a (semi)mechanistic dissolution model,
which is then integrated in a whole-body pediatric
PBPK model.

Conclusions
This study presents a condensed experience of applying
pediatric PBPKmodeling to internally developed drugs
for supporting important clinical decisions. The find-
ings demonstrate that the PK of the 10 small-molecule
compounds was adequately predicted in different pedi-
atric age groups. This illustrates the predictive power
of PBPK for guiding dosing schemes for compounds
in the pediatric population. As a next step, a specific
focus on the inclusion and description of variability
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should be studied. Ultimately, thoroughly validated
PBPKmodels for children could routinely support drug
development programs, thereby catalyzing the speed,
efficacy, and success rate of pediatric drug develop-
ment.
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