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INTRODUCTION
Portal dosimetry is a valuable means of ensuring that the 
dose delivered to the patient during a fraction of radio-
therapy is in agreement with that predicted by the treat-
ment planning system.1–3 The two principal methods 
are forward projection,4,5 in which portal images are 
predicted at the time of treatment planning, and then 
the delivered images are compared with these; and back 
projection,6–8 in which the measured images are projected 
into the CT scan of the patient and converted into a dose 
distribution, which is then compared with the planned 
dose distribution.

The most widespread use of portal dosimetry is for veri-
fication of whole fractions of treatment, with analysis 
being carried out after delivery of the complete fraction.9 

Often this is the first fraction or closely thereafter, with 
additional measurements and analyses being carried out 
when anatomical variations occur, subject to depart-
mental resources.10–12 However, real-time or intrafrac-
tion portal dosimetry is used to evaluate each fraction of 
the treatment as it is delivered.13–16 This has the advantage 
that errors can be detected before the whole fraction of 
treatment has been delivered. With a constant tendency 
for treatments to become more hypofractionated, either 
in a stereotactic context17,18 or otherwise,19 this approach 
is important, as a whole fraction of treatment accounts 
for a large proportion of the total dose delivered. The 
approach also allows for a time-resolved analysis, which 
gives greater insight into the accuracy of the delivery than 
when examining the whole.20,21
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Objectives: In real-time portal dosimetry, thresholds 
are set for several measures of difference between 
predicted and measured images, and signals larger than 
those thresholds signify an error. The aim of this work is 
to investigate the use of an additional composite differ-
ence metric (CDM) for earlier detection of errors.
Methods: Portal images were predicted for the volu-
metric modulated arc therapy plans of six prostate 
patients. Errors in monitor units, aperture opening, aper-
ture position and path length were deliberately intro-
duced into all 180 segments of the treatment plans, 
and these plans were delivered to a water-equivalent 
phantom. Four different metrics, consisting of central 
axis signal, mean image value and two image difference 
measures, were used to identify errors, and a CDM was 
added, consisting of a weighted power sum of the indi-
vidual metrics. To optimise the weights of the CDM and 
to evaluate the resulting timeliness of error detection, a 
leave-pair-out strategy was used. For each combination 

of four patients, the weights of the CDM were deter-
mined by an exhaustive search, and the result was eval-
uated on the remaining two patients.
Results: The median segment index at which the errors 
were identified was 87 (range 40–130) when using all of 
the individual metrics separately. Using a CDM as well 
as multiple separate metrics reduced this to 73 (35–95). 
The median weighting factors of the four metrics consti-
tuting the composite were (0.15, 0.10, 0.15, 0.00). Due to 
selection of suitable threshold levels, there was only one 
false positive result in the six patients.
Conclusion: This study shows that, in conjunction with 
appropriate error thresholds, use of a CDM is able to 
identify increased image differences around 20% earlier 
than the separate measures.
Advances in knowledge: This study shows the value of 
combining difference metrics to allow earlier detection 
of errors during real-time portal dosimetry for volu-
metric modulated arc therapy treatment.
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The selection of appropriate metrics for optimum sensitivity 
and specificity of portal dosimetry is the subject of continuing 
research. Olaciregui-Ruiz et al22 investigate a number of different 
treatment plan metrics and report on their success in identifying 
errors in a large cohort of volumetric modulated arc therapy 
(VMAT) patients. Monitoring and analysis software typically 
follows several metrics simultaneously, using appropriate thresh-
olds for each. However, there may be value in using a single 
composite difference metric (CDM). This is convenient for 
monitoring purposes, but the principal rationale is that small 
but correlated changes in the individual measures may cause the 
composite metric to indicate an error before any of the individual 
measures has exceeded its own threshold (Figure 1).

This study investigates a composite difference metric consisting 
of a weighted power sum of several individual metrics. The 
method is applied to segment-resolved portal dosimetry for 
VMAT treatment for prostate. Various errors are deliberately 
introduced into the treatment plans and the resulting plans 
are delivered to a water-equivalent phantom. Several metrics 
are used individually and simultaneously to detect differences 
between the predicted and measured images. A composite differ-
ence metric is proposed, and an optimisation method to deter-
mine the optimum metric weights is described. The sensitivity of 
the method to the various errors is determined, and the number 
of segments taken during delivery of a treatment fraction for 
each error to become apparent is used as an indicator of success.

METHODS AND MATERIALS
Patients and treatment plans
Treatment plans for six prostate patients were retrospectively 
used in this study. The patients consented for their images to 
be used for research purposes. Three planning target volumes 
(PTVs) were used to create the treatment plans, two based on 
the prostate alone and the third, outermost volume, based on the 
prostate plus seminal vesicles.23,24 The prescribed dose was 60 Gy 
in 20 fractions to the most central PTV. The treatment plans 
consisted of a single 358° gantry arc comprised of 180 segments 
at a spacing of 2°, with collimator angle 2° throughout. The plans 
were created using AutoBeam v5.825 using a dose grid of 4 mm × 

4 mm × 4 mm resolution and a final calculation and renormalisa-
tion was carried out with Pinnacle3 (Philips Radiation Oncology 
Systems, Madison, WI) using a dose grid of 2.5 mm × 2.5 mm 
× 2.5 mm resolution. The beam energy was 6 MV and the plans 
were designed for delivery with a VersaHD accelerator (Elekta 
AB, Stockholm, Sweden).

After inverse planning, AutoBeam was used to recalculate the 
plan on a water-equivalent phantom of dimensions 300 mm long 
(G−T direction) × 300 mm wide (A−B direction) × 200 mm high, 
with the isocentre located at the centre of the phantom. The point 
dose at the isocentre and the mean dose over a volume corre-
sponding to the 24 mm length and 6 mm diameter of a Farmer 
2571 ionisation chamber (Saint Gobain Crystals and Detectors, 
Reading, UK) were noted for verification purposes.

Predicted images
The AutoBeam software was used to calculate predicted portal 
images for each treatment plan. The prediction model projected 
the dose distribution at the isocentre plane onto the image plane 
with 512 × 512 pixels of size 0.8 mm × 0.8 mm at a source-
panel distance of 1600 mm, giving a pixel size of 0.5 mm at the 
isocentre plane. The prediction model distinguished between the 
in-field region of the image panel, defined as the region within 
the beam’s eye view of the treatment beam, and the out-of-field 
region, which was the remaining part of the panel. The in-field 
signal was calculated as the dose at the isocentre plane, corrected 
to give dose in a water-equivalent medium, and projected to the 
image plane, allowing for exponential attenuation. The out-of-
field signal was calculated as a uniform signal, proportional to 
the field size and based on a scatter factor as a function of the 
mean equivalent path length from isocentre plane to detector 
plane. The union of both in-field and out-of-field regions was 
then convolved with a pair of Gaussian scatter kernels to allow 
for in-panel scatter.5

Previous work16,26 indicated that an accurate prediction model 
was important. This was because a more accurate predic-
tion led to a lower error threshold, which in turn allowed for 
greater sensitivity to errors. In the present study, a model of 
couch attenuation between the isocentre and the image panel 
was therefore included. This model consisted of an additional 
radiological path length between the isocentre plane and the 
image plane, for gantry angles between 300° and 60° through 
0°. The additional path length was 8.0 mm, divided by the 
cosine of the gantry angle so as to allow for oblique passage 
through the couch. The path length at gantry angle 60° was 
therefore 16 mm.

A model of gantry and panel sag was also used to account for 
any movement of the radiation isocentre and image panel. Portal 
images for a 100 mm × 100 mm field were acquired at all gantry 
angles at intervals of 10° and the centre of the imaged field and the 
central image intensity were evaluated. Lateral displacement of 
the panel and variation in intensity were negligible, but the longi-
tudinal displacement of the panel was found to be significant and 
predictable. This was similar to the observations of Poludniowski 
et al27. The longitudinal displacement was therefore included 

Figure 1. Principle of the CDM. The individual metrics do not 
respond strongly enough to an error to exceed their respec-
tive thresholds, but the composite difference metric detects 
the error. For a large error, most or all of the metrics exceed 
their thresholds. CDM, composite difference metric.
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in the prediction model as a sinusoidal shift with peak-to-peak 
amplitude of 4 mm.

Predicted images were produced for each control point of the 
VMAT arc and stored as a single binary file for each patient, 
which was subsequently loaded into the AutoDose v. 1.1 software 
to provide the predictions needed for comparison with real-time 
images.16

Measured images
The treatment plans were delivered to a Solid Water phantom 
(Radiation Measurements, Inc., Middleton, WI), with geometry 
as described above. The dose at the isocentre was verified using 
a Farmer ionisation chamber, corrected for accelerator output. 
From the treatment plan for each of the patients, further plans 
were created by deliberately introducing errors into all 180 
segments. The errors consisted of a 4% increase in monitor units, 
a retraction of 4 mm of all multileaf collimator (MLC) leaves, a 
shift of 4 mm of all MLC leaves, and introduction of an air space 
of 20 mm width (left-right direction) × 50 mm height (anteropos-
terior direction) into the phantom, this latter to simulate rectal 
gas.26 In three of the patients, the magnitudes of the errors were 
varied to give a 2–10% increase in monitor units in 2% steps, a 
retraction of 2–10 mm in 2 mm steps of all MLC leaves, a shift of 
2–10 mm in 2 mm steps of all MLC leaves, and introduction of an 
air space of 10–50 mm width in 10 mm steps into the phantom. 
These systematic variations ensured that the method was able to 
detect errors of various magnitudes. The correct and erroneous 
treatment plans were then delivered to the water-equivalent 
phantom.

Portal images were measured using an iViewGT portal imager 
(Elekta), which consisted of an amorphous silicon panel (Perkin 
Elmer, Santa Clara, CA), recording images in JPEG format at a 
size of 512 × 512 pixels.28 The AutoDose software used the gantry 
angle information stored with each image to bin the images 
according to treatment plan segment. In a real-time context, the 
measured images would be compared with the predicted images 
as the treatment progressed, and categorised according to a 
traffic light system, but in this study, the images were stored and 
processed retrospectively, segment by segment. No correction 
for accelerator output was applied in this process. Both predicted 
and measured images were rescaled by 10−4 to bring them into 
a range of approximately 0–100, thereby allowing convenient 
handling.

Difference metrics
Four metrics were used to identify differences between predicted 
and measured images: central axis signal (CAS), mean image 
value (MIV), mean absolute difference as a percentage of 
maximum predicted image intensity (MDM) and mean abso-
lute difference as a percentage of local predicted image inten-
sity (MDL). The latter three of these metrics were computed for 
regions where the predicted image had an intensity of greater 
than 10% of the maximum. A composite difference metric was 
then added:

	﻿‍ CDM =
∑4

i=1 wimwi
i ‍� (1)

where mi were the individual metrics and wi were weighting 
factors, which took values of between 0 and 1. The first two 
metrics had dimensions of image intensity and the latter two 
were percentages, but the rescaling of the image intensities 
allowed for practical computation of the CDM. The CDM itself 
was considered as a measure of the presence of an error, analo-
gous to a human operator assessing a variety of measures, with 
their respective dimensions, and making a decision as to whether 
there was an error.

This form of metric was found by empirical investigation. Other 
forms, such as a simple weighted sum or product were found to 
be less effective, so were not pursued. However, from a theoret-
ical perspective, the usefulness of Equation (1) can be seen from 
the fact that with wi less than 1, the CDM takes the form of a sum 
of functions similar to‍y =

√
x‍. These functions increase rapidly 

at low values of x and then plateau. The result is that the CDM 
has the maximum impact when all of the individual metrics are 
raised slightly, in contrast to a single metric with a large elevation 
in value. The weights are equal to the powers to limit the number 
of combinations of parameter to be searched, while allowing a 
broad search space.

The composite difference metric was calculated for each segment 
of the treatment plan. The first 10% of segments were not 
considered as the image signal was unstable in this period. The 
segments of the plans were approximately evenly weighted, so 
that the first 10% of segments was expected to deliver approxi-
mately 10% of the dose. By removing these segments from the 
analysis, the potential existed for an error in this part of the plan 
to remain unnoticed, allowing incorrect dose delivery. Such an 
error was expected to be much less than the total dose delivered 
by the initial segments. After the first 10% of segments, a running 
sum of 10 segments, or “section value”, was used to provide infor-
mation on each part of the VMAT arc while minimising image 
fluctuation. The section value for segment s consisted of the sum 
of segments s - 9 to s. Figure 2 summarises the data used.

Optimisation of the composite difference metric
Based on the above arrangement of data, an optimisation routine 
was used to determine the optimal values of the weighting factors 
in the CDM. In order to ensure that the results were generally 
applicable and not just optimal for the patients used in the opti-
misation, a leave-pair-out strategy was used. In the develop-
ment of prediction models, particularly in artificial intelligence, 
an optimisation method is commonly used to ensure optimal 
prediction. When the sample used for optimisation is limited, 
the possibility exists that the resulting parameters give good 
prediction for that sample only, and rather less good results in 
further patients, in which case overfitting is said to occur. Cross-
validation is used to avoid this, by selecting an optimisation 
sample for the fitting and then a validation sample for testing 
the results. In leave-pair-out cross-validation, each pair of data 
items is set aside in turn for validation, while the remaining data 
items are used for optimisation. The interested reader is referred 
to the more formal descriptions given by Kohavi29 and Hastie et 
al30. In the context of this study, the CDM weights for four of the 
patients were optimised, and the results were then applied to the 

http://birpublications.org/bjr


4 of 11 birpublications.org/bjr Br J Radiol;94:20201014

BJR  Bedford and  Hanson

remaining two patients. For purposes of uniformity, the optimi-
sation set contained two patients with errors of varying magni-
tude and two patients without (see Measured images), while the 
test set contained one patient with errors of varying magnitude 
and one without. This gave nine unique combinations of optimi-
sation set and test set. The process described below was therefore 
carried out nine times and the median and range of the results 
recorded for the test patients.

The first step in the optimisation of CDM weights (Figure 3) was 
to calculate the thresholds for the individual metrics, based on 
the normal deliveries of the patients (the top row of Figure 2). 
In order to avoid the possibility of false-positive results occur-
ring when transferring optimisation results from the four opti-
mised patients to the two test patients during leave-pair-out, 
the threshold was set as the median plus range of the maximum 
metric value observed in the normal deliveries for the four 
patients. The metrics were evaluated at control points 19–180 
in the normal deliveries, the maximum value of the metric was 

Figure 3. Flow diagram showing the optimisation process for 
determination of weighting factors in the composite differ-
ence metric. The greyscale intensity represents the computa-
tional workload. CDM, composite difference metric.

Figure 2. Summary of data used for evaluation of the com-
posite difference metric. Each cell represents a sequence 
of metric values for segments 19–180 of the treatment plan 
(shown schematically only). There are four metrics and the 
composite difference metric. Measurements are available for 
no error and increasing error of one of four types. MLC, mul-
tileaf collimator.
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found, and the median and range of these maxima over the four 
patients were found. The value of the median plus range was 
taken to be the threshold. A distribution of maximum values 
was therefore implicitly assumed for the error-free cases, and 
the median plus range was taken to be the upper extreme of that 
distribution.

The optimisation process itself consisted of an exhaustive 
search over the combinations of wi, with allowed values ranging 
from 0.00 to 1.00 in steps of 0.05. In contrast with the indi-
vidual metrics, the thresholds for the CDM varied according 
the weighting factors used to calculate the CDM. This was 
simply because the value of the CDM changed according to the 
weighting factors used. The threshold value was therefore recal-
culated every time that the weighting factors were updated, by 
taking the median plus range of the maximum error value in the 

normal deliveries for the four patients. The search method inves-
tigated each of the four patients in turn, and within each patient, 
the error cases in turn. The method examined each running sum 
of 10 control points in turn and evaluated both the individual 
metrics and composite metric. The index of the first segment at 
which an error was detected by any of these five metrics passing 
the threshold was noted and the objective value was calculated 
as the mean of these indices over the four patients and various 
error cases. The final objective value was therefore the minimum 
value of the mean segment index for all patients and error cases 
at which the errors could be detected.

Evaluation of detection ability
The thresholds for the individual metrics and the CDM, together 
with the weights of the CDM, were then applied to the two eval-
uation patients. For comparison purposes, the maximum values 
of the metrics, based on the section images (i.e. running sums 
of 10 control points), reached over segments 19–180, were eval-
uated. The mean index for the two patients at which an error 
was detected was also taken to represent the effectiveness of the 
metric in identifying an error. Specifically, three different error 
detection scenarios were evaluated (Figure 4):

(1)	 Each of the four individual metrics was considered in 
isolation. For each metric in turn, the threshold was set and 
the mean index at which the errors were detected was noted.

(2)	 The four individual metrics were considered separately 
but simultaneously. This corresponded most closely to 
what is currently carried out clinically. The threshold was 
determined for each individual metric, and then the first 
index at which any of the four metrics exceeded its respective 
threshold was noted.

(3)	 The CDM was used in addition to the four individual metrics 
separately, i.e. in addition to Scenario 2. This scenario 
represented the results of the optimisation process.

RESULTS
For all error-free treatment plans, the dose measured using a 
0.6 cm3 ionisation chamber at the centre of the water-equivalent 
phantom is within 1% of the volume-averaged dose predicted by 
the AutoBeam inverse treatment planning system. Examples of 
the section values (i.e. running average of 10 segments) of the 
four individual metrics are shown in Figure 5 for the error-free 
case.

The complete set of weighting factors searched by the optimisa-
tion method for the CDM constitutes a four-dimensional space, 
which is difficult to visualise in its entirety, but several planes 
through this space are shown in Figure 6. Each plot shows the 
variation of the mean segment index at which errors are first 
identified, which is the objective function value used by the 
weight optimisation. In each plot, the mean segment index is 
shown as a function of w1, the weight given to the central axis 
signal, and w2, the weight given to the mean image value. The 
four plots show this region for four different combinations of w3, 
mean difference relative to maximum image intensity, and w4, 
mean difference relative to local image intensity. For simplicity, 
this result does not use the leave-pair-out strategy, so all six 

Figure 4. Three paradigms considered in this study. Each of 
the metrics is considered individually, then together, then in 
combination with the composite difference metric. The scales 
shown on the vertical axes are realistic, but the metrics and 
their thresholds are schematic only. CAS, central axis signal; 
CDM, composite difference metric; MDL, mean difference as a 
percentage of local intensity; MDM, mean difference as a per-
centage of maximum intensity; MIV, mean image value.
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Figure 5. Section values of the four difference metrics for error-free delivery in one patient. The green background indicates that 
the error threshold has not been exceeded, and in the real-time implementation, this background changes to orange (near miss) 
or red (error) for those segments that exceed the chosen thresholds. Note that the scales differ on the vertical axes.

Figure 6. Mean segment index at which errors are first identified, as a function of the weighting factors, w.

http://birpublications.org/bjr
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patients are included. The value of 74 at which the segment index 
plateaus is the value attained by the individual metrics, so the 
combination of the individual metrics and the CDM always 
achieves a lower value than this.

At low values of w3 and w4, there is a clear minimum in the value 
of the segment index, reached with approximately equal values 
of w1 and w2. This minimum region rotates somewhat at higher 
values of w3 and w4, and is less marked. At values of w3 and w4 
approaching unity, the segment index levels out at the plateau 
value of 74.

The median and range of the CDM weights chosen by the opti-
misation process are shown in Table 1. The constituent metrics 
are similarly weighted, with the exception of the mean differ-
ence relative to local image intensity. The form of the optimis-
ation space for this exact combination of w3 and w4 is shown in 
Figure 7.

The segment index at which the errors are identified is 
summarised in Table 2. Each of the nine combinations of patient 
in the leave-pair-out approach yields a mean segment index for 
error identification, and the table shows the median and range 
of these values. Considering the metrics individually, the central 
axis signal is moderately sensitive to errors and allows timely 
detection of errors. Mean image value is not responsive to errors, 

because an increase in image intensity in one part of the image 
can be offset by a decrease in image intensity elsewhere. The 
mean absolute differences are the most effective ways of detecting 
errors in a timely manner, if a single metric is to be used. One 
patient of the six exhibits a false-positive result for the central 
axis signal and mean image value in all of the three cases where 
that patient is used in the test set. In other words, the thresholds 
for those image metrics are exceeded for the normal delivery.

Taking all of these metrics and examining them with respect 
to their respective thresholds gives a more timely response to 
errors than using any single metric. This is also shown in Table 2. 
A further reduction in mean value of segment index at which 
errors are detected is seen when the composite difference metric 
is used in addition to the individual metrics. The benefit of the 
CDM, expressed as a ratio of the segment index for error detec-
tion using multiple separate metrics plus CDM vs that using 
only multiple separate metrics, has a median value of 0.83 (range 
0.73–0.98). The one patient that exhibits a false-positive result 
for the individual metrics also shows a false-positive result for 
multiple separate metrics and for the CDM, since these metrics 
are based on the individual metrics (see paradigms 2 and 3 of 
Figure 4).

These results are based on multiple patients, various types of 
error and various magnitudes of error taken together, but the 
magnitudes of the composite difference metric for the various 
errors separately are shown for a single patient in Figure  8. 
This figure shows the maximum value of the CDM attained 
in segments 19–180. The indices of the segments at which the 
errors are first detected, by passing the thresholds, are shown 
for a single error magnitude in all patients in Figure 9. Note 
that the values of the individual metrics are not explicitly 
included in Figure 8, but they are used both individually and 
in the CDM in Figure  9. From Figure  9, it can be seen that 
an aperture opening is the earliest to be detected of the four 
types of error, followed by an aperture shift, with a monitor 
unit error and air gap error being less easily detected. It is clear 
that the inclusion of the CDM increases the responsiveness of 
the system to errors. For the 4 mm aperture opening, there is 

Table 1. Median and range values of the optimal weightings 
for the composite difference metric, obtained using the leave-
pair-out method

Metric Weight
CAS 0.15 (0.00–0.45)

MIV 0.10 (0.10–0.35)

MDM 0.15 (0.10–0.25)

MDL 0.00 (0.00–0.20)

CAS, central axis signal; MDL, mean absolute difference relative to 
local image intensity; MDM, mean absolute difference relative to 
image maximum; MIV, mean image value.

Figure 7. Mean segment index at which errors are first identi-
fied, as a function of the weighting factors, w, for the optimal 
combination of w3 and w4.

Table 2. Median and range values of the mean segment index 
at which errors are detected, using individual metrics, multiple 
separate metrics and the composite difference metric

Metric Segment index
CAS 136 (58–170)

MIV 156 (138–181)

MDM 101 (82–146)

MDL 99 (85–141)

All of the above with respect to their own 
respective thresholds

87 (40–130)

All of the above plus CDM 73 (35–95)

CAS, central axis signal; CDM, composite difference metric; MDL, 
mean absolute difference relative to local image intensity; MDM, 
mean absolute difference relative to image maximum; MIV, mean 
image value.
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little difference between multiple separate metrics and use of 
the CDM due to the immediate detection of errors at Segment 
19 in both instances. There is also very little difference in the 

case of a 4 mm aperture shift, for a similar reason. However, 
in certain cases, there are very marked improvements in error 
detection.

Figure 8. Maximum value attained by the composite difference metric in a single patient over segments 19–180 for various error 
types and magnitudes. The dashed line shows the threshold, based on the case with no error.

Figure 9. First segment at which an error is detected in the six patients, for various error types. CDM, composite difference metric; 
MSM, multiple separate metrics.

http://birpublications.org/bjr
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DISCUSSION
The composite difference metric used in this study shows 
improved timeliness of error detection compared to a single 
difference metric or multiple difference metrics compared 
against their own respective thresholds. The mathematical form 
of the CDM itself gives maximum benefit when several indi-
vidual metrics show slightly elevated values. Other forms may 
be possible, but empirical experimentation has shown that forms 
such as a simple-weighted sum or weighted product are not as 
effective as the form given by Equation (1), and in some cases 
fail to produce any benefit at all. Nevertheless, the metrics used 
in this study are presented as a proof of concept, and there is 
scope for further investigation of different forms of metric. With 
this in view, the optimisation method presented in this study 
(Figure 3) is not dependent on the exact form of the CDM used, 
as the CDM is merely evaluated at each iteration of the process. 
The magnitude of the improvement with the CDM is around 
15–20%, which is expected to translate into a corresponding 
sparing of incorrectly delivered dose, should an error occur.

Unlike the specific tests used by Passarge et al,31 each of which 
is designed to identify a particular error, the metrics used in 
the present study are general image comparison metrics. This 
is to enable as broad as possible a range of errors to be iden-
tified. Furthermore, it is likely that the same approach can be 
used in the context of back-projection portal dosimetry, but 
with the metrics chosen as structure-based, dosimetric metrics. 
For example, Olaciregui-Ruiz et al22 use a variety of dosim-
etric statistics in conjunction with the back-projection method 
to identify anatomical changes during treatment. Similarly, the 
optimal weightings of the composite difference metric may vary 
for different treatment sites, in the same way that alert criteria 
may be adapted specifically for each treatment site.32 γ analysis 
has not been used in this study as allowing a small spatial error 
in the segments of a VMAT plan may cause too large an error in 
the overall delivered dose.

As Mijnheer et al33 point out, the power to detect errors depends 
on the baseline accuracy of the portal dosimetry prediction 
method. If there is a large difference between predicted and 
measured images in the absence of errors, the thresholds are 
high, so that errors are less quickly detected. With this in mind, 
care has been taken in this study to ensure as accurate a predic-
tion model as possible, with the inclusion of couch attenuation 
and gantry sag in the model. The images are initially collated 
according to segment of the treatment plan and then a running 
sum of 10 segments is used to give an optimum balance between 
agreement with predictions and useful information on sections of 
the arc. Similar considerations are also used by other authors.34,35

Even with careful attention to the quality of the prediction and 
the handling of the images, there is still some dependence on 
the thresholds used to signify an error. In clinical practice, the 
thresholds are set from a sample of normal patient results, and 
then applied to further patients. This has been modelled in this 
study by calculating the thresholds on the optimisation patients 
and then applying them to the evaluation patients. By estimating 

the maximum metric value likely to be encountered in the 
normal deliveries using the distribution of maxima in the opti-
misation patients, the number of false positives is minimised. 
However, one patient in this study, with higher metric values for 
the normal delivery, gives false-positive results. False positives 
are particularly unwanted in the real-time context as they are 
disruptive to the treatment of the patient. It is clear that a much 
larger collection of normal data are needed for the establishment 
of optimal thresholds, so that errors can be detected quickly, but 
false positives do not occur frequently.

This observation suggests that the use of artificial neural 
networks and deep learning may be beneficial for combining the 
metrics without requiring explicit thresholds.36–38 In this case, 
the thresholds are implicitly built into the neural network in the 
various nodes and layers from which the network is composed. 
The connection together of the initial nodes of the network by 
the deeper layers may provide a similar effect to the composite 
difference metric examined in the present study.

As with other studies,26,33,39 the method more readily identifies 
errors in MLC leaf positioning and is less accurate in identifying 
material changes such as air gap errors (Figure 9). The sensitivity 
to MLC opening errors occurs because there is an increased 
output factor as well as a shift in position. Consequently, this type 
of error can be identified quickly in the sequence of segments. 
This study does not investigate patient positioning errors as 
portal dosimetry is not very sensitive to positioning errors,5,33 
and is therefore best implemented in conjunction with some 
means of position verification such as cone beam CT. There are 
indications, however, that the segment-resolved nature of real-
time portal dosimetry does allow for some detection of these 
errors.21

CONCLUSIONS
A composite difference metric constructed from a weighted 
power sum of individual metrics is a valuable addition to 
the process of error detection in the context of intrafraction 
segment-resolved portal dosimetry. The metric is able to identify 
variations in measured portal images with respect to predicted 
images before the separate measures exceed their respective 
tolerances. Optimal values of the weighting factors for the metric 
can be found by using an exhaustive search in conjunction with 
appropriate thresholds based on normal deliveries. Application 
of the method to a series of prostate treatment images shows that 
simulated errors can be detected approximately 20% earlier than 
when using several measures separately.
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