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Abstract
Cell-based,mathematicalmodeling of collective cell behavior has become a prominent
tool in developmental biology. Cell-based models represent individual cells as single
particles or as sets of interconnected particles and predict the collective cell behavior
that follows from a set of interaction rules. In particular, vertex-based models are
a popular tool for studying the mechanics of confluent, epithelial cell layers. They
represent the junctions between three (or sometimes more) cells in confluent tissues as
point particles, connected using structural elements that represent the cell boundaries.
A disadvantage of these models is that cell–cell interfaces are represented as straight
lines. This is a suitable simplification for epithelial tissues, where the interfaces are
typically under tension, but this simplificationmaynot be appropriate formesenchymal
tissues or tissues that are under compression, such that the cell–cell boundaries can
buckle. In this paper, we introduce a variant of VMs in which this and two other
limitations of VMs have been resolved. The new model can also be seen as on off-
the-lattice generalization of the Cellular Potts Model. It is an extension of the open-
source package VirtualLeaf, which was initially developed to simulate plant tissue
morphogenesis where cells do not move relative to one another. The present extension
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of VirtualLeaf introduces a new rule for cell–cell shear or sliding, from which cell
rearrangement (T1) and cell extrusion (T2) transitions emerge naturally, allowing the
application of VirtualLeaf to problems of animal development. We show that the
updated VirtualLeaf yields different results than the traditional vertex-based models
for differential adhesion-driven cell sorting and for the neighborhood topology of soft
cellular networks.

Keywords Cell-based modeling · Vertex-based model · Cellular Potts Model ·
Developmental biology · Epithelial tissues · Junction remodeling · Cell sorting ·
Bubbly vertex model · Cell rearrangement · Epithelial morphogenesis

1 Introduction

How cells form tissues, organs, and organisms remains one of the most intriguing and
most central questions of biology. Recent theoretical approaches to study collective
cell behavior are taking a prominent role in addressing these questions. Theoretical
approaches provide deeper intuition about processes that typically are unfamiliar to
the researchers by testing the physical plausibility of speculative hypotheses or by
making predictions that can be tested experimentally. Theory can aid the analysis of
data-rich time-lapse images of cell movements during development (Brodland et al.
2014; Merkel and Manning 2017) by simulating how the behavior of individual cells
might lead to collective behavior and how collective movements might influence indi-
vidual cell behaviors. To support theoretical analysis of tissue formation, a large range
of mathematical methods have been proposed. These range from systems of partial
differential equations models (see, e.g,. Keller and Segel 1970, 1971; Painter et al.
2015) to discrete methods that describe dense multicellular structures as interacting
particle systems (see, e.g., Glazier and Graner 1993; Graner and Glazier 1992; New-
man 2005; Sozinova et al. 2006; Voss-Böhme and Deutsch 2010; Woods et al. 2014;
Smeets et al. 2016; Barton et al. 2017; Ghaffarizadeh et al. 2018 and Liedekerke et al.
2015 for review).

In contrast to continuum models, such so-called cell-based (Merks and Glazier
2005; Merks 2015) or single-cell-based methods (Anderson et al. 2007) have the dis-
advantage that formal dynamical analyses are impossible except in relatively simple
cases (Voss-Böhme and Deutsch 2010). Nevertheless, in many biological applica-
tions cell-based models are preferred as they can incorporate ‘biological rules’ that
reflect more physiologically realistic biology than can be achieved easily in contin-
uum methods. For example, Odell et al. (1981) posed a calcium sensitive feedback
system to spread a contraction wave. As developmental biologists adopt biophysical
methods and borrow principles of control theory to explain tissue formation, simu-
lations will need to capture interactions between multiple cell types and the diverse
forms of cell–cell communication those interactions encode (Lander 2007). Models
will further need to integrate structural, mechanical, and biochemical cues with down-
stream effectors of morphogenesis such as cell division, cell death events, and cell
differentiation events (Maree and Hogeweg 2002; Hester et al. 2011; Boas et al. 2015;
Palm et al. 2016). Cell-based simulation methods provide a rich framework to study

123



3324 H. B. Wolff et al.

multiscale phenomena such as these, in that they simulate the dynamics of the cell and
the tissue as a whole, while subcellular dynamics can be naturally integrated, such as
gene regulation, secretion of signaling molecules, the dynamics of the cytoskeleton,
and electrophysiological mechanisms (Boas and Merks 2014; Belmonte et al. 2016;
Sluka et al. 2016; Kudryashova et al. 2017). Thus, cell-based modeling approaches
enable integration of the physics of collective cell behavior with diverse modes of
subcellular biological regulation.

A large range of cell-based modeling techniques are available; they can be
roughly classified into single-particle andmultiparticle methods, and lattice-based and
off-lattice techniques (Merks 2015). Single-particle techniques are efficient computa-
tionally and have found wide application, but they also have limitations. For example,
cell shape can affect the outcome of cell–cell interactions: cells that mutually attract
one another via a chemoattractant form network-like structures if they are elongated,
while they form separate ‘islands’ if they are rounded (Merks et al. 2006). Also, it
can be important that subcellular compartments interact with their local environment
relatively independently from one another. For example, contact inhibition of cellular
protrusions can promote directional migration of neural crest cells (Carmona-Fontaine
et al. 2008). Although it is possible to simulate such problems using single-particle-
based methods [see, e.g., Palachanis et al. (2015) for effects of cell shape in vascular
patterning, Woods et al. (2014) for neural crest cell migration; and for cell sorting
see, e.g., Sulsky et al. (1984); Graner and Sawada (1993); Osborne et al. (2017)],
multiparticle methods allow for a large flexibility in cell shape that is more directly
related to cell shapes acquired from time-lapse microscopy. Multiparticle methods
are also better suited for the simulation of local mechanisms responsible for collective
behavior (e.g., contact inhibitionWoods et al. 2014), as theymake it possible to reduce
cell-level assumptions to subcellular mechanisms.

Two widely used multiparticle techniques for cell-based modeling include the Cel-
lular Potts Model (CPM) and the vertex-based model (VM). The CPM represents
cells as (usually connected) domains of lattice sites on a regular lattice. Cells move
on the lattice by randomly extending or retracting their domain to adjacent lattice
sites, according to a Hamiltonian energy function that describes the contractile and
viscoelastic structures that form each cell, the physical adhesive interactions between
cells, and in some cases, extracellular materials. Alternatively, structural elements
have been used to describe the cell boundaries and cross-linking elements for the cell
interior (Odell et al. 1981). A simplified version of this model is the vertex-based
model (VM) (Weliky and Oster 1990; Honda et al. 1983; Staple et al. 2010). These
represent the junctions between three (or sometimes more) cells in confluent tissues as
point particles, connected using structural elements that represent the cell boundaries.
Where the CPM defines tissues as assemblages of cells with individual cells repre-
sented as collections of adjacent lattice sites, VM describes the tissue as a polygonal
tessellation of junctionally connected cells with each cell represented by a series of
nodes representing three-cell junctions.

In principle, CPM and VM are equivalent. Like cells in CPMs, the dynamic move-
ments of cells in VMs are driven by the physical properties of cell–cell interfaces,
which are governed by a Hamiltonian function that usually includes interfacial ten-
sions, cell adhesion, and cell area constraints. The parameters of CPM or VM can
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often be rescaled such that the model can be run in the other formalism (Magno et al.
2015). However, some cases can arise where the two modeling frameworks cannot be
interconverted (Osborne et al. 2017). For instance, because the string-like elastic ele-
ments in their basic formulation describe cell–cell interfaces and require all cells to be
interconnected, VMs are unsuitable for non-confluent tissues. In this paper, we discuss
further limitations of traditional VMs including (a) description of cell–cell interfaces
as straight lines, (b) separation of membrane fluctuations and model dynamics, and (c)
algorithms that represent cell neighbor changes with rule-based T1 and T2 transitions.

In this paper, we introduce a variant of the VM in which these three limitations
have been resolved. Themodel is an extension of the open-source package VirtualLeaf
(Merks et al. 2011; Merks and Guravage 2012) (also see the re-engineered derivative
Virtual Plant Tissue; De Vos et al. 2017), which was initially developed to simulate
plant tissuemorphogenesiswhere cells do notmove relative to one another.VirtualLeaf
differs from traditionalVMs in that (a) cell interfaces are represented bymultiple nodes
that allowmembrane fluctuations; (b) tissue topology changes exclusively through cell
division with no T1 or T2 transitions; and (c) tissue dynamics are advanced used a
Metropolis algorithm that incorporates membrane fluctuations. The present extension
of VirtualLeaf introduces a new rule for cell–cell shear or sliding, from which T1 and
T2 transitions emerge naturally, allowing the application of VirtualLeaf to problems
of animal development.

We will discuss two cases for which the updated VirtualLeaf yields different results
than traditional VM. First, we discuss simulations of differential adhesion-driven cell
sorting and show that the new update rule for cell sliding facilitates complete cell
sorting. We will then turn our attention to epithelial dynamics and discuss cases for
which the flexibility of cell membranes affects the neighborhood topology of soft
networks (Farhadifar et al. 2007).

2 Methods

VirtualLeaf represents confluent tissues in two dimensions as a set of interconnected
polygonal cells. A cell Ci = {Vi , Ei , αi } is defined by a set of n vertices, Vi =
{v1 . . . vn} that are connected bym edges, Ei = {e1 . . . em}, and a set of cell attributes,
αi . Adjacent cells share the same vertices and edges. Thus, the tissue T = {C, V , E}
is defined by the set of all cells in the tissue, C , and by all vertices in the tissue,
V = ⋃

i∈T Vi and all edges, E = ⋃
i∈T Ei (Fig 1a). A Hamiltonian function, H ,

describes the balance of passive, mechanical forces in the tissue, including adhesive
forces between cells, membrane tensions, and expansive cellular forces. The exact
form of the Hamiltonian differs between models; in its simplest form (Merks et al.
2011) it includes a volume conservation term to resist compression of the cells and a
line tension term to resist expansion of the membranes,

H = λA

∑

c∈C
(A(c) − AT (c))2 + λM

∑

e∈E
(‖e‖ − LT )2 . (1)
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The first term on the right-hand side (RHS) is the volume conservation term. Here
AT (c) ∈ αc is the resting area of cell c, i.e., the area it would take up in the absence of
counteracting compressive or expansive forces, A(c), the actual area of cell c, and λA

is a Lagrange multiplier. The second RHS term gives the energy of the cell boundary,
which is represented as a set of connected springs of rest length LT . The sum runs over
the edges e taken from E , the set of all edges in the simulation, and λM is a Lagrange
multiplier.

We update the model using Metropolis dynamics: We iteratively select a random
node vi and attempt to move it to a randomly chosen new position v′

i = vi + ξΔx ,
with ξ ∈ {[−1/2, 1/2], [−1/2, 1/2]}, i.e., a random vector chosen uniformly from a
square of size 1× 1 centered at (0, 0), and Δx the step size. The algorithm calculates
the change of the Hamiltonian resulting from the attempt, ΔH , and accepts the move
if ΔH < 0. To keep the system from settling into local minima and to mimic active,
random cell motility, we also accept moves increasing the Hamiltonian ΔH > 0 with
Boltzmann probability P(ΔH) = exp(−ΔH/T ), with the Boltzmann temperature,
T , setting the amount of random cell motility or ‘noise’ added in this way.

The key novelty that makes the model applicable to animal tissues is that here we
allow cells to move through the tissue. To this end, we introduce a sliding operator
to further reduce the Hamiltonian (Fig. 1c). The sliding operator allows a cell edge
that is part of a tricellular or higher order junction to ‘hop’ to another vertex. For
example an edge connecting nodes v1 and v2 can be moved to connect nodes v2
and v3. Similar to the regular moves, a slide is accepted with probability P(ΔH) =
{1,ΔH < 0; exp(−ΔH/T ),ΔH > 0}.

A single Monte Carlo Step (MCS) involves cycling over all nodes v in random
order. For each node, we first attempt to move it. If the node is of order 3 or higher,
we also try to slide it (see flowchart in Fig. 1f). After completion of one MCS, the
descriptions of the cell membranes are refined if necessary, so as to keep an approx-
imately even distribution of edge lengths. To do so, all edges e ∈ E whose length
exceeds a threshold, ‖e‖ > lmax, are split into two by inserting a new vertex in the
middle. Similarly, if ‖e‖ < lmin, the edge is deleted from the tissue, replacing the two
vertices and their connections for a new, fused vertex containing the connections of
the two original vertices combined.

Independent of this Hamiltonian description of cell mechanics and cell motility,
additional rules motivated by the biological problem can be included, including cell
growth, cell division, and subcellular models describing the genetic or metabolic net-
works regulating cell behavior using differential equations (Merks et al. 2011). If the
additional rules can be safely assumed to run at a much slower rate than the cellular
mechanics, we make a quasi-steady state assumption for the cellular mechanics: First,
we iterate the Metropolis dynamics until the Hamiltonian has practically stabilized,
that is, if ΔH/Δt < ε, with ε a small number; then, we apply the additional rules for
a number of time steps. In other models (i.e., the cell sorting model), the Metropolis
algorithm describes a kinetic mechanism that does not stabilize within the course of a
simulation. In those cases, we apply an operator splitting approach in which theMonte
Carlo steps are alternated with steps of the additional rules.
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ΔH<0 
or P(ΔH)<ξ ?

update node

reject move

attempt to slide edge

update slide

reject slide

   move random node 

Add/delete nodes
(T1/T2 transitions)

tried all
nodes?

Apply biological rules
Cell division, regulation, etc.

Initialize

End of Monte Carlo Step

ΔH<0 
or P(ΔH)<ξ ?

A

B

C

D

F
E

Fig. 1 Overview of the cell-basedmodel. a Polygonal representation of a collection of cells. CellCi consists
of edges (green) li j connected by nodes vi and v j . Nodes that connect three or more cells are shown in
dark blue. The 2 connected nodes (shown in light blue) account for membrane flexibility. b–e Topological
rearrangements of vertices and edges. Numbers represent cells. New vertices and edges are green, and red
vertices and edges are to be removed. Blue edges are moved by sliding. b Traditional approach through T1
transitions: One edge is added and one edge is removed; c Novel approach through slide events having the
same topological effect as the T1 transition shown in (b); d Cell division; e T2 transition: A cell is removed
from the tissue and replaced with a tricellular junction; f Flow chart of an extended VirtualLeaf simulation.
During a Monte Carlo step, VirtualLeaf attempts to move and slide all nodes once in a random order. After
one such loop, the network is rearranged, and ‘biological rules’ are applied (Color figure online)
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3 Results

We validate the model extensions by looking at two classical problems: (a) differential
adhesion cell sorting (Glazier and Graner 1993; Graner and Glazier 1992) and (b) cell
packing in epithelial monolayers (Farhadifar et al. 2007). VirtualLeaf provides new
insight into both problems.

3.1 Cell Sorting

Classic experiments by Holtfreter (reviewed in Steinberg 1996) have shown that
cells of different embryonic tissues can phase separate. A number of closely related
hypotheses have been proposed to explain this phenomenon. Steinberg (1963, 2007)
has proposed the differential adhesion hypothesis. In this view, cell sorting is due to
the interplay of differential adhesion and random cell motility, which progressively
replaces weaker intercellular adhesions for stronger adhesions. In addition to differ-
ential adhesion, contraction of the cortical cytoskeleton contributes to the equilibrium
configurations of mixed cell aggregates (Krieg et al. 2008), leading to the differential
surface contraction (Harris 1976) aka differential interfacial tension (Brodland 2002)
hypothesis.

Because of its importance for biological development and the possibility to predict
the configuration corresponding with the energy minimum from the differential inter-
facial energies (Steinberg 1963), cell sorting has become a key benchmark problem for
cell-based modeling methodology. Cell sorting has been reproduced in a practically
all available cell-based models, including cellular automata (Antonelli et al. 1973),
vertex-based models (Hutson et al. 2008), center-based models (Graner and Sawada
1993), and the Cellular Potts Model (Graner and Glazier 1992; Glazier and Graner
1993), but small differences are observed (Osborne et al. 2017): The kinetics of cell
sorting differs between cell-based modeling methods as well as the extent to which
the simulation gets trapped into local minima. Also, methodology relying on single
particles to represent a cell may require unrealistically long interaction lengths or
unrealistic cell motility models to achieve complete cell sorting (Osborne et al. 2017)

Following previous Cellular Potts and vertex-based approaches (Graner andGlazier
1992; Glazier and Graner 1993; Hutson et al. 2008), we assume that cell motility is
governed by volume conservation and an adhesion energy defined at all cell–cell and
cell–medium boundaries,

H = λA

∑

c∈C
(A(c) − AT (c))2 +

∑

e∈E
J (e → L, e → R) ‖e‖ (2)

with A(c) and AT (c) the actual area and resting areas of the cells. The adhesion energy
is a sum over all edges e ∈ E in the tissue, with parameter J (e → L, e → R) the
adhesion energy per unit cell-cell interface separating the cell at the left (L) and the
cell at the right (R) of the interface, where one cell can be the medium.
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3.1.1 Sliding Operator Enables Complete Cell Sorting

Figure 2a–c and Videos S1–S3 show the simulation results for three typical settings of
the adhesion parameter J. The simulations are initiated with a configuration of 20×20
cells of size 10 × 10, with mixed or segregated cell type assignments as shown in the
first column of Fig. 2. The target area is set equal to the initial area, at AT = 100.
The step size for the Monte Carlo algorithm is Δx = 0.5, lmin = 6, and lmax = 8. For
these parameter settings, the nodes are moved randomly over a square of side 1/20 of
that of the initial length of the cell–cell interfaces, and one cell–cell interface consists
typically of one to two edges, such that sliding moves occur over half to a full cell–cell
interface.

In Fig. 2a, the heterotypic adhesion, i.e., the adhesion between green and red
cells, is stronger than the homotypic adhesion, i.e., J (green, green) = J (red, red) >

J (red, green). The model evolves toward a checkerboard configuration, which max-
imizes the contact area between red and green cells. Figure 2b, c shows example
simulations for which the homotypic adhesion is stronger than the heterotypic adhe-
sion, that is, J (green, green) = J (red, red) < J (red, green). In addition, in Fig. 2b
the adhesion of the green cells with the surrounding medium is stronger than that of
the red cells, i.e., J (green,ECM) < J (red,ECM). Cell sorting requires stochastic
boundary movement; at T = 0 no energetically unfavorable moves are accepted, and
the configuration gets stuck at the initial condition, whereas cell sorting is accelerated
at higher temperatures (Fig. 2e). Altogether, in analogy with the Cellular Potts Model
(Graner and Glazier 1992; Glazier and Graner 1993), the extended VirtualLeaf repro-
duces the key phenomena related to differential adhesion-driven cell rearrangement:
cell sorting, checkerboard pattern formation, and engulfment.

In order to represent cell rearrangements, previous vertex-based simulations applied
a rule-based T1 transitions. In these simulations, the T1 transition rearranges four
adjacent cells as shown in Fig. 1b. The rule-based T1 transition is initiated if the
length of an intercellular interface, i.e., an edge e connecting a 3-connected node v1
with a second node v2, drops below a threshold, ‖e‖ < θT1. The T1 transition then
deletes e by fusing v1 and v2 and generates a new edge, e⊥, perpendicular to e. In the
absence of noise terms, vertex-based models based on such rule-based T1 transitions
generally cannot achieve complete cell sorting, except in specific three-dimensional
cases where almost complete cell sorting can be achieved (Hutson et al. 2008).

In the extended VirtualLeaf, T1 transitions are represented by a combination of two
sliding moves, where both moves are driven by the Hamiltonian (Fig. 1c). As a first
test of the extent to which the sliding operator changes the kinetics of cell sorting, in
a second set of simulations we replaced it for rule-based T1 transitions. Figure 2d and
Video S4 show a cell sorting experiment with only rule-based T1 transitions and a
cellular temperature of T = 10, the same cellular temperature as that used in Fig. 2c.
Without the sliding operator, cell sorting proceeds well over short times, with small
clusters of green and red cells forming, but cell sorting remains incomplete. We have
currently not investigated the causes of this in detail, but a potential factor is that the
sliding operator is fully integrated in the energy minimization processes, in contrast to
the rule-based treatment of T1 transitions. Also changing the threshold for rule-based
T1 transitions, currently set at θT1 = Δx/2 = 0.25, will likely speed up cell sorting.
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500000 MCS100000 MCS50000 MCS10000 MCS0 MCS

C

A

B

D

E T=0 T=5 T=10 T=20

Fig. 2 Differential adhesion-driven cell rearrangement in the VirtualLeaf. Initial condition: 200 green and
200 red cells of AT = A(0) = 100, as shown in first column, lmin = 6, lmax = 8, Δx = 0.5; T = 10 in
(a–d): a cell mixing (J (green, green) = J (red, red) = 20, J (red, green) = 10, J (cell,medium) = 30),
b engulfment (J (green, green) = 20, J (red, red) = 10, J (red, green) = 20, J (green,medium) = 20,
J (red,medium) = 40); c cell sorting (J (green, green) = 20, J (red, red) = 10, J (red, green) = 30,
J (cell,medium) = 30); d incomplete cell sorting with only T1 transitions with parameters as in (c) with
θT1 = 0.25; e configurations of cell sorting experiments at 500.000MCSwith increasing values of intrinsic
motility (T) with parameters as in c. Simulation time is expressed in Monte Carlo Steps (MCS) (Color
figure online)

We will leave a full analysis of the sliding operator relative to the rule-based treatment
of T1 transitions to future work.

3.1.2 Differential Cortical Tension

As an experimental test of the differential adhesion hypothesis, Krieg and coworkers
(Krieg et al. 2008) have measured the adhesive forces between induced germline pro-
genitor cells from early zebrafish embryos. The heterotypic adhesion forces between
induced endodermal, mesodermal, and ectodermal cells were approximately equal,
whereas the homotypic adhesion forces differed between germ layers. Mesodermal
cells adhered most strongly to one another, followed by endodermal cells, and ecto-
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dermal cells had the weakest adhesive forces to one another. Based on these data, the
authors estimated relative values of the adhesion parameters, J , in a Cellular Potts
Model. Strikingly, in the Zebrafish germline progenitor aggregates the least coherent
ectodermal cells sorted to themiddle of the cellular aggregates. This finding contradicts
the differential adhesion hypothesis (DAH), which predicts that the least cohesive cells
move to the aggregate’s periphery, see, e.g., the CPM (Graner and Glazier 1992) and
our own simulations (Fig. 3, top-left to bottom-right diagonal). Krieg and coworkers
demonstrated that the contradictory prediction can be attributed to differential cortical
tension (DCT), an alternative to DAH (Harris 1976), with the highest cortical tension
occurring at cell–medium interfaces. To implicitly incorporate cortical tension effects
into the Cellular Potts Model, Krieg and coworkers reinterpreted the CPM such that a
high value of J corresponded with a high interfacial tension.

To test if VirtualLeaf could represent both DAH and DCT explicitly in the same
model framework,wemodified theHamiltonian (Eq. 2) to add a cell-dependent cortical
tension term that is only active at the tissue boundaries. The newHamiltonian becomes

H = λA

∑

c∈C
(A(c) − AT (c))2 +

∑

e∈E
J (e → L, e → R) ‖e‖

+ λcortical
∑

{c∈C|c∩∂C}
(P(c) − PT (c))2 (3)

with ∂C , the boundary of the tissue, λcortical, a parameter and PT (c) a cell type- specific
target perimeter. P(c) = ∑

e∈(c→E) ‖e‖ is the perimeter of cell c, and PT (c), a target
perimeter. Note that the cortical tension term was only applied at the cell–medium
interfaces, which would be equivalent to setting λcortical = 0 at cell–cell interfaces.
The adhesion parameters were set such that J (r , r) < J (g, g) < J (g, r), i.e., red
cells are more coherent than green cells, and red–green interfaces are energetically
unfavorable. We have also assumed increased line tension at the boundary of the cell
aggregate due to myosin activity (Krieg et al. 2008), by setting J (l, M) = 0 and
J (d, M) = 0, but this has little effect on the results.

Figure 3 shows a parameter study of this model. If the two cells have equal cortical
tension at the boundary of the aggregate (top-left to bottom-right diagonal and Videos
S5 and S6), the coherent red cells sort to the center, as expected in the absence of
additional assumptions. The sorting order is reversed if PT (r) > PT (g), thus reducing
the cortical tension of red cells relative to that of the green cells (Fig. 3, upright corner
and Video S7).

3.2 Epithelial Cell Packing

The structure of multicellular tissues and the shape of the constituent cells are driven
by the interplay of cell division, cell growth, intercellular frictional forces, and global
tissuemechanics. Epithelial tissues of plants (Kim et al. 2014) and of animals (Farhad-
ifar et al. 2007) can be represented by two-dimensional tessellations and are, therefore,
a popular model system for studying morphogenesis and emergence of tissue form
(Lewis 1926). In particular, the number of neighbors in many epithelial tissues shows
a characteristic distribution: Hexagonal cells are the most frequent, followed by pen-
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Fig. 3 Parameter study of interface-specific cortical tension. Simulations with cell type-specific cortical
tension applied only at cell–medium interfaces with the target perimeter PT (c) equal to 20, 30 and 40 as
indicated in the axis labels. All other parameters remain unchanged (see Supporting Text S1). This figure
shows the tissues after a simulation of 500,000 MCS (Color figure online)

tagonal and heptagonal cells. Although the experimentally observed distribution can
arise due to random cell division alone (Gibson et al. 2006), the biophysics of cell
packing, i.e., programs of cell rearrangement and patterning of interfacial tensions,
allows tissues to assume alternative, often narrower, i.e., more hexagonal neighbor
distributions (Farhadifar et al. 2007). In the absence of cell rearrangements (as, e.g.,
in plant tissues), mathematical simulations have shown that cells must divide over the
center of mass and the division plane must follow shortest paths, thus forming equally
sized, symmetrically shaped daughter cells (Sahlin and Jönsson 2010).

3.2.1 VirtualLeaf can Reproduce Key Features of Epithelial Cell Packing

To see if our model, in particular the flexible cell membranes and the sliding operator,
could lead to different predictions for epithelial tissues, we here focus on the results
described by Farhadifar et al. (2007) using themodel implementation detailed in Staple
et al. (2010). Their vertex-based model uses a Hamiltonian of the form,

H = λA

∑

c∈C
(A(c) − AT (c))2 +

∑

e∈E
J‖e‖ + λcortical

∑

c∈C
(P(c) − PT (c))2 , (4)

123



Adapting a Plant Tissue Model to Animal Development… 3333

with PT (c) = 0 and J = J (e → L, e → R) the same for all cell interfaces. In the
absence of cell division, in this model two distinctive equilibrium cell shape patterns
or ‘ground states’ can emerge depending on the parameters. For positive line tension,
J > 0, or negative line tension, J < 0, with a sufficient high contractility, λcortical, the
global energy minimum in the absence of cell divisions (ground state) of the vertex
model is a regular, hexagonal tessellation with cellular areas smaller than the target
area. The hexagonal tessellation resists compression, expansion, or shearing. The
alternative global minimum is a ‘soft network,’ which occurs at negative line tensions
combined with no, or relatively low contractility. The soft network is characterized
by many, alternative irregular tessellations of equal pattern energy, with cellular areas
equal to the target area. This soft-to-stiff transition is thought to reflect a soft matter
phase transition that accompanies jamming of granular materials (Atia et al. 2018;
Tlili et al. 2018; Bi et al. 2015, 2016).

Farhadifar et al. (2007) have shown that the cell packing deviates from these global
equilibria if cell division is introduced. The authors picked one cell at random, doubled
its target area, and relaxed the cellular configuration to the nearest equilibrium using a
conjugate gradient method. They then divided the cell over a randomly oriented axis
passing through the cell centroid, after which they relaxed the configuration again
to its nearest equilibrium. This procedure was repeated until the tissue consisted of
10,000 cells, after which the topology of the tissue was examined.

To determine if our simulation methods could reproduce these results, we used a
vertex-based special case of VirtualLeaf, in which there were no 2-connected nodes,
i.e., the cell-cell interfaces could not buckle and topological changes occurred through
rule-based T1 and T2 transitions. We replicated Farhadifar’s cell division algorithm
with only minor modifications. We picked one cell at random, slowly increased its
target area, and relaxed the tissue to steady state using the Metropolis algorithm. Once
the actual area of this cell exceeded twice the target area of the other cells, we let the cell
divide over a randomly oriented axis passing through the cell centroid and assigned
the original target area to the daughter cells, and the procedure was repeated. Our
simulations (Fig. 4a and Videos S8–S10 ) agree visually with the three cases reported
previously (Farhadifar et al. 2007) and illustrate the key results of these simulations,
displayed upon the ground state diagram by Farhadifar et al. (2007). Our vertex-based
model replicates a typical ‘stiff’ network (Case I), located in the parameter region with
a hexagonal ground state, producing cells of approximately uniform size. Furthermore,
our model can replicate the outcome of cells with a higher cortical tension (Case II)
producing cells withmore variable areas and a tessellation that contains large polygons
with nine sides or over. Lastly, our model can recapitulate the ‘soft network’ or ground
state (Case III) where cells evolve irregular shapes equal to the target area.

After eight rounds of cell division, the distribution of polygon classes (Pn , the
fraction of polygons in the final tissue with n sides) in Case I agree, with only minor
differences, with those reported in Farhadifar et al. (2007) (red bars in Fig. 4c). Both
models reveal pentagon and hexagon-shaped cells dominate at P5 ≈ 0.3 and P6 ≈ 0.3
while heptagons are slightly less frequent at P7 ≈ 0.2, and tetragons and octagons are
present at frequencies of P4 ≈ P8 ≈ 0.1. Our model also has qualitative agreement
in Case II and Case III with those reported for the vertex model although our model
generated fewer 3-, 4-, 8-, and 9-sided cells. This difference can likely be attributed
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Fig. 4 Comparison of straight walls and T1 transitions with flexible walls and sliding on cell morphology. a,
b Parametric space as in the article of Farhadifar et al. (2007) with three identified morphologies duplicated
with VirtualLeaf (cases I, II, and III) at 100.000 MCS. Vertical axis: normalized cortical tension, Γ =
λcortical/(λA AT ); horizontal axis: normalized adhesion, Λ = J (e → L, e → R) /(λA A

3
2
T ). The blue,

green, and red regions show the ‘ground state’ of the vertexmodel in the absence of cell division for reference
(cf. Fig. 1 of Farhadifar et al. 2007): blue, regular hexagonal packing, green: soft networks, red: impossible
region. Case I: λcortical = 10, J (e → L, e → R) = 500. Case II: λcortical = 26, J (e → L, e → R) = 0.
Case III:λcortical = 26, J (e → L, e → R) = −3560.Hexagonal networks can be found in the green region
of the plot. The sum of cortical tension and adhesion energy is smaller than 0 in the blue region, causing
a soft network to occur. Simulations within the red region will be unstable. (C, D, E) Relative amounts of
cells with n neighbors when the tissue is in equilibrium. C = Case I, D = Case II E = Case III. The bars
represent the averages and the error bars the standard deviations of 10 time points between generations 7
and 8. See Supporting Text S1 for detailed simulation descriptions. Bars in C-E are colored in the order
red, blue, yellow, green (Color figure online)

to the stochasticity in our simulations, which relaxes the configurations more quickly,
similar to the effect of annealing reported in Farhadifar et al. (2007).

3.2.2 Flexible Membranes and Sliding Change Case III, but not Cases I and II

We next tested whether membrane flexibility and the membrane sliding operator could
replace algorithm-based T1 transitions to generate a topology indicative of growing
tissues. We investigated the performance of these model innovations for three specific
cases (Fig. 4b and Videos S11–S13). For Case I and Case II, the simulations in the
presence of sliding and membrane flexibility showed no obvious differences with
simulations of the vertex model. For Case I (Fig. 4c) and for Case II (Fig. 4d), the
distribution of neighbor numbers did not differ between straight membranes (red and
blue bars) and flexible membranes (yellow and green bars). Interestingly, for Case
III both the visual appearance (Fig. 4b) and the neighbor distribution (Fig. 4e) were
strongly affected in the presence of sliding and membrane flexibility (green bars):
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The number of heptagons was higher than for the other simulation conditions, and
the number of pentagons was reduced. In the absence of membrane flexibility, sliding
did not have this effect (blue bars), whereas for membrane flexibility and with T1
transitions, we observed only a small effect (yellow bars).

InCase I andCase II, the line tension (Case I) or cortical tension (Case II) straightens
cell boundaries, such that boundary flexibility has no effect. In Case III, the specific
topology of ‘soft networks’ is due to the boundaries’ resistance to compression by
adjacent cells. Adding additional nodes to the membranes makes them flexible and
allows membranes to buckle (see the ‘bubbly’ boundaries in Fig. 4b and Video S13,
Case III), which will likely reduce the number of T1 transitions.We did not understand
in detail why the distribution of neighbor numbers was particularly strongly affected
in the presence of sliding. A potential explanation is that T1 transitions may introduce
spurious energy barriers or time delays between configurations of higher and lower
energy, consistent with the incomplete cell sorting discussed in Sect. 3.1.1, whereas
for sliding such effects are reduced.

4 Discussion

In this paper, we have introduced extensions of our plant tissue simulation environment
VirtualLeaf (Merks et al. 2011; Merks and Guravage 2012), adopting it for the simu-
lation of animal tissues. The key novelty is a method to simulate relative movement of
cells, the ‘sliding operator.’ This operator is applied alongside node displacements in
a Metropolis-based energy minimization approach. We have validated the new model
using simulations of differential adhesion-driven cell sorting and found that it can
reproduce the key phenomena of differential adhesion-driven cell sorting, including
cell mixing (Fig. 2a), engulfment of one cell type by the other (Fig. 2b), and cell sort-
ing (Fig. 2c). The extended version of VirtualLeaf also reproduces the key phenomena
of epithelial cell packing (Farhadifar et al. 2007) in ‘stiff’ regimes of the parameter
space, i.e., in Cases I and II, where the cell perimeter is under tension (P(c) > PT (c)
and PT (c) < 2

√
(π AT (c)) (Fig. 4b–d). In the ‘soft’ parameter regime (Case III), i.e.,

if the cell perimeter is fully relaxed (P(c) = PT (c) and PT (c) >= 2
√

(π AT (c))),
the results in VirtualLeaf differ from those reported previously (Farhadifar et al. 2007)
due to buckling of the cell–cell interfaces.

The sliding operator requires that cell boundaries are represented bymultiple nodes,
betweenwhich an edge connecting3ormore cells can ‘hop.’Using the slidingoperator,
topological changes are entirely driven by the energy minimization process through
at least two independent moves. In contrast, in traditional VMs, T1 transitions are
initiated independently of the energy minimization process, as soon as the length
of a cell–cell interface drops below a threshold. Because of this natural integration
with the energy minimization algorithm, simulations with the sliding operator more
quickly reached complete cell sorting (Fig. 2d) than our simulations with the tradi-
tional approach forT1 transitions.A full quantitative comparisonof the twoapproaches
will be left for the future work and will give more insight into the causes underlying
these differences. For example, lowering the interface length threshold θT1 for the T1
transitions will increase their frequency and will speed up cell sorting for simulations
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applying only T1 transitions. Similarly, in simulations applying the new slide operator,
increasing the probability of slides and movements by increasing the Boltzmann tem-
perature, T , increases the speed of cell sorting (Fig. 2e). Preliminary simulations with
the new slide operator suggest that (perhaps somewhat counterintuitively) increasing
the step size has little effect on the speed of cell sorting, because it affects only the
node moves, but not the node slides that are responsible for cell rearrangement. Inter-
estingly, our preliminary results suggest that increasing the number of nodes used
per cell increases the speed of cell rearrangement (Video S14). A possible reason is
that in the refined simulations energy barriers are more easily overcome: The smaller
moves are associated with a lower, positive ΔH . A full quantitative analysis of the
effect of these and the other parameters on the biological behavior of our model and
its computational efficiency will be left to the future work. This analysis will be nec-
essary to decide on the appropriate application domain of this cell-based modeling
method among alternative methodology (Osborne et al. 2017). As a first step, we plan
to perform detailed comparisons with the CPM, which will require quantitative map-
ping of the model parameters in VirtualLeaf with those of the CPM. Such quantitative
parameter mapping is available for the CPM and VMs (Magno et al. 2015), so these
will form an excellent starting point.

Several cases of epithelial sheets have been observed to lack straight boundaries
between cells including cells in the Drosophila amnioserosa (Toyama et al. 2008;
Solon et al. 2009), cells surrounding the closing blastopore in Xenopus (Feroze et al.
2015), and the jigsaw puzzle cells of the plant epidermis (Fu et al. 2005; Carter et al.
2017; Sapala et al. 2018). Such irregular boundaries suggest tissue mechanics may be
more complex than load-bearing by simple junctional tension (Salbreux et al. 2012).
The deviations of cell–cell boundaries from simple lines imply that strain on these
structures occurs both parallel and perpendicular to the junction. Deviations may
reflect differential pressures between neighboring cells, the ability of the boundary
to bend under compression (e.g., Euler buckling), or tensions perpendicular to the
boundary. The presence of such irregular boundaries becomes more apparent when
imaging tissueswith highermagnification or when larger cells are sufficiently resolved
by lower magnification objectives. The increasing discovery of such irregular-shaped
cells has precipitated several innovations to VMs and related models (Fletcher et al.
2017). Bubbly vertex dynamics (Ishimoto andMorishita 2014) represents the cell–cell
and cell–medium interfaces as curves instead of straight lines, where the curvature is
due to pressure differences. This innovation changes the forces acting upon the vertices,
and hence, it modifies the dynamics of the VM, but it does not allow buckling of
cell boundaries. Buckling is possible thanks to our introduction of multiple cell–cell
boundary elements between three cell junctions, which parallels similar innovations
in VMs and related methods (Tamulonis et al. 2010; Tanaka et al. 2015; Perrone
et al. 2016; Fletcher et al. 2017). These adaptations allow simulations of tissues that
may experience anisotropic tensions or whose mechanics may be shaped by both
medioapical cortical dynamics and junctional contractility. To better simulate such
tissues, as a next step we will incorporate a bending stiffness [see, e.g., the bending
stiffness of the perimeter in Barton et al. (2017)]. This will make it possible to explore
the full parameter range between the maximally stiff, straight cell–cell interfaces
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in VMs, and the fully floppy cell–cell interfaces that we can currently represent in
VirtualLeaf.

The Hamiltonian and the dynamics of VirtualLeaf (Merks et al. 2011) were inspired
by both the Cellular Potts Model (Balter et al. 2007; Merks et al. 2011) and previous
vertex-based models of plant tissue morphogenesis (Rudge and Haseloff 2005; Dupuy
et al. 2008). The new sliding operator strengthens the similarity of the VirtualLeaf and
the CPM, to the extent that our updated VirtualLeaf model can be seen as an ‘off-
lattice’ version of the CPM. A related generalization of the CPM was introduced by
Scianna and Preziosi (2016), who have introduced a node-based version of the CPMs.
In this generalization, the cells can be represented on any tessellation, which has the
advantage that the method can be interfaced with a wider range of methods for con-
tinuum mechanics where using arbitrary meshes is useful, e.g., for the finite-element
method. The key innovation in their approach, which is shared with VirtualLeaf and
VMs, is that cells are represented as polygons. This facilitates simulation of cortical
cell tension. Unlike VirtualLeaf or the VM, the cell shapes in node-based CPM are
constrained by a tessellation. This possibly introduces similar lattice effects as those
found for the CPM, but an advantage of the approach is that it facilitates collision
detection. Thus, like the standard CPM, the node-based CPM does not suffer from the
limitation ofVMs andVirtualLeaf that cell layersmust be confluent. Future extensions,
e.g., new operators for node fusions in conjunction with efficient collision detection
algorithms, will relax those limitations of VirtualLeaf.

In conclusion, with the present extension of a sliding operator, we introduce a
new multiparticle method for cell-based modeling and simulation. The method can be
categorized within a continuum of closely related multiparticle, Hamiltonian-based
methods ranging from lattice-based to off-latice methods. The CPM (Graner and
Glazier 1992; Glazier and Graner 1993) is run on a regular lattice. The node-based
CPM (Scianna and Preziosi 2016) can be run on irregular lattices. VirtualLeaf takes
the CPM ‘off the lattice,’ with the current restriction that tissues must be confluent.
Finally, the VM simplifies the representation of the tissue, by only representing tricel-
lular junctions, connected by straight lines (Weliky and Oster 1990).
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