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Advances in technology, including novel ophthalmic imaging devices and

adoption of the electronic health record (EHR), have resulted in significantly

increased data available for both clinical use and research in ophthalmology.

While artificial intelligence (AI) algorithms have the potential to utilize these

data to transform clinical care, current applications of AI in ophthalmology

have focused mostly on image-based deep learning. Unstructured free-

text in the EHR represents a tremendous amount of underutilized data in

big data analyses and predictive AI. Natural language processing (NLP) is

a type of AI involved in processing human language that can be used

to develop automated algorithms using these vast quantities of available

text data. The purpose of this review was to introduce ophthalmologists

to NLP by (1) reviewing current applications of NLP in ophthalmology and

(2) exploring potential applications of NLP. We reviewed current literature

published in Pubmed and Google Scholar for articles related to NLP and

ophthalmology, and used ancestor search to expand our references. Overall,

we found 19 published studies of NLP in ophthalmology. The majority of these

publications (16) focused on extracting specific text such as visual acuity from

free-text notes for the purposes of quantitative analysis. Other applications

included: domain embedding, predictivemodeling, and topicmodeling. Future

ophthalmic applications of NLP may also focus on developing search engines

for datawithin free-text notes, cleaning notes, automated question-answering,

and translating ophthalmology notes for other specialties or for patients,

especially with a growing interest in open notes. As medicine becomes more

data-oriented, NLP o�ers increasing opportunities to augment our ability

to harness free-text data and drive innovations in healthcare delivery and

treatment of ophthalmic conditions.
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Introduction

Adoption of electronic health records (EHRs) and advances

in ocular imaging technology have revolutionized healthcare

delivery in ophthalmology and resulted in significantly increased

data available for clinical care and research (1). Moreover, the

breadth of available data has resulted in large, multimodal

datasets that have enabled the revolution in “big data” analytics

(1, 2). The American Academy of Ophthalmology (AAO)

and National Institutes of Health (NIH) have supported this

movement with the development of large, processed EHR-

based datasets such as the Intelligent Research in Sight (IRIS)

Registry (3, 4) and the All of Us research program (5).

Research efforts using these datasets have largely focused on

retrospective association analysis and trends in care (6–14).

Large datasets have also been used to develop predictive

artificial intelligence (AI) models. The majority of these

applications within ophthalmology have focused on image-

based AI including diagnosis of diabetic retinopathy (15,

16), age-related macular degeneration (17, 18), retinopathy of

prematurity (19, 20), and glaucoma (21–23), among others.

Though structured datasets (such as extracted tabular data

from EHRs) and large image datasets have been studied

extensively in ophthalmic big data applications, far fewer AI

studies in ophthalmology have utilized unstructured, or free-

text, data such as EHR clinical notes from office visits (24–

27). Because clinical notes represent the majority of provider

documentation regarding each office visit, there remains a

large amount of untapped free-text data (up to 80% of

data in the EHR) that may be useful in predictive AI or

analytics (28).

Natural language processing (NLP) is a subfield of AI

focused on extracting and processing text data, including

written and spoken words. While NLP as a linguistic concept

originated in the early 1900s, it did not gain widespread

interest until the last few decades with the proliferation

of computer-based and AI algorithms. Within medicine,

NLP has primarily been used for information retrieval (IR,

otherwise known as search) (29, 30), text extraction for

analytic studies, and AI algorithm development, though

recent studies have focused on more complex tasks such as

question-answering and summarization. Furthermore, there is

a dearth of studies exploring the use of NLP in ophthalmology.

Because ophthalmology is a high-volume medical and surgical

subspecialty, there are significant opportunities to take

advantage of the wealth of available data to develop text-based

technologies with the potential to improve patient care and

enhance future research.

The purpose of this study was to introduce ophthalmologists

and researchers to natural language processing by (1) reviewing

current ophthalmic applications of NLP, and (2) discussing

future opportunities for NLP in ophthalmology.

FIGURE 1

Intersection of natural language processing (NLP) with artificial

intelligence (AI), machine learning (ML), and deep learning (DL).

NLP is a branch of AI concerned with processing and analyzing

text data. ML is a subfield of AI aimed at modeling data, and DL is

a subfield of ML that uses neural networks to analyze large

datasets. NLP techniques may utilize ML and DL when used for

classification of words, sentences, or even paragraphs.

Natural language processing

In simple terms, the goal of NLP is to learn meaning from

a set of words. However, the distinction between NLP, AI, and

machine learning (ML) is often unclear. Broadly, AI is the

branch of computer science that deals with teaching computers

to perform tasks ordinarily performed by humans (31, 32). ML is

a branch of AI that deals with developing models for automated

prediction of a given task (33–35). Within ML, modeling can be

performed using neural networks, which have the ability to learn

from large amounts of data without explicitly defined features,

an area known as deep learning (DL) (33, 36). While several

NLP techniques that do not utilize modeling such as ML or

DL exist, some NLP can be used to perform modeling with

ML or DL, using free-text (raw or processed) as input rather

than images or pre-defined features (i.e., tabular data, or data in

tables) (27, 37). This intersection of ML, DL, and NLP is shown

in Figure 1.

Before the advent of computational NLP techniques, search

methods originally focused on simple keyword extraction. At

the most basic level, this was analogous to the “find” function

in a word processor, where a body of text was searched for

all instances of a specific word or phrase, often described as

a regular expression, or regex, in computer science. Relatively

more advanced search could be performed using rule-based

search, or conditional searching, such as extracting a word
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if it was in the sentence with another word. In fact, this

concept of search, otherwise known as information retrieval

(IR), is an important cornerstone of NLP (38, 39). However,

the primitive methods described above are limited by the need

for manual search input and a prior understanding of the

text involved.

More sophisticated methods of text extraction require

understanding the context of each input word in a body of

text. This is most commonly done by labeling specific words

as entities, which can include person, location, etc., a technique

known as named entity recognition (NER). This is often done

in conjunction with relation extraction (RE), which focuses on

how phrases relate to others (i.e., patient underwent “4 cycles”

of chemotherapy, where 4 cycles defines duration). However,

these techniques often require pre-processing words within a

given text to their simplest form. This usually begins with

tokenization, or splitting a body of text into its individual

words, and transforming all words to lowercase. Further text-

preprocessing includes stemming (reducing a word down to its

base form often with misspellings; i.e., “changes,” “changing”

becomes “change”), lemmatization (simplifying a word down

to its simplest form - i.e., “changes” to “change”, or “different”

to “differ”), as well as stop-word removal (i.e., removing

common words to simplify data analysis; most commonly

articles like “a” and “the” are removed). Once a text has been pre-

processed, NER techniques can be used to perform tasks such

as de-identification, automated search, or annotating specific

words (i.e., medications in progress notes). De-identification

in particular has been a recent focus of research in NLP (40–

42), and typically involves using text negation, or censoring out

specific words of interest such as patient health information

(PHI). NER can also be augmented by tagging each word’s

part of speech (43). In medicine, existing NLP models for

NER such as MedEx (44) and MedLEE (45), which identify

medications and diagnostic entities for billing, respectively,

have been previously developed without ML. Off-the-shelf

NER models for medical information extraction have also

been provided by Amazon Comprehend Medical and require

no prior programming knowledge, which has implications

for increasing the accessibility for NLP engagement to the

general public.

Recently, NLP techniques have utilized ML and DL to

perform more intelligent and complex textual tasks. For

example, several state-of-the-art algorithms have utilized ML

and DL to create more robust and efficient NER algorithms,

including open-source software libraries such as spaCy (46).

However, these algorithms are unable to recognize similarities

and differences between words (i.e., “happy” is similar to “joy”

but different from “sad”). A simple method to capture word

similarity is a bag-of-words approach, commonly implemented

as term frequency-inverse document frequency (TF-IDF). In

this approach, a numerical value is essentially assigned to each

unique word, though this approach is limited by its ability to

recognize synonyms and more complex relationships between

words. To address this gap, word embedding was developed.

Simply put, word embeddings, such as word2Vec (47), are

developed as a result of DL algorithms that learn to assign a

numerical distance to 2 words, and are trained to do so on

many combinations of words based on the corpora of text used

for training. These algorithms have previously been fine-tuned

on several datasets including Google News and a combination

of EHR and biomedical corpora (48). Current state-of-the-art

word embedding algorithms have utilized more complex neural

networks, known as transformers, to automate complex analysis

of contexts between words. These algorithms, the most common

of which is known as Bidirectional Encoder Representations

from Transformers (BERT), introduce the idea of attention,

of the ability to focus on specific words and their complex

relationships, and have transformed our ability to perform

text processing (49). BERT models have also been trained on

biomedical text and include: clinicalBERT trained on EHR notes

(50) and bioBERT trained on biomedical publications (51).

Common applications of word embedding algorithms include

tasks such as: question-answering, summarization (52–57), topic

modeling (58–61), creating recommendation systems (62–64),

chatbots (65–68), voice recognition (i.e., speech-to-text) (69, 70),

text translation (71, 72), ranking texts for relevance based on a

search query (73–75), and sentiment (emotion) analysis (76–78).

A summary of these aforementioned described techniques and

applications is shown in Figure 2.

Methods

To conduct this narrative review, a keyword-based and

medical subject headings (MeSH)-based search of Pubmed

and Google Scholars was performed in March 2022 using

a combination of the following terms: “ophthalmology”,

“optometry”, “eye”, “natural language processing”, and “NLP”

to identify studies that used NLP in an ophthalmic context.

These terms were combined in several different combinations

and permutations in both search engines to yield an initial yield

of 22 studies. Studies were included if they described original

research using NLP in ophthalmology. All studies designed

as a literature review or prototype description were excluded.

Ancestor search was performed on included studies to further

broaden our references. Both authors (JSC and SLB) manually

reviewed each study’s title, abstract, and manuscript text to

validate the relevance of the studies to both ophthalmology

and NLP. Data extracted from each study included: the

authors and year of publication, study aim, NLP techniques

used, performance, and study conclusions. Disagreements were

resolved by discussion. This methodology is summarized in

Figure 3.
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FIGURE 2

Examples of natural language processing (NLP) techniques and applications. Natural language processing, or NLP, is an area of artificial

intelligence (AI) that deals with processing and analyzing textual data. Several NLP techniques include: relevance ranking, named entity

recognition (NER), text cleaning, word embedding, which has applications in question-answering, summarization, topic modeling, among

several other use cases.

Results

The present: Current ophthalmic studies
using NLP

Overall, 19 studies using NLP in ophthalmology were

identified in the literature. These studies were published between

2000 and 2022, of which the majority (n = 11, 58%) were

published within the last 3 years (2019–2022). Initial NLP

studies did not use ML and focused mostly on algorithmic text

extraction of relevant text from clinical notes using rule-based

search and keyword extraction for parameters such as visual

acuity (VA) (79–81), demographic data (i.e., age, sex) as well

as clinical data (i.e., intraocular pressure, visual acuity) related

to glaucoma (82) and cataract identification (83). Subsequent

studies focused on using similar algorithmic rule-based search

retrieving text relevant to the diagnosis and identification

of several diseases such as herpes zoster ophthalmicus (84),

pseudoexfoliation syndrome (85), microbial keratitis (25), and

fungal endophthalmitis (24). While most published work

has focused on extracting information from clinical visit

notes (24, 84, 86), Stein et al. extracted a combination of

unstructured data, problem lists, clinical notes, and billing code

documentation for multi-modal extraction of pseudoexfoliation

syndrome (85). Other use cases for text extraction using search

included identifying antibiotics used for and post-operative

complications of cataract surgery (87), extracting eye laterality

and medications of patients who underwent cataract surgery

(88), as well as for triaging ophthalmology referrals (89).

In the last 3 years, more recent studies have begun

using ML for more sophisticated applications of NLP. For

example, Wang et al. created the first word embeddings

specific to ophthalmology using ophthalmology publications

and EHR notes and found that DL models trained on

ophthalmology-specific word embeddings outperformed those

trained on previous word embeddings trained on general

vocabulary for predicting prognosis of low-vision (90). These

embeddings were also later used in combination with structural,

tabular data from the EHR to refine models predicting low-

vision prognosis (91). This idea of combining structured and

unstructured data from the EHR was also applied to predicting

glaucoma progression using similar methods described earlier

(92). Additionally, Lin et al. recently applied an existing DL

framework for NER to accurately extract entities relevant
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FIGURE 3

Methodology for Review of Ophthalmic Studies Utilizing Natural

Language Processing (NLP). We searched PubMed and Google

Scholars, augmented by ancestor search for studies related to

use of NLP in ophthalmology applications.

to ophthalmic medications (F1 score = 0.95) for glaucoma

patients and simulated successful medication reconciliation

as an application of this NLP model (93). The F score has

become an increasingly popular metric to evaluate model

performance in NLP, and measures both the precision (positive

predictive value) and recall (sensitivity). These F scores can

be weighted (with weights appended to the score name -

i.e., F1, F2 scores) to increase the importance of maximizing

either precision or recall. Other recent studies utilizing ML/DL

with NLP included topic modeling to define groups of

topics pertaining to ophthalmology publications during the

COVID-19 pandemic (94), as well as sentiment analysis of

user emotions from an ophthalmology forum (95). Topic

modeling uses unsupervised learning, or machine learning

without explicitly labeled data, to cluster documents by topic.

In work performed by Hallak et al., the authors used a

statistical model called Latent Dirichlet Allocation (LDA) to

identify ocular manifestations of COVID-19, viral transmission,

patient care, and practice management during the COVID-

19 pandemic as relevant topics in ophthalmology over 2020–

2021 (94). Additionally, in work by Nguyen et al., a cloud-

based NLP program called Watson was utilized to associate

emotions with extracted keywords from ophthalmology forums

and demonstrated that NLP can be used to understand patient

perspectives on care. A summary of these studies is shown

in Table 1.

Discussion

The future: Opportunities for NLP in
ophthalmology

Ophthalmology is a surgical subspecialty that could

significantly benefit from applications of NLP, though there

is a relative scarcity of published studies compared to those

exploring NLP in other areas of medicine. Future avenues of

exploration within ophthalmology include: (1) more complex

use cases for text extraction, (2) translating notes both in

terms of language, as well as (3) applications to assist with

patient interaction.

While most studies within ophthalmology have focused

on searching for specific keywords or entities, text extraction

can be more broadly used for other use cases. For example,

cohort selection, particularly for rare diseases, is a necessary

prerequisite for clinical trial recruitment, and has been facilitated

in the past by NLP algorithms reviewing EHR notes. In the

2018 National NLP Clinical Challenge for cohort identification,

the highest performing model achieved an F-score of 0.9 for

identifying cohorts using various criteria (96). Within inherited

retinal diseases, cohort identification has been recognized

internationally as an important goal in research with rapid

advances in gene therapy; (97) however, a previously published

current cohort identification study within this space focused

on simple keyword search without use of more sophisticated

NLP techniques (98). Additionally, drug repurposing has long

been of interest to the medical community (99–101), and has

been employed in mouse models for inherited retinal diseases

(102, 103) as well as hypothesis testing for ocular protection

against COVID-19 (104). While ophthalmology stands to

greatly benefit from drug repurposing (105), the majority of

applications using NLP have been published exploring novel

drug use in cancer (106, 107) and COVID-19 (108, 109).

However, within ophthalmology (110), one study by Brilliant

et al. retrospectively demonstrated that L-DOPA could have

protective effects against development AMD. Although drugs

were quickly repurposed owing to the urgency of the COVID-

19 pandemic, there remains a need for further exploration

and prospective validation of potential drug candidates for

repurposing both within ophthalmology and other specialties.

As our techniques and capabilities for big data collection

and analytics rapidly advances, more research is needed in

both cohort identification and drug repurposing using NLP

techniques and may have important implications in accelerating

new innovations in ophthalmology.

NLP is also positioned to address challenges in interpreting

documentation in the EHR by facilitating improved

communication and understanding of clinician notes. NLP

techniques centered around word embeddings have recently
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TABLE 1 Summary of Current Studies using NLP in Ophthalmology.

References Year Aim NLP techniques Study outcomes Conclusions

Barrows et al. (82) 2000 Automated extraction

of demographic and

clinical parameters

relevant to glaucoma

from EHR notes

Text data extraction

(Rule-based search,

MedLEE)

All parameters were

extracted with a >90%

accuracy

Rule-based search performed

similarly to NLP methods in

terms of extracting text data

from the EHR

Smith et al. (79) 2008 Extract visual acuity

and diabetic

retinopathy stage for

analysis of quality of

life

Text data extraction

(Rule-based search)

No specific performance

metrics for accuracy of text

extraction was reported

NLP can identify visual acuity of

patients with diabetic

retinopathy for use in secondary

regression analysis to predict

quality of life with vision loss

Peissig et al. (83) 2012 Automated

identification of

cataracts from free-text

and image-based EHR

scans of text

Text data extraction

(Rule-based search,

MedLEE)

Positive predictive value

>95%

Multi-modal strategies are highly

accurate in identifying cataracts

and generalizable across

institutions

Mbagwu et al. (80) 2016 Extract Visual Acuity

from defined

structured fields and

clinical notes in the

EHR

Text data extraction

(Rule-based search)

99% agreement between

clinician and algorithm

Best corrected visual acuity can

be automatically extracted from

clinical notes in the EHR with

high accuracy

Liu et al. (87) 2017 Extract antibiotics and

intraoperative

complications from

cataract surgery

operative notes

Text data extraction

(Rule-based search)

Positive and negative

predictive values for

identification of antibiotic

injection were >99%. For

operative complications,

extraction accuracy was

>94%

NLP can extract data from

operative notes with high

accuracy

Baughman et al.

(141)

2017 Automated visual

acuity extraction from

free-text clinical notes

Text data extraction

(Rule-based search)

Manually reviewed and

automated extracted visual

acuities had a 95%

concordance, K= 0.94

Automated visual acuity

extraction from EHR free text

notes is highly accurate

Gaskin et al. (81) 2017 Extract features from

text notes using NLP

for regression analysis

Text data extraction

(Text negation and

extraction using a

predefined ontology)

No specific performance

metrics for accuracy of text

extraction was reported

Automated extraction of

demographic factors, systemic

disease, and drug information

can be used to create

high-performing models of

cataract surgery complications

Zheng et al. (84) 2018 Extract diagnosis of

herpes zoster

ophthalmicus from

EHR notes

Text data extraction

(negating,

lemmatization),

part-of-speech tagging,

indexing, tokenization,

Classification

Sensitivity= 95.6%,

specificity= 99.3%

NLP algorithms can classify

herpes zoster ophthalmicus vs.

not based on progress note data

Stein et al. (85) 2019 Identify exfoliation

syndrome in free-text

EHR notes

Text data extraction

(Rule-based search)

Positive predictive value=

95% and Negative

predictive value= 100%

Automated extraction of

exfoliation syndrome appears to

be more accurate than

conventional assessment of

billing codes

(Continued)
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TABLE 1 Continued

References Year Aim NLP techniques Study outcomes Conclusions

Maganti et al. (25) 2019 Extract microbial

keratitis morphology

measurements from

free-text in the

examination notes

Text data extraction

(Rule-based search)

Microbial keratitis

measurements were

extracted with a sensitivity

of 75–96% and specificity of

91–96%

Metrics of microbial keratitis can

be automatically extracted from

exam data in EHR notes

Tan et al. (89) 2019 Use NLP on free-text

referrals to develop

ML models for triaging

Text data extraction

(Text negation,

stripping), Classification

No specific performance

metrics for accuracy of text

extraction were reported

NLP can facilitate the training of

ML models for triage

Baxter et al. (24) 2020 Identify fungal ocular

involvement from

EHR notes

Text data extraction

(Rule-based search)

Rule-based search yield

683/26,830 notes with

possible fungal ocular

involvement. Manual

review found 0% fungal

ocular involvement.

NLP can expedite review of notes

for fungal ocular disease

Wang et al. (88) 2020 Extract concepts

related to vision

outcomes from

free-text notes and

medication orders

from the EHR

Text data extraction

(Rule-based search,

MedEx)

Rule-based laterality

classifier: 100% accuracy.

Implant usage: 99–100%

accuracy. Glaucoma

medications: 90.7%

inter-annotator agreement,

85% accuracy for

medications extracted by

MedEx

NLP can be used to accurately

extract laterality, medications,

and implant model usage from

cataract and glaucoma surgeries

Hallak et al. (94) 2020 Identify focuses of

research in

ophthalmology and AI

related to the

COVID-19 pandemic

Topic modeling >200 manuscripts: 57.8%

focused on patient care and

practice management,

19.4% on transmission,

17.2% on ocular

manifestations, 5.6% on

treatment/diagnosis

NLP can identify recent focuses

of ophthalmic research during

the COVID-19 pandemic

including ocular manifestations

and applications of AI

Wang et al. (90) 2021 Create ophthalmology-

specific word

embeddings using

published literature

and EHR notes

Word embedding,

Classification

PubMed and EHR

word-embeddings resulting

in similar AUROCs (∼0.83)

and outperformed previous

non-ophthalmic word

embeddings in predicting

low vision prognosis

Ophthalmology-specific word

embeddings can be used to

increase prediction accuracy on

prognosis of low-vision patients

from EHR notes

Nguyen et al. (95) 2021 Utilize clinical data

from social media and

forums to understand

patient attitudes

toward care

Text data extraction

(Rule-based search and

text stripping into

keywords), Sentiment

analysis

Complications, body parts,

and undiagnosed symptoms

were associated with

sadness. Joy was slightly

more likely to be expressed

after doctor response.

Sentiment analysis can be used to

better understand patient

perspectives and promote

patient-centered care

Gui et al. (91) 2022 Use structured and

extracted unstructured

data to create models

to predict low vision

prognosis

Text data extraction

(stripping), named entity

recognition, word

embeddings,

classification

Several NLP techniques

performed comparably well

for predicting low vision

prognosis (F1 0.63–0.7)

Free text progress notes can be

used to accurately predict low

vision prognosis using various

NLP techniques

(Continued)
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TABLE 1 Continued

References Year Aim NLP techniques Study outcomes Conclusions

Wang et al. (92) 2022 Use extracted free-text

data from notes and

structured data to

predict glaucoma

progression to surgery

using deep learning

Text data extraction

(stripping), word

embeddings,

classification

Convolutional neural

networks trained on

structured+ unstructured

inputs outperformed

models trained on

structural features alone (F1

0.42 vs. 0.34) and both

outperformed a glaucoma

clinician (F1 0.30)

Structured and unstructured data

from the EHR can predict

glaucoma progression with

accuracy

Lin et al. (93) 2022 Extract medication

data from free-text

progress notes

Named entity

recognition

Overall F1 score= 0.95 for

all medication entities (drug

name, route, frequency, etc.)

Medication information can be

accurately extracted from

free-text data

Overall, 19 studies using NLP in an ophthalmic context were identified from the literature. The majority of these studies primarily used rule-based search as their use case for NLP, though

more recent studies have begun using more sophisticated techniques such as word embedding and named entity recognition. These studies spanned publication from 2000 to 2022, with

the majority written after 2019.

been utilized to develop question-answering (111–114), as

well as summarizing large bodies of text such as clinical notes

(52–54), and scientific publications (55, 115). With the advent of

the Open Notes movement, a movement supporting transparent

documentation among patients, families, and clinicians (116–

118), and the 21st Century Cures Act of 2021 (119), which

mandated patient accessibility to their clinical notes, there

has been an increasing emphasis on patient involvement

and advocacy in their own care. However, previous work in

ophthalmology exploring clinician attitudes toward Open Notes

revealed concerns that patients would have a difficult time

understanding their records (120). In fact, the terminology

used in ophthalmology notes have been anecdotally difficult to

understand even among clinicians in other specialties, reflected

by the creation of tools used by non-ophthalmologists to

help “translate” ophthalmology notes by replacing common

abbreviations used in ophthalmology (121). Summarization

techniques may be useful to translate notes into patient-friendly

language or even other languages (71) and may improve patient

engagement in their healthcare, especially in underrepresented

populations (72). However, in a systematic review by Mishra

et al., the authors found that current work in NLP-based

summarization focused largely on summarizing biomedical

literature (97% of published work) as opposed to clinical

data from the EHR (3% of published work), reflecting a

need for work in NLP-based summarization in the clinical

domain (56). Because ophthalmologists utilize specialized

knowledge that is not commonly known to clinicians in other

specialties, ophthalmology, as well as primary care specialties,

stand to benefit significantly from tools that could summarize

ophthalmic notes using NLP. Additionally, question-answering

may have a role in extracting key data that would be most

useful to facilitate management plans by primary care providers.

While these technologies have numerous potential benefits,

iterative testing and stakeholder participation will be needed to

ensure that these NLP applications are useful and trustworthy

by their users.

Patient interaction and patient-physician relationships

remain the hallmark of medicine, but in areas with

limited resources, NLP may be able to augment knowledge

dissemination and assist clinician workflows. For example,

chatbots using NLP have been previously developed to help

patients with triaging concerns related to inflammatory bowel

disease (65), recommending medical specialties based on

symptoms (66), and other uses cases including depression

symptom monitoring (67). Similar NLP-based chatbots may

potentially be developed to assist with ophthalmic treatment

monitoring and medication adherence as well as triaging

ophthalmic symptoms for evaluation, particularly in areas

where ophthalmology services may not be readily available.

Additionally, NLP has been explored in the context of digital

scribes, which have the potential to reduce physician burnout

and increase patient satisfaction (122, 123). The burden

of EHR-based documentation in ophthalmology has been

well-described previously (124–127). A growing number of

companies including Microsoft, Google, Amazon, IBM,Mozilla,

DeepScribe, Suki, and Robin Healthcare have developed

NLP-based scribes with speech recognition and smart medical

assistants (122, 128–130). Because the majority of these NLP-

based scribes are still in development, performance data to

date is limited, though recent data from DeepScribe suggested

that the model had an error rate of 18%, which is significantly

lower than error rates from existing models by IBM and

Mozilla (38–65%) (122). Development of these scribes have

been complicated by technical challenges (i.e., audio quality,

audio-to-text transcription) as well as conversational challenges
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(i.e., meaningful summarization, extracting topics from often

fragmented conversations) (123). A recent study by Dusek et al.

showed that scribe use in ophthalmology was associated with

increased documentation efficiency (131). Automated scribes

may potentially further increase documentation efficiency,

and may be able to provide additional value if integrated

with automated text extraction for providing relevant clinical

information. Augmedix is another company attempting to

integrate both remote scribing while providing data via Google

Glass, though no NLP methods are currently used (132).

Future research may focus on integrating NLP into these

technologies to fully develop a “computer-based assistant”

to assist with documentation, which may allow clinicians to

focus on their relationship with the patient. Specifically in

ophthalmology, counseling patients on preventing blindness,

which remains the leading feared condition among American

patients (133), requires significant investment in patient-

physician relationships, and automated documentation could

improve the quality of these relationships. These tools could

also have additional value from a clinical workflow standpoint

as ophthalmology is a high-volume specialty that requires

processing of several data points and imaging modalities. While

both chatbots and digital scribes are promising for optimizing

the patient-physician relationship, significant refinement and

iterative development of these systems is required before clinical

deployment is feasible.

Limitations of NLP

Though the future of NLP is exciting across all medical

specialties including ophthalmology, there are important

limitations that existing and future applications must address

before use in the clinical setting. First, natural text is highly

variable and error prone. Previous studies have shown that both

dictated (7% error rate) (134) and written clinical notes (135)

frequently contain errors such as documented actions that were

not performed during the visit, findings from the visit that were

not charted, as well as grammatical and typographical errors.

Further, text often contains uses of words that can be used in

different contexts, including colloquialisms, irony, sarcasm, and

synonyms. These linguistic nuances often are difficult for NLP

algorithms to distinguish. Second, word embeddings in NLP

are often trained in specific domains [i.e., scientific publications

(29), documents from web search (136)]. This importantly

impacts how word embeddings interpret relationships between

words, as different words may have different meanings in

other contexts. Third, NLP models trained using DL or ML

require huge datasets. These datasets are often difficult to

acquire, and often need to be collected for a variety of

settings (i.e., multi-institutional) to train a robust, generalizable

model. Transformers, the current state-of-the-art DL method

for NLP, require large datasets, with prior studies demonstrating

worse performance on more limited datasets (137). Fourth, the

majority of NLP applications have currently been developed

in the English language (138). To promote equity in care

and reduce healthcare disparities, more research is needed in

developing NLP applications in non-English languages (71, 138–

140), which has the potential to benefit populations with limited

access to healthcare resources.

Conclusion

NLP within ophthalmology is in its nascent stages of

development and has already demonstrated potential in

augmenting our ability to analyze free-text data from the EHR

and improve predictive modeling with AI. As data from the EHR

continues to grow, there remains significant opportunities to use

NLP to improve our quality of research, “big data” analytics, and

ultimately patient outcomes. However, there remain significant

limitations of NLP that future work will need to address. More

research and ongoing interdisciplinary collaborations will be

needed to eventually translate NLP innovations into deployable

solutions in the clinic.
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