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Vertebrae computed tomography (CT) image automatic segmentation is an essential step for Image-guidedminimally invasive spine
surgery. However, most of state-of-the-art methods still require human intervention due to the inherent limitations of vertebrae
CT image, such as topological variation, irregular boundaries (double boundary, weak boundary), and image noise.Therefore, this
paper intentionally designed an automatic global level set approach (AGLSA), which is capable of dealing with these issues for
lumbar vertebrae CT image segmentation. Unlike the traditional level set methods, we firstly propose an automatically initialized
level set function (AILSF) that comprises hybridmorphological filter (HMF) andGaussianmixturemodel (GMM) to automatically
generate a smooth initial contour which is precisely adjacent to the object boundary. Secondly, a regularized level set formulation
is introduced to overcome the weak boundary leaking problem, which utilizes the region correlation of histograms inside and
outside the level set contour as a global term. Ultimately, a gradient vector flow (GVF) based edge-stopping function is employed
to guarantee a fast convergence rate of the level set evolution and to avoid level set function oversegmentation at the same time.
Our proposed approach has been tested on 115 vertebrae CT volumes of various patients. Quantitative comparisons validate that
our proposed AGLSA is more accurate in segmenting lumbar vertebrae CT images with irregular boundaries and more robust to
various levels of salt-and-pepper noise.

1. Introduction

Image-guided minimally invasive spine surgery (IG-MISS)
was wildly performed for the degenerated lumbar spine in
the last decades [1]. The public demand has been increased
for these procedures due to its various benefits, such as
performing more accurate instrumentation placement with
less radiation exposure, yielding less postoperative compli-
cations, and reducing recovery time [2, 3]. In Image-guided-
surgery (IGS) system, image segmentation of the interesting
anatomical structure is an essential preprocessing step for 3D
reconstruction and image registration, which is commonly
applied in preoperative planning, intraoperative navigation,
and postoperative assessment [4]. However, manually seg-
menting lumbar vertebrae is a time-consuming, subjective,
and nonrepeatable task. Implementing an automatic lumbar

vertebrae segmentation approach is of great importance not
only for simplifying surgery process but also for improving
operations accuracy.

Although a large amount of literature has been focused
on lumbar vertebrae CT image segmentation, there still exist
some potential challenges due to the inherent limitations of
CT imagingmodality and complexity of vertebrae anatomical
structure. Figure 1 shows some specific challenges on lumbar
vertebrae CT image segmentation, such as topological varia-
tion of vertebrae anatomical structure, irregular boundaries
(double boundary, weak boundary) [5], and image noise.
Generally speaking, two major types of approaches are
exploited to deal with these issues, i.e., statistical shape mod-
els and level set models. Statistical shapemodels (SSM) [6–11]
characterized by matching a prior template to new images is
able to address the problem of irregular boundaries in lumbar
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Figure 1: Challenges in segmentation of lumbar vertebraeCT images: (a) topological variation of vertebrae anatomical structure, (b) irregular
boundaries (double boundary and weak boundary), (c) image noise.

vertebrae CT image segmentation. Nevertheless, these mod-
els do not explicitly cope with the individual differences of
the vertebrae anatomical structure, since the prior templates
are mainly established by statistical means of training shapes.
Additionally, these statistical methods are computationally
expensive because it is heavily dependent on spatial registra-
tion of the deformable model [12]. By comparison, level set
methods (LSM) [13–24] are mainly based on edge or region
information, which can naturally figure out the topological
variation issue. However, the edge-based LSM are mostly
quite sensitive to image noise and often suffer from serious
boundary leaking problems when the objects have weak
boundaries [25]. On the other hand, the region-based LSM
assume homogeneity of local region intensities, which cannot
segment images with inhomogeneity [26]. Furthermore, the
manual interaction of initial contour is still required in
traditional LSM and pixels far away from the initial contour
are meaningless for obtaining the object boundary [27].

Due to these limitations in CT image segmentation, a
novel lumbar vertebrae CT image segmentation approach is
proposed to achieve fast, robust, and accurate segmentation.
Our segmentation strategy is an automatic global level set
approach (AGLSA), which comprises two stages within the
coarse-to-fine framework. First, we introduce an automat-
ically initialized level set function (AILSF) which exploits
hybrid morphological filter (HMF) and Gaussian mixture
model (GMM) to automatically generate a smooth initial
contour which is precisely adjacent to the object boundary.
Second, a regularized level set formulation is designed to
overcome the weak boundary leaking problem, which utilizes
the region correlation of histograms inside and outside the
level set contour as a global term.Ultimately, a gradient vector
flow (GVF) based edge-stopping function is employed to
guarantee a fast convergence rate of the level set evolution
and to avoid level set function oversegmentation at the
same time. Our proposed approach has been tested on
115 vertebrae CT volumes of various patients. Quantitative
comparisons validate that our proposed AGLSA is more
accurate in segmenting lumbar vertebrae CT images with
irregular boundaries and more robust to various levels of
salt-and-pepper noise. The rest of this paper is organized
as follows. Section 2 reviews the related literature. Section 3
presents the conception of our proposed method. The evalu-
ation methods of these approaches are then introduced, and

experimental results and analysis are detailed in Section 4.
Section 5 concludes this paper.

2. Related Work

Lumbar vertebrae segmentation methods can be briefly
classified into two types: (1) statistical shape models [12]
which take shape prior information into consideration and(2) active contour models (ACM) [28] which directly take
intensity information into account. SSM generate mean
shapes using their own shape parameters, such as Fourier
and wavelet descriptors, and use shape constraints to over-
come ambiguous boundary information [6]. For instance,
profound prior knowledge, such as various kinds of models
covering shape, gradient, and appearance information, was
utilized by Klinder et al. [7] to obtain a robust vertebrae
segmentation framework. Ma et al. [8] proposed a coarse-
to-fine deformable surface model based on learned bone-
structure edge detectors to segment vertebrae in 3D CT
images. Manifold embeddings [9] were introduced to treat
multiple vertebrae as a whole shape for spine segmentation.
Recently, Rasoulian and Suzani et al. [10, 11] developed a
statistical multi-vertebrae shape+pose model and employed
a registration-based technique to segment the CT and MR
images of spine. Unfortunately, all these methods for lumber
vertebrae segmentation are semiautomated requiring man-
ually marked initial locations of vertebras and suffer from
expensive computational complexity since these algorithms
rely heavily on spatial registration of the deformable model.
Additionally, these deformable spine models depend upon
sufficiently large training and testing dataset, which increases
the complexity, and thesemodels fail to segment the vertebrae
regions that are apparently distinct from the dataset images.
The level set method [29], which belongs to ACM, has
been widely utilized in image segmentation for its intrinsic
property in dealing with topological variation. The basic
idea of LSM is to evolve the zero-level of the level set
function (LSF) in the image domain until it reaches the
boundaries of the regions of interest [13]. LSM is able to
handle the issue that topology of the contours merges and
breaks, which wildly exists in the segmentation of lumbar
vertebrae in CT images. LSM for image segmentation can be
briefly categorized into three types: (1) edge-based models,
such as distance regularized level set evolution (DRLSE) [14],
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use edge-detecting function to stop evolving curves which
results in leaking out the ideal contours when the edges
are ambiguous; Khadidos et al. [30] calculated a weighted
energy term according to the relative importance of boundary
points to solve the problem of weak edge leaking; (2) region-
based models, such as Chan-Vese model (C-V) [15], assume
object and background intensity to be homogeneous which
cannot tackle the problems of intensity inhomogeneity; (3)
gradient vector flow models (GVF) [16] use GVF as the
external force field to extend the capture range, but they fail
to efficiently solve the convergence problem for an image
with deep concavities boundary and high noise level. Liu
et al. [31] attempted to distinguish noises and object edge
points by using the local regional properties of images points.
All the methods mentioned above need manually initialized
contour and the corresponding segmentation performance is
sensitively dependent on it. Several researchers have come up
with discrepant methods to tackle this initialization problem.
For instance, Aslan et al. [5, 17, 18] have integrated intensity,
spatial interaction, and shape information into a probabilistic
energy model in order to obtain the optimum segmentation.
Shalaby et al. [19, 20] have used a two-dimensional principal
component analysis to extract the shape prior information in
order to initialize level set function and constructed a proba-
bilistic shape-based model. Lim et al. [21] have introduced an
edge-mounted Willmore flow as well as a prior shape kernel
density estimator, to the level set segmentation framework,
but it is still in desperate need of sufficiently large training
and testing dataset. Symmetry property of target boundary
has been utilized by Liu et al. [22] to initialize the level set
function, but the application is limited to segment symmetri-
cal objects. A level set algorithm has been proposed by Li et
al. [23], which tries to evolve level set function from the initial
segmentation via spatial fuzzy clustering, yet the initial con-
tour is not smooth enough.A simple initializationmethod for
the level set function is developed by Huang et al. [24], which
exploited Otsu method to automatically initialize LSF, but it
assumed that the intensity of the regions inside and outside
the object boundary was homogeneous which is incapable of
conforming to the feature of lumbar vertebrae CT images.
Recently, Balla-Arabe et al. [32] and Liu et al. [33] have
taken advantage of 2D histogram information to constrain
the level set evolution, in order to reduce the computational
complexity of the LSM. All the methods above fail to consider
the relevance between regions that lie inside and outside
the evolving contour. In our previous work [34], a region-
correlation-based LSM is designed to address this problem.

3. Methodology

This section details the conception of our proposed AGLSA
for lumbar vertebrae CT image segmentation. The process
of this approach is illustrated in Figure 2. It can be observed
from the figure that AGLSA includes two stages within the
coarse-to-fine framework: In the first stage, we introduce
an automatically initialized level set function (AILSF) which
exploits hybrid morphological filter (HMF) and Gaussian
mixture model (GMM) to automatically generate a smooth
and well-defined initial contour, which is precisely adjacent

to the object boundary. In the second stage, a regularized level
set formulation based on the region correlation of histograms
inside and outside the level set contour is employed to
overcome theweak boundary leaking problemand eventually
to obtain the desirable segmentation.

3.1. Automatically Initialized Level Set Function

3.1.1. Hybrid Morphological Filter. To address the salt-and-
pepper noise problem, a sequence of morphological filters is
performed for lumbar vertebrae CT image denoising. Let 𝐼
be an input image, 𝐼(𝑥, 𝑦) denote the gray level at pixel (𝑥, 𝑦),
and 𝑏 denote the structuring element. Unlike binary image
morphological operations [35], the erosion and dilation oper-
ators in gray images [36] are defined as follows:The erosion of𝐼 at pixel (𝑥, 𝑦) with a structuring element 𝑏 is the minimum
value of the image in the region coincident with 𝑏 when the
origin of 𝑏 is at pixel (𝑥, 𝑦); the dilation of 𝐼 at pixel (𝑥, 𝑦)
with a structuring element 𝑏 is the maximum value of the
image over thewindow 𝑏when the origin of 𝑏 is at pixel (𝑥, 𝑦).
Therefore, the erosion of image 𝐼 at pixel (𝑥, 𝑦) is given by

(𝐼Θ𝑏) (𝑥, 𝑦) = min {𝐼 (𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑏 (𝑠, 𝑡) ; (𝑠, 𝑡)
∈ 𝐷𝑏, (𝑥 + 𝑠, 𝑦 + 𝑡) ∈ 𝐷𝐼} (1)

and the dilation of image 𝐼 at pixel (𝑥, 𝑦) is given by

(𝐼 ⊕ 𝑏) (𝑥, 𝑦) = max {𝐼 (𝑥 − 𝑠, 𝑦 − 𝑡) + 𝑏 (𝑠, 𝑡) ; (𝑠, 𝑡)
∈ 𝐷𝑏, (𝑥 − 𝑠, 𝑦 − 𝑡) ∈ 𝐷𝐼} . (2)

The morphological opening operator 𝛼 and closing oper-
ator 𝛽 for gray images are defined as

𝛼 (𝐼, 𝑏) = (𝐼Θ𝑏) ⊕ 𝑏 (3)

𝛽 (𝐼, 𝑏) = (𝐼 ⊕ 𝑏) Θ𝑏 (4)

where Θ and ⊕ denote erosion and dilation, respectively.
Opening operator removes small objects from the foreground
(usually taken as the dark pixels) of an image, while closing
operator removes small holes in the background (usually
taken as the bright pixels). Therefore, we introduce a HMF
defined as

𝐻𝑀𝐹𝑛𝑐𝑜𝑜𝑐,𝑏
= 𝛽 (𝛼 (⋅ ⋅ ⋅ 𝛽 (𝛼 (𝛼 (𝛽 (𝐼, 𝑏) , 𝑏) , 𝑏) , 𝑏) ⋅ ⋅ ⋅ 𝑏𝑛) , 𝑏𝑛) (5)

where 𝑛 ∈ [1, +∞) is the number of iterations, which can
control the smoothing effect of the filter. This HMF can
remove the dark pixels from vertebrae regions and the bright
pixels frombackground through several iterations of opening
and closing operators, respectively. Noticeably, the reason
why we take the closing operator firstly in the sequence of
morphological filter is that this type of operation order is able
to preserve the weak boundary.

3.1.2. Gaussian Mixture Model. To automatically attain a
smooth and well-defined contour for the anatomical object,
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Figure 2: Flowchart of AGLSA.

the input images should be preliminarily segmented into
foreground and background areas. In this regard, we take
advantage of GMM to cluster the input image into two
classes: background class and foreground class. GMM is
characteristic of a weighted sum of 𝐾 component Gaussian
densities defined as

𝑝 (𝑥 | Φ) = 𝐾∑
𝑖=1

𝜔𝑖𝐺 (𝑥 | 𝑢𝑖, 𝜃𝑖) (6)

where 𝑥 is the gray value of the input image, 𝜔𝑖, 𝑖 = 1, . . . , 𝐾,
represent the mixture weights, and 𝐺(𝑥 | 𝑢𝑖, 𝜃𝑖) denotes the𝑖𝑡ℎ component Gaussian densities with mean 𝑢𝑖 and stand-
ard variation 𝜃. Φ = {𝜔1, . . . , 𝜔𝐾, 𝜃1, . . . , 𝜃𝐾} refers to the
complete set of parameters for GMM. This set of parameters
inΦ is estimated using expectation-maximization (EM) algo-
rithm.

3.2. Global Level Set Approach. A global level set approach
is utilized to obtain the ultimate refined lumbar vertebrae
CT image segmentation result, which has been automatically
initialized by the method mentioned in section A. The
LSM evolves a high-dimensional surface 𝜙(𝑥, 𝑦, 𝑡) with an
evolution function defined as

𝜕𝜙
𝜕𝑡 = 𝐹 ∇𝜙 (7)

where 𝐹 is the speed function that controls the evolution
of the LSF. The main idea of edge-based LSM is to utilize
gradient information to evolve the initial contour to the
object boundary. The popularly used formulation of edge-
based LSM is [14]

𝜕𝜙
𝜕𝑡 = 𝜇 div((1 − 1∇𝜙) ∇𝜙)

+ 𝜆𝛿𝜀 (𝜙)div(𝑔 (∇𝐼) ∇𝜙∇𝜙) + 𝛼𝑔 (∇𝐼) 𝛿𝜀 (𝜙)
(8)

where 𝑔(∇𝐼) denotes the edge indicator function, 𝛿𝜀(𝜙)
denotes the Dirac function, and 𝜇, 𝜆, 𝛼 are positive constants
that control the contributions of these function evolving

terms. Region-based LSM separately consider the statistical
information of the entire inside and outside the contour. The
classic formulation of region-based LSM is [15]

𝜕𝜙
𝜕𝑡
= 𝛿𝜀 (𝜙) [𝜇 div( ∇𝜙∇𝜙) − 𝜆1 (𝐼 − 𝑐1)2 + 𝜆2 (𝐼 − 𝑐2)2]

(9)

where 𝜇, 𝜆1, 𝜆2 are positive constants and are the average
intensities of the region inside and outside the contour,
respectively. Unfortunately, these methods fail to consider
the relevance between regions that lie inside and outside the
contour. In this section, a global level set approach based on
region correlation is designed to cope with this issue.

3.2.1. Region-Correlation-Based Energy Function. Due to the
presence of intensity inhomogeneity and noise, the gray val-
ues are neither constant nor continuous variation in lumbar
vertebrae CT images.Thus, the average intensity values in (9)
are not capable of segmenting images with these problems. To
tackle this challenge, wemodify (8) by considering the region
correlation between regions inside and outside the contour as
a global term. For a LSF 𝜙 : Ω ∈ R, a novel energy function
E(𝜙) is defined by

𝐸 (𝜙) = 𝜇𝐸int (𝜙) + 𝜆𝑅 (𝜙) (10)

where 𝜇, 𝜆 are positive parameters that regulate the impact
of energy terms. The first internal energy term 𝐸int(𝜙) is
designed to avoid LSF from unnecessary reinitialization. It is
based on the formulation proposed by [14] given by

𝐸int (𝜙) = ∫
Ω

𝑝 (∇𝜙) 𝑑𝑥 = 1
2 ∫
Ω

(∇𝜙 − 1)2 𝑑𝑥. (11)
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The second global term𝑅(𝜙) is the external energy depending
upon the region correlation between regions inside and
outside the contour. We define this term as

𝐻𝑖𝑛𝑠𝑖𝑑𝑒 = (ℎ𝑖𝑗)𝐿×2 ,
𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = (ℎ𝑖𝑗)𝐿×2

(12a)

𝑅 (𝜙) = ∫
Ω

𝑔 (∇𝐼) 𝐻𝜀 (𝜙)

⋅ exp(𝑀𝐷 (𝐻𝑖𝑛𝑠𝑖𝑑𝑒, 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)𝜂 ) 𝑑𝑥.
(12b)

Two matrices in (12a) denote the normalized region his-
tograms inside and outside the contour, respectively; 𝐿
denotes the gray level of the images. In (12b),𝐻𝜀(𝜙) represents
the Heaviside function and 𝜂 is a positive parameter. To take
the histogram information of weak boundary into consider-
ation, we calculate the Mahalanobis distance between 𝐻𝑖𝑛𝑠𝑖𝑑𝑒
and 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒 as follows:

𝑀𝐷 (𝐻𝑖𝑛𝑠𝑖𝑑𝑒, 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)
= √(𝐻𝑖𝑛𝑠𝑖𝑑𝑒 − 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)𝑇 Σ−1 (𝐻𝑖𝑛𝑠𝑖𝑑𝑒 − 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)

(13)

where Σ denotes the covariance matrix.
Eventually, given (10), (11), (12a), (12b), and (13), the

energy functional of our method in (10) is as follows

E (𝜙) = 𝜇 ∫
Ω

𝑝 (∇𝜙) 𝑑𝑥 + 𝜆 ∫
Ω

𝑔 (∇𝐼) 𝐻𝜀 (𝜙)

⋅ exp(𝑀𝐷 (𝐻𝑖𝑛𝑠𝑖𝑑𝑒, 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)𝜂 ) 𝑑𝑥
(14)

which can be minimized by solving the following gradient
flow:

𝜕𝜙
𝜕𝑡 = 𝜇 div((1 − 1∇𝜙) ∇𝜙)

+ 𝜆𝑔 (∇𝐼) 𝛿𝜀 (𝜙) exp(𝑀𝐷 (𝐻𝑖𝑛𝑠𝑖𝑑𝑒, 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒)𝜂 )
(15)

where 𝛿𝜀(𝜙) is the Dirac delta function.
As defined above, the proposed energy function should

be effective when segmenting lumbar vertebrae CT images
with weak boundary in noisy conditions. This property will
be demonstrated subjectively and objectively by experiments
on clinical lumbar vertebrae CT images.

3.2.2. Edge-Stopping Function. As mentioned above, the pro-
posed LSM is automatically initialized by AILSF and the
initial contour is already in proximity to the object boundary.
Therefore, the edge-stopping function 𝑔(∇𝐼) should quickly
converge and effectively avoid LSF oversegmentation which
results in weak boundary leaking. Usually, an edge-stopping
function is defined as

𝑔 (∇𝐼) = 1
1 + ∇𝐺𝜎 ⋅ 𝐼𝑚 (16)

where 𝐺𝜎 represents a Gaussian kernel with a standard
deviation 𝜎 and 𝑚 = 1, 2. The edge map of gradient vector
flow [37] is adopted to accelerate the convergence of 𝑔(∇𝐼)
and (17) can be rewritten as

𝑔 (∇𝐼) = exp − (∇𝐺𝜎 ⋅ 𝐼𝑟 )
𝑚

(17)

where 𝑚 ∈ [2, +∞), 𝑟 is a scalar that controls the extent
of edge-stopping function convergence rate. Since the initial
contour is already close to the boundary of lumbar vertebrae
in the first stage of our approach, the exponential form of𝑔(∇𝐼) can make the evolution of LSF converge rapidly before
it crosses the weak boundary.

4. Experimental Results and Analysis

4.1. Data. Clinical datasets provided by Microsoft Research
[38] and SpineWeb [39] are employed to test the performance
of our approach. The datasets consist of spine CT image
scans (pixel resolution: 512 × 512) obtained from 115 different
patients aging between 23 and 86 years old and these scans
have 150 to 200 slices per patient. The ground-truth images
are manually and accurately segmented via expert using
TurtleSeg [40] open software. Our segmentation approach is
implemented onMatlabR2017a platform installed onPCwith
2 Intel Xeon (R) 3.07GHz CPUs, 12GB RAM, and NVIDIA
Quadro 5000 graphic processor.The following parameters are
determined empirically for our proposed AGLSA in all the
experiments: 𝑛 = 1, 𝜇 = 1.0, 𝜆 = 3.0, 𝜎 = 0.7, 𝜂 = 2.0, 𝑚 = 2,𝑟 = 0.9.
4.2. Evaluation Criterion. The evaluation of our segmen-
tation approach and the corresponding comparisons with
the prevailing state-of-the-art methods are conducted by
means of six criteria: (1) dice similarity coefficient (DSC);(2) misclassification rate (MCR); (3) mean absolute distance
(MAD); (4)Hausdorff distance (HD); (5) running time (RT);(6) iteration number. The DSC is formulated as

𝐷 (Ω𝑆, Ω𝐺) = 2 (Ω𝑆 ∩ Ω𝐺)Ω𝑆 + Ω𝐺 (18)

where Ω𝑆 and Ω𝐺 represent the volumes of segmented
result and the ground truth, respectively. DSC is targeted
to measure the overlap extent between the segmentation
results and ground-truth images, which varies from 0% to
100%. Higher DSC values would be representative of larger
overlapping region areas and better segmentation outcomes.

The MCR is defined as follows:

𝑀 (Ω𝑆, Ω𝐺) = 1 − Ω𝑆 ∩ Ω𝐺Ω𝐺 . (19)

TheMCRaims to calculate the proportion of the object region
being segmented to the incorrect class, which also ranges
from 0% to 100%. In comparison with DSC, the lower value
the MCR scores, the fewer regions are being segmented into
themistaken categories and certainly the better segmentation
consequence will be obtained.
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Figure 3: Automatically initialized level set contour of five selected slices. (a) Input images. Initial contours generate by (b) Otsu method, (c)
our proposed AILSF. (d) Initialized LSF of our method.

The MAD is given by

𝑑𝑀 (𝑆, 𝐺) = 1
𝑚𝑆
𝑚𝑆∑
𝑖=1

𝑑𝑆𝐺𝑖  (20)

where 𝑆 and 𝐺 denote the boundaries of segmentation results
and ground truth, respectively, 𝑚𝑆 denotes the total number

of pixels that lie on the boundary in the segmentation image,
𝑑𝑆𝐺𝑖 represents the distance from the 𝑖𝑡ℎ pixel on the boundary
of segmentation result to the nearest pixel on the boundary of
ground truth. Therefore, MAD measures the mean absolute
boundary distance between segmentation result and ground
truth. Obviously, the lower the MAD is, the better the
segmentation result is.
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Figure 4: Comparison of the lumbar vertebrae CT image segmentation results with original noise level. (a) Input images, images segmented
by (b) the C-Vmodel [15], (c) Lim’s model [21], (d) Khadidos’ model [30], (e) Liu’s model [31], (f) our proposed AGLSA, and (g) ground truth.

The HD is defined as follows:

𝑑𝐻 (𝑆, 𝐺) = max{sup
𝑥∈𝑆

inf
𝑦∈𝐺

𝑑 (𝑥, 𝑦) , sup
𝑦∈𝐺

inf
𝑥∈𝑆

𝑑 (𝑥, 𝑦)} . (21)

This measurement represents the maximum distance from
pixels on the boundary of segmentation result to the closest
pixels on the boundary of ground-truth images. In a similar
manner, largerHD indicates farther distance between the two
boundaries and worse segmentation outcome to be attained.

4.3. Segmentation Results. To validate the performance of
our approach on CT lumbar vertebrae image segmentation,
we have conducted two experiments. The first experiment
is designed to evaluate the effect of automatically initialized
level set contour by our proposed AILSF, and the corre-
sponding segmentation results are compared with those of
Otsu method. As can be seen in Figure 3, the contours
automatically initialized by AILSF are, apparently, smoother

and more well-defined than the contours initialized via Otsu
method. It is able to specifically filter salt-and-pepper noise
and make the initialized contour precisely outside and close
to the object boundary.

The second experiment is performed to evaluate the
robustness and accuracy of our proposed AGLSA for lumbar
vertebrae CT image segmentation by adding various levels
of salt-and-pepper noise. The intuitional comparisons are
illustrated in Figures 4, 5, and 6.

Figures 4, 5, and 6 illustrate the comparisons of the
segmentation results utilizing the C-V model [15], Lim’s
model [21], Khadidos’ model [30], Liu’s model [31], our
proposed AGLSA, and ground truth with various levels of
salt-and-pepper noise. From these figures, it can be seen that
the C-V model performs stable segmentation from different
levels of noise, but it is unable to solve the irregular boundary
problem and leads to undersegmentation since it assumes
that the intensity of the object region is homogeneous. Lim’s
model is so sensitive to salt-and-pepper noise that it cannot
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Table 1: Average DSC (%), MCR(%), MAD (pixel), HD (pixel), and RT (second) with standard deviation of various segmentation results
with different levels of noise.

Input images Criteria C-V [15] Lim [21] Khadidos [30] Liu [31] AGLSA

Original images

DSC(%) 68.53 ± 3.06 89.01 ± 1.21 87.26 ± 3.25 86.67 ± 2.48 92.08 ± 2.37
MCR(%) 14.85 ± 7.52 8.53 ± 4.34 8.65 ± 2.27 8.92 ± 3.06 5.23 ± 2.06
MAD(P) 15.66 ± 8.64 9.47 ± 4.65 10.15 ± 3.34 11.90 ± 2.43 6.94 ± 4.01
HD (P) 26.17 ± 3.64 15.62 ± 2.40 15.70 ± 1.87 18.40 ± 3.18 11.54 ± 3.45
RT (S) 42.3 ± 1.6 12.5 ± 2.1 16.7 ± 3.2 20.3 ± 1.5 5.9 ± 1.5

Images with 1% salt and pepper noise

DSC(%) 63.26 ± 5.86 81.74 ± 4.52 83.85 ± 2.88 84.53 ± 3.05 86.01 ± 3.23
MCR(%) 21.55 ± 3.70 13.06 ± 3.14 11.67 ± 2.10 9.17 ± 2.76 8.93 ± 2.31
MAD(P) 30.23 ± 7.41 19.94 ± 2.86 17.56 ± 4.81 15.90 ± 3.15 14.67 ± 3.74
HD (P) 51.14 ± 5.35 25.81 ± 4.17 22.68 ± 3.11 20.36 ± 4.73 19.75 ± 1.50
RT (S) 50.5 ± 2.6 20.3 ± 2.6 26.5 ± 1.7 30.1 ± 2.3 8.5 ± 2.0

Images with 3% salt and pepper noise

DSC(%) 56.30 ± 2.04 70.55 ± 2.63 79.13 ± 2.43 80.47 ± 1.56 82.12 ± 3.22
MCR(%) 29.15 ± 5.33 27.21 ± 3.58 18.26 ± 2.58 17.62 ± 3.24 14.34 ± 2.06
MAD(P) 40.26 ± 4.60 25.93 ± 5.11 24.78 ± 1.09 23.13 ± 2.54 19.50 ± 1.86
HD (P) 69.08 ± 5.68 35.60 ± 3.76 29.31 ± 4.72 25.94 ± 3.69 23.65 ± 4.33
RT (S) 70.8 ± 4.5 26.7 ± 1.8 36.3 ± 2.6 42.6 ± 1.8 13.0 ± 1.7

Images with 5% salt and pepper noise

DSC(%) 50.23 ± 1.12 65.31 ± 3.08 73.01 ± 3.51 75.54 ± 3.42 78.65 ± 2.89
MCR(%) 33.40 ± 4.67 31.70 ± 2.36 27.94 ± 3.62 26.73 ± 2.50 20.86 ± 4.57
MAD(P) 45.15 ± 3.50 28.67 ± 1.45 28.75 ± 2.45 25.65 ± 3.26 23.01 ± 3.15
HD (P) 70.78 ± 5.37 39.45 ± 5.27 33.50 ± 4.21 31.32 ± 3.18 25.94 ± 2.78
RT (S) 81.3 ± 2.4 45.8 ± 3.1 49.1 ± 2.3 56.8 ± 2.4 16.3 ± 2.5

Images with 7% salt and pepper noise

DSC(%) 47.86 ± 6.03 58.93 ± 5.64 70.49 ± 3.01 72.12 ± 2.65 75.40 ± 3.32
MCR(%) 40.11 ± 3.27 38.65 ± 3.77 32.71 ± 3.57 31.63 ± 3.72 28.23 ± 4.07
MAD(P) 48.67 ± 7.10 31.51 ± 4.06 30.62 ± 3.26 28.16 ± 3.44 25.65 ± 2.28
HD (P) 74.55 ± 5.89 43.25 ± 4.15 39.78 ± 4.80 37.25 ± 2.15 29.85 ± 3.48
RT (S) 89.4 ± 2.1 60.5 ± 2.3 65.7 ± 1.2 70.8 ± 2.4 19.1 ± 1.6

generate continuous contour when the noise level is added
to 7%.Moreover, Lim’s model raises oversegmentation which
is attributed to its edge-based property. Khadidos’ model and
Liu’smodel have better segmentation performance than Lim’s
model because of the utilization of local regional information.
However, Khadidos’ model and Liu’s model failed to segment
the inner boundary of the vertebral foramen. It is noticeable
that our proposed AGLSA achieves smoother and more
accurate segmentation results than others. Furthermore, our
proposed AGLSA is robust to various levels of salt-and-
pepper noise because of using global region-correlation
information.

Figure 7 compares the average iteration numbers for level
set formulation to achieve convergence via the C-V model
[15], Lim’s model [21], Khadidos’ model [30], Liu’smodel [31],
and our proposed AGLSA with various levels of noise. The𝑥 − 𝑎𝑥𝑒𝑠 represent different image noise levels of input image
from 0 to 7%. The 𝑦 − 𝑎𝑥𝑒𝑠 represent the average iteration
numbers for level set formulation to achieve convergence.
It is obvious that, because of using AILSF to automatically
generate a smooth initial contour which is precisely adjacent
to the object boundary, our proposed AGLSA has a faster
convergence rate and is robust to various levels of salt-and-
pepper noise.

Table 1 indicates the quantitative comparison results of
our proposed approach with the other four methods. It

lists five different criteria: DSC, MCR, MAD, HD, and RT
of these methods. It can be seen that Lim’s model obtains
satisfactory segmentation result under original noise level,
but its edge-based property makes it sensitive to the image
noise, and the performance under 1%, 3%, 5%, and 7% levels
of salt-and-pepper noise is significantly degraded. Although
Khadidos’ model and Liu’s model have better performance,
the running times become longer under 7% noise level
because the manually initialized contours are sensitive to the
image noise. It is remarkable that for images added with 1%,
3%, 5%, and 7% levels of salt-and-pepper noise, our proposed
approach outperforms others within all these five criteria
since we adopt region correlation of the histograms inside
and outside the contour. The conclusion can be drawn that
our proposed AGLSA is robust and accurate in presence of
salt-and-pepper noise and is capable of converging quickly to
the target boundaries.

5. Conclusion

In this paper, we present a novel level set formulation for
lumbar vertebrae CT image segmentation. Our proposed
AGLSA is able to conduct the automatic initialization via
AILSF which consists of HMF and GMM, and the corre-
sponding initial contour is smoother and more well-defined
than that initialized by Otsu method. Furthermore, a global
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Figure 5: Comparison of the lumbar vertebraeCT image segmentation results added with 3% noise level. (a) Input images, images segmented
by (b) the C-Vmodel [15], (c) Lim’s model [21], (d) Khadidos’ model [30], (e) Liu’s model [31], (f) our proposed AGLSA, and (g) ground truth.

level set formulation is introduced based on the region
correlation which is calculated by Mahalanobis distance of
histograms inside and outside the level set contour in order
to avoid weak boundary leaking problem. Ultimately, a GVF-
based edge-stopping function is utilized to guarantee a fast
convergence rate of the level set evolution and to avoid LSF
oversegmentation at the same time. Experimental results
on clinical images demonstrate that our proposed AGLSA
is sufficiently more accurate and robust than the other
four models. Moreover, our algorithm performs much more
computationally efficient in presence of various levels of salt-
and-pepper noise. Our proposed approach could be extended
to other applications in medical image segmentation (brain
MRI and cardiac ultrasound). The limitation of our approach
is that it only copes with the irregular boundaries (double
boundary and weak boundary) and image noises in the
segmentation. It does not take into account the occlusion
of vertebrae caused by the pathological conditions. Shape
prior information could be a possible solution to this issue.
Further researches and experiments can be conducted to

guarantee the robustness and accuracy of segmentation
results with pathological conditions, such as tumors, lesions,
and implanting pedicle screws.
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Figure 6: Comparison of the lumbar vertebraeCT image segmentation results added with 7% noise level. (a) Input images, images segmented
by (b) the C-Vmodel [15], (c) Lim’s model [21], (d) Khadidos’ model [30], (e) Liu’s model [31], (f) our proposed AGLSA, and (g) ground truth.
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Figure 7: Average iteration number for the segmentation results using the C-V model [15], Lim’s model [21], Khadidos’ model [30], Liu’s
model [31], and our proposed AGLSA with different noise levels.
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of our previous paper “A novel automatically initialized
level set approach based on region correlation for lumbar
vertebrae CT image segmentation” published in 2015 IEEE
International Symposium on Medical Measurements and
Applications (MeMeA) Proceedings.
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