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Optimal designs for copula models
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Copula modelling has in the past decade become a standard tool in many areas of applied statistics.
However, a largely neglected aspect concerns the design of related experiments. Particularly the issue of
whether the estimation of copula parameters can be enhanced by optimizing experimental conditions and
how robust all the parameter estimates for the model are with respect to the type of copula employed. In
this paper an equivalence theorem for (bivariate) copula models is provided that allows formulation of
efficient design algorithms and quick checks of whether designs are optimal or at least efficient. Some
examples illustrate that in practical situations considerable gains in design efficiency can be achieved. A
natural comparison between different copula models with respect to design efficiency is provided as well.
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1. Introduction

Due to their flexibility in describing dependencies and the possibility of separating marginal
and joint effects copula models have become a popular device for coping with multivariate
data. in many areas of applied statistics eg. for insurances,[1] econometrics,[2] medicine,[3]
marketing,[4] spatial extreme events,[5] time series analysis,[6] even sports [7] and particularly
in finance.[8]

The concept of copulas, however, has only been rarely employed in experimental design with
notable exceptions of spatial design in [9,10], and sequential trials in [11]. The design question
for copula parameter estimation has to our knowledge just been raised in [12], where a brute-
force simulated annealing optimization was employed for the solution of a specific problem. By
this paper we provide the necessary theory for fully embedding the situation into optimal design
theory. Particularly we provide a Kiefer–Wolfowitz type equivalence theorem [13] in Section 3
as a basis for a substantial analysis of the arising issues in the example sections.

To be more concrete, let us consider a vector xT = (x1, . . . , xr) ∈ X of control variables, where
X ⊂ R

r is a compact set. The results of the observations and of the expectations in a regression
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experiments are the vectors:

y(x) = (y1(x), . . . , ym(x)),

E[Y(x)] = E[(Y1, . . . , Ym)] = η(x, β) = (η1(x, β), . . . , ηm(x, β)),

where β = (β1, . . . , βk) is a certain unknown vector of marginal parameters to be estimated and
ηi (i = 1, . . . , m) are known functions. Let us call FYi(yi(x, β)) the marginal cumulative distribu-
tions of each Yi for all i = 1, . . . , m and fY(y(x, β), α) the joint probability density function of the
random vector Y, where α = (α1, . . . , αl) are unknown (copula) parameters. In the remainder of
the paper we will focus on the case m = 2, but generalizations of our results are possible.

Definition 1.1 Let I = [0, 1]. A two-dimensional copula (or 2-copula) is a bivariate function
C : I × I −→ I with the following properties:

(1) for every u1, u2 ∈ I
C(u1, 0) = 0, C(u1, 1) = u1, C(0, u2) = 0, C(1, u2) = u2; (1)

(2) for every u1, u2, u3, u4 ∈ I such that u1 ≤ u3 and u2 ≤ u4,

C(u3, u4) − C(u3, u2) − C(u1, u4) + C(u1, u2) ≥ 0.

Now let FY be a joint cumulative distribution function (cdf) with marginal cdfs FY1 and FY2 .
According to Sklar’s theorem [14] there exists then a 2-copula C such that

FY(y1, y2) = C(FY1(y1), FY2(y2)) (2)

for all reals y1, y2. If FY1 and FY2 are continuous, then C is unique; otherwise, C is uniquely
defined on Ran(FY1) × Ran(FY2). Conversely, if C is a 2-copula and FY1 and FY2 are distribution
functions, then the function FY given by Equation (2) is a joint distribution with marginals FY1

and FY2 .

2. Design issues

We need to quantify the amount of information on both (trend and copula) sets of parameters α

and β respectively from the regression experiment embodied in the Fisher information matrix,
which for an elemental information at a particular control x in the sense of Atkinson et al. [15] is
a (k + l) × (k + l) matrix defined as

m(x, β, α) =
(

mββ(x) mβα(x)

mT
βα(x) mαα(x)

)
, (3)

where the submatrix mββ(x) is the (k × k) matrix with the (i, j)th element defined as

E
(

− ∂2

∂βi∂βj
log[fY(y(x, β), α)]

)
, (4)

and the submatrices mβα(x) (k × l) and mαα(x) (l × l) are defined accordingly. Here we model
the dependence between Y1 and Y2 with a copula function Cα(FY1(y1(x, β)), FY2(y2(x, β))) and
find the joint density of the random variables from

fY(y(x, β), α) = ∂2

∂y1∂y2
Cα(FY1(y1(x, β)), FY2(y2(x, β)).
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Definition 2.1 For a concrete (discrete) experiment with N independent observations at n ≤
N support points x1, . . . , xn, the corresponding total information matrix is

M (ξ , β, α) = N−1
n∑

i=1

wim(xi, β, α),
n∑

i=1

wi = 1, ξ =
{

x1 . . . xn

w1 . . . wn

}
,

with so-called design weights wi.

The aim of approximate optimal design theory is concerned with finding an optimal design
measure ξ ∗(β, α), such that it maximizes some scalar function φ(M (ξ , β, α)), the so-called
design criterion. In the following we will consider only D-optimality, that is, the criterion
φ(M ) = log det M , if M is non-singular. There exist several well written monographs on opti-
mal design theory and its application, but in this paper we follow mainly the style and notation
of Silvey.[16]

3. Equivalence theory

The cornerstone of a theoretical investigation into optimal design is usually the formulation of
a Kiefer–Wolfowitz type equivalence relation, which is given in the following theorem. It is a
generalized version of a theorem given without proof in [17] and follows from a multivariate
version of the basic theorem given in [16], its full proof can be found in the Appendix.

Theorem 3.1 Denote by (β̄, ᾱ) fixed values (local guesses) for the parameter vector. Then, the
following properties are equivalent:

• ξ ∗ is D-optimal;
• tr[M (ξ ∗, β̄, ᾱ)−1m(x, β̄, ᾱ)] ≤ (k + l),∀x ∈ X ;
• ξ∗ minimize maxx∈X tr[M (ξ ∗, β̄, ᾱ)−1m(x, β̄, ᾱ)], over all ξ ∈ �.

This theorem provides simple checks for D-optimality through the maxima of

d(x, ξ∗) = tr[M (ξ ∗, β̄, ᾱ)−1m(x, β̄, ᾱ)],

which is usually called sensitivity function. It also allows us the use of standard design algorithms
such as of the Fedorov-Wynn-type,[18,19] which will yield an optimal approximate design ξ ∗ ={

x1
∗ ... xn

∗
w∗

1 ... w∗
n

}
.

Note that these resulting optimal designs will now depend not only upon the marginal model
structure, but also upon the chosen copula and through the induced nonlinearities potentially
also on the unknown parameter values for α and β, which is why we are resorting to localized
designs around the values (β̄, ᾱ). A sensitivity analysis with respect to the effect of these choice
on a particular example can be found in [20].

Definition 3.2 For the comparison of designs define D-Efficiency of the design ξ with respect
to the design ξ∗ as the ratio ( |M (ξ , β̄, ᾱ)|

|M (ξ ∗, β̄, ᾱ)|
)1/(k+l)

, (5)

where (k + l) is the number of the model parameters. We will report all our findings in percentage
losses of these D-efficiencies.
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4. Examples

A main question now of course concerns whether ignorance or wrong guesses of copula function
and/or parameters may lead to inefficiencies of the designs.

4.1. Tools

For that purpose let us here give the list of copulas used in our examples (for more details see,
eg. [21] or [22]). We provide the copula function along with the so-called Kendall’s τ , which is a
dependence measure that allows us to conveniently relate different copulas (for a definition and
a more exhaustive comparison see [23]).

Definition 4.1 (1) Product Copula, which represents the independence case:

C(u1, u2) = u1u2,

with τ = 0.
(2) Gaussian Copula:

Cα(u1, u2) = 1

2

√

1 − α2

∫ �−1(u1)

−∞

∫ �−1(u2)

−∞
exp

(
− z1

2 − 2αz1z2 + z2
2

2(1 − α2)

)
dz1 dz2,

with α ∈ [−1, 1] and τ = (2/
) arcsin(α).
(3) Farlie–Gumbel–Morgenstern ( FGM):

Cα(u1, u2) = u1u2[1 + α(1 − u1)(1 − u2)],

with α ∈ [−1, 1] and τ = 2
9α.

(4) Clayton:

Cα(u1, u2) = [max(u−α
1 + u−α

2 − 1, 0)]−(1/α),

with α ∈ (0, +∞) and τ = α/(α + 2).
(5) Frank:

Cα(u1, u2) = − 1

α
ln

(
1 + (e−αu1 − 1)(e−αu2 − 1)

e−α − 1

)
,

with α ∈ (−∞, +∞), and τ = 1 − (4/α)(1 − (1/α)
∫ α

0 (t/(et − 1)) dt).
(6) Gumbel:

Cα(u1, u2) = exp(−[(− ln u1)
α + (− ln u2)

α]1/α),

with α ∈ [1, +∞) and τ = (α − 1)/α.

4.2. The linear case

Let us first consider a simple example reported in [18]. For each design point x ∈ [0, 1], we may
observe an independent pair of random variables Y1 and Y2, such that

E[Y1(x)] = β1 + β2x + β3x2,

E[Y2(x)] = β4x + β5x3 + β6x4,

which is linear in β and has dependence described by the product copula with Gaussian margins.
Since this case is covered by Theorem 1, we were able to compute the optimal design ξ ∗ by a
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Figure 1. Sensitivity function (left axis) and optimal design (right axis) for the Fedorov example.

standard algorithm and we display it in Figure 1 along with its sensitivity function. As rather
typical ξ ∗ is supported on only a small number (here four) of design points, smaller than the
number of parameters. From the sensitivity function we can see that it is indeed optimum as it
reaches (and not exceeds) the number of parameters at all design points. Furthermore our optimal
design coincides with the one reported in [18], namely

ξ ∗ =
(

x∗
i

w∗
i

)
=

(
0 0.38 0.76 1.0

0.16 0.28 0.23 0.33

)
. (6)

Let us consider a more general case, for which the joint distribution is described by a Gaussian
copula and we thus allow the random variables Y1 and Y2 to be dependent. In this case the joint
probability function of the random vector Y = (Y1, Y2) is simply

FY(y1, y2) = Cα(�(y1 − η1(x, β)), �(y2 − η2(x, β)))

= �2(y1 − η1(x, β), y2 − η2(x, β); α), (7)

where �2(·, ·; α) denotes the bivariate normal cdf with correlation α ∈ (−1, 1) and � denotes
the cdf of the standard normal distribution N(0, 1) (see [24]).

Our computations gave rise to the following

Corollary 4.2 For different values of α the optimal design is the same as for the independence
case, which is the Gaussian case with α = 0.

Note, that the sensitivity function now has a different scaling (with a maximum at 7) as
we have an additional copula parameter. This corollary, however, is hardly surprising as this
fact coincides with the classic findings for the multivariate Gaussian distribution by Krafft and
Schaefer.[25]



922 E. Perrone and W.G. Müller

Table 1. Losses in D-efficiency (in bold) by ignoring the dependence in per cent.

FGM Clayton Frank

τ ᾱ D-eff ᾱ D-eff ᾱ D-eff

−0.15 −0.67 0.29 n.d. – − 1.37 0.10
−0.10 −0.45 0.23 n.d. – − 0.90 0.10
−0.05 −0.22 0.59 n.d. – − 0.45 0.10
0.05 0.22 0.68 0.10 0.16 0.45 0.10
0.10 0.45 0.39 0.22 0.13 0.90 0.10
0.15 0.67 0.28 0.35 0.34 1.37 0.10
0.35 n.d. – 1.08 0.11 3.51 0.11
0.75 n.d. – 6.00 0.27 14.13 0.16

But now for a contrast consider the FGM copula. Following our approach, we must calculate
the density corresponding to the function:

Cα(�(Y1(x; β)), �(Y2(x; β))) = �(Y1(x; β))�(Y2(x; β))

× [1 + α(1 − �(Y1(x; β)))(1 − �(Y2(x; β)))],

which eventually leads to expressions like

E
(

− ∂2

∂βi∂βj
log

[
∂2

∂y1∂y2
Cα(�(Y1(x; β)), �(Y2(x; β)))

])

for the information matrix. These integrals are not analytically solvable, but we can evaluate
them numerically and we can use the algorithm in order to find the optimum designs.

Not surprisingly those optimal designs do depend upon the choice of ᾱ (i.e. the assumed
dependence) – and similar calculations can be performed for other copula functions as well.
Some results are subsumed in Table 1, which displays the loss in D-efficiency that occurs by
using the optimal design ξ ∗ from Equation (6) compared to the respective optimal designs for
various copula models and Kendall’s τ . It can be seen that these losses are generally quite small
for all considered copulas.

4.3. A binary bivariate model

In order to better investigate the role of the copula parameter, we analyse a more elaborate
example with potential applications in clinical trials. Let us formally introduce the model.
We consider a bivariate binary response (Yi1, Yi2), i = 1, . . . , n with four possible outcomes
{(0, 0), (0, 1), (1, 0), (1, 1)} where 1 usually represents a success and 0 a failure (of eg. a drug
treatment). For a single observation denote the joint probabilities of Y1 and Y2 by py1,y2 = pr(Y1 =
y1, Y2 = y2) for (y1, y2 = 0, 1). In a clinical trial context Y1 and Y2 could represent efficacy and
toxicity of a tested drug.

Now, define

p11 = Cα(π1, π2), p10 = π1 − p11,

p01 = π2 − p11, p00 = 1 − π1 − π2 + p11.
(8)

The complete log-likelihood for the bivariate binary model is then given by

l(θ ; y) =
n∑

i=1

wili(θ ; y), θ = (β1, β2, α), (9)
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where β1 and β2 are the parameters associated with the respective margins and the log-likelihood
for a single observation is given by

li(θ ; y) = y1y2 log p11 + y1(1 − y2) log p10 + (1 − y1)y2 log p01 + (1 − y1)(1 − y2) log p00.
(10)

As shown in [26] the Fisher information matrix for a single observation can then be written as

M (θ , ξi) = ∂p
∂θ

T (
P−1 + 1

1 − p11 − p10 − p01
eeT

)
∂p
∂θ

, (11)

where p = (p11, p10, p01), P = diag(p) and e = (1, 1, 1)T. Some useful formulae for calculating
information matrices in copula models can also be found in [27].

A particular case of the introduced model has already been analysed in [17]. In that work, the
authors assume the marginal probabilities of success given by the models

log

(
πi

1 − πi

)
= βi1 + βi2x, i = 1, 2 (12)

with x ∈ [0, 10] and ‘localized’ parameters β̄1 = [−1, 1] and β̄2 = [−2, 0.5]. The considered
joint cdf is the Gumbel cdf, which corresponds to the following choice for the probability of
success p11:

p11 = FY1,Y2(π1, π2) = π1π2(1 + α(1 − π1)(1 − π2)),

that is, in terms of copulas, the FGM copula.
In [17], the choice of this model is highlighted by arguing that it allows for dependence

between efficacy and toxicity and it is claimed that including estimation of α rather then inde-
pendently analysing efficacy and toxicity is preferable. We reanalyse this example studying both
the role of the copula parameter and the impact of a particular type of dependence structure on
the D-optimal designs obtained.

To get a clearer idea of the role played by the copula parameter, let us first focus on the
benchmark case of independence, described both by the Product copula and the FGM copula with
α = 0. However, using these two copulas has substantially different interpretation and effect. In
the one case (Product copula) we completely ignore potential dependence, whereas in the other
case (FGM copula) we allow for its estimation, but assume it inexistent.

In a second step, to examine the impact of the dependence structure, we compare the model
analysed in [17] with the more general ones proposed in [12]. Those have the same assumptions
on the marginals probabilities as in [17], as well as same design space and initial parameter for
the betas, but the dependencies are instead represented by using the copulas Frank, Gumbel, and
Clayton. Note that in [12] the authors employed a brute-force simulated annealing algorithm for
their calculations and had no means for checking definitive optimality, which is now possible
through the equivalence theorem (Theorem 5.1) provided.

Now, using the D-optimal designs for the FGM copula and for the Product copula as bench-
marks, we note the losses in D-efficiency in per cent as reported respectively in Table 2 (Product
copula) and in Table 3 (FGM). In both cases, the losses are much stronger than in the previous
example.

Analysing these results by focusing on the Frank and the Gumbel copulas, one can notice
that lower losses in Table 3 correspond to the lower values of τ . Conversely, the losses already
become much higher in Table 3 for a moderate level of the association τ . Moreover, looking at
the results for the Clayton copula, we even have lower losses by ignoring the dependence for
almost all the levels of the association τ . This suggests, at first glance, that it is not generally
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Table 2. Losses in D-efficiency (in bold) by ignoring the dependence in per cent (product copula).

Frank Clayton Gumbel

τ ᾱ D-eff ᾱ D-eff ᾱ D-eff

0.11 1.00 1.72 0.24 1.75 1.12 0.95
0.45 5.00 1.31 1.68 1.49 1.84 1.29
0.66 10.00 1.87 3.98 0.71 3.00 2.31
0.76 15.00 2.89 6.42 2.84 4.21 2.99
0.82 20.00 3.10 8.89 9.48 5.45 3.25

Table 3. Losses in D-efficiency (in bold) in per cent with respect to the FGM copula (α = 0).

Frank Clayton Gumbel

τ ᾱ D-eff ᾱ D-eff ᾱ D-eff

0.11 1.00 0.01 0.24 2.42 1.12 0.87
0.45 5.00 0.36 1.68 1.13 1.84 0.5
0.66 10.00 3.18 3.98 1.34 3.00 2.84
0.76 15.00 5.63 6.42 5.54 4.21 5.13
0.82 20.00 6.24 8.89 13.94 5.45 6.12

Figure 2. The optimal designs and the sensitivity functions for the binary example (Clayton left, Gumbel right). The
copula parameters chosen correspond to Kendall’s τ = 0.816.

preferable to insert a dependence parameter to be estimated, since this might increase the losses
when the model is chosen badly.

Interestingly, if the copula parameter is not estimated, that is, if the model is just a four param-
eter model, the optimal designs found are almost the same for all the investigated copulas, and
can be represented by

ξ ∗ =
(

x∗
i

w∗
i

)
=

(∼ 0 2.80 6.79
0.42 0.36 0.22

)
.

Evidently, the structure of the dependence has an impact as soon as its parameter requires
estimation. In Figure 2 we display the designs and sensitivity functions for a representative case
contrasting the very different optimal designs for a Clayton and a Gumbel copula with identical
Kendall’s τ . It will therefore be of great practical value to compare different copulas with respect
to their optimal design properties (as well as eventually to be able to efficiently discriminate
between them).

A first such step of comparing different copula models was taken in [12] where the authors
evaluate designs for various copula choices against each other (in their Table 8). However, they
have been using the same parameter values for all the copulas without considering the different
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Table 4. Losses in D-efficiency (in bold) by comparing the true copula model with the assumed one for a fixed
Kendall’s τ .

True Copula Frank Clayton Gumbel

Assumed Copula Clayton Gumbel Frank Gumbel Frank Clayton

τ = 0.11 2.24 0.67 1.99 2.70 0.82 2.75
τ = 0.45 0.26 0.03 0.26 0.11 0.03 0.15
τ = 0.66 1.09 0.11 1.04 1.28 0.14 1.57
τ = 0.76 4.27 0.02 3.87 4.08 0.01 4.73
τ = 0.82 8.24 0.01 10.91 10.96 0.01 8.43

meaning of the copula parameter for various copula families. Therefore, we instead provide
in Table 4 an improved comparison between different dependence structures along the same
Kendall’s τ values by exploiting the relationship between the copula parameter to the measure
of concordance τ . Thanks to this comparison, now the pure impact of the choice of the copula
is highlighted. It turns out, that even in extreme case the efficiency losses are only small to
moderate. They are greatest if Frank or Gumbel are used instead of Clayton, which may be
explained by their opposing representations of tail dependencies.

4.4. A more flexible model

Let us now allow the strength of the dependence itself be dependent upon the regressors x,
a situation completely covered by our equivalence theorem. Thus here the copula parameters
themselves become model-dependent such as, for example, in [28]. As in our context only pos-
itive associations (between efficacy and toxicity) make sense we consider in the following the τ

modelled by a logistic:

τ(x, α1) = eα1x

1 + eα1x
, (13)

which takes values in [0, 1] for α1 ∈ [0, 1].
Considering the Archimedian copulas Clayton C1 and Gumbel C2, the following relationships

between the Kendall’s τ and the copula parameters hold:

τC1(x, α1) = γ1(x, α1)

γ1(x, α1) + 2
andso γ1(x, α1) = 2τC1(x, α1)

1 − τC1(x, α1)
for the Clayton family;

τC2(x, α1) = γ2(x, α1) − 1

γ2(x, α1)
andso γ2(x, α1) = 1

1 − τC2(x, α1)
for the Gumbel family.

Then, we model the current probability of success by a convex combination of the Clayton
and the Gumbel copulas

C(π1, π2; α1, α2) = α2C1(π1, π2; γ1(x, α1)) + (1 − α2)C2(π1, π2; γ2(x, α1)),

and when we link them at the same τ values we end up with

C(π1, π2; α1, α2) = α2C1(π1, π2; 2 eα1x) + (1 − α2)C2(π1, π2; 1 + eα1x).

The added flexibility of such a model is that the impact of the dependence structure and the
association level is reflected by two different parameters. While the α2 parameter is strictly
related to the structure of the dependence, the α1 parameter is only related to the measure of
association Kendall’s τ .



926 E. Perrone and W.G. Müller

Table 5. Losses in D-efficiency for the convex combination model in per cent (in bold).

τ ∈ [0.5, 0.95] τ ∈ [0.5, 0.99] τ ∈ [0.5, 0.995]

ᾱ2 Loss in D-eff. Loss in D-eff. Loss in D-eff.
0.1 11.15 31.97 47.22
0.3 6.51 25.11 40.33
0.6 2.50 17.20 32.27
0.9 1.11 10.90 24.96

In Table 5 we report the efficiency losses with respect to the independence case (Product Cop-
ula). By fixing three localized values ᾱ1, we assume three different intervals for τ . Corresponding
to these intervals we fixed four localized values ᾱ2. From the table it is clear that when the range
of the τ increases, the losses in terms of D-efficiency can become quite substantial. By focusing
on the various localized values for α2, it is evident that also the structure of the dependence plays
a big role in the design obtained. Here, we can see that when the highest weight in the convex
combination is on the Clayton copula, the efficiency losses are lowest.

5. Discussion

In general, our theory forms the basis to investigate further showcase examples from the litera-
ture, like, for example, in [29] or eventually treat mixed discrete/continuous type models like in
[30]. Particularly for the latter, but also quite generally the methods provided in this paper can
thus be expected to be valuable for real applications from clinical trials, environmental sampling,
industrial experiments, etc.

Although here we provide only examples on limited types of copulas, we might expect similar
or greater effects for some more non-symmetric copulae (see eg. [31]), which are subject to our
current investigations.

Note that in the convex combination example by focusing on α2 we could find designs with
the sole purpose of efficiently discriminating between different copula models, which we plan to
do future research on.
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Appendix

Equivalence theorem

For all the basics in what follows cf.[16] For a given vector of parameters (β, α), let M(β,α) be the set of the information
matrices generated as ξ ranges over the class of all set of probability distribution on X . Then M(β,α) is the convex hull
of {m(x, β, α) : x ∈ X }.

Let us now recall the definition of two derivatives that will play an important role in our theory.
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Definition A.1 Considering two elements M1 and M2 in M, the Gâteaux derivative of φ at M1 in the direction of M2
is:

Gφ(M1, M2) = lim
ε→0+

1

ε
{φ(M1 + εM2) − φ(M1)},

the Fréchet derivative of φ at M1 in the direction of M2 is:

Fφ(M1, M2) = lim
ε→0+

1

ε
{φ{(1 − ε)M1 + εM2} − φ(M1)}.

The following are the properties of the derivatives that we defined before: the concavity of φ implies that

1

ε
[φ{(1 − ε)M1 + εM2} − φ(M1)]

is a non-increasing function of Ïţ in 0 < ε ≤ 1. Hence when φ is concave, Fφ(M1, M2) exists if we allow the value +∞.
It is clear that if we put ε = 1 in the previous equation, we obtain: Fφ(M1, M2) ≥ φ(M2) + φ(M1).
According to the definitions of Fréchet and Gâteaux derivatives, we can stress the following relationship between

them: Fφ(M1, M2) = Gφ(M1, M2 − M1). Then, if we assume the differentiability of φ it is clear that for scalars ai

Fφ

(
M1,

∑
aiMi

)
=

∑
aiFφ(M1, Mi).

Theorem A.2 Suppose to have a fixed parameters vector (β̄, ᾱ), a concave function φ on M(β̄,ᾱ) which is also
differentiable at all points of M(β̄,ᾱ) where φ(M ) < −∞, so where a φ optimal measure exists.

Then the following are equivalent:

• ξ∗ is φ-optimal;
• Fφ(M (ξ∗, β̄, ᾱ), M (ξ , β̄, ᾱ)) ≤ 0,∀ξ ∈ �;
• Fφ(M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)) ≤ 0,∀x ∈ X ;
• maxx∈X Fφ(M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)) = minξ∈� maxx∈X Fφ(M (ξ , β̄, ᾱ), m(x, β̄, ᾱ)).

Proof Let us prove the theorem by double implications.

(i) ⇒ (ii) ξ∗ is φ-optimal. This means that φ(M (ξ∗, β̄, ᾱ)) is maximal.
For the properties of the function φ, the following relation holds:

φ{(1 − ε)M (ξ∗, β̄, ᾱ) + εM (ξ , β̄, ᾱ)} − φ{M (ξ∗, β̄, ᾱ)} ≤ 0

for ε ∈ [0, 1] and all ξ ∈ �.
For all the elements of M(β̄,ᾱ) holds that

(1 − ε)M (ξ∗, β̄, ᾱ) + εM (ξ , β̄, ᾱ) = M {(1 − ε)ξ∗ + εξ}
and this means, from the definition of the Fréchet derivative, that

Fφ{M (ξ∗, β̄, ᾱ), M (ξ , β̄, ᾱ)} ≤ 0

for all ξ ∈ �.
(ii) ⇒ (iii) Since m(x, β̄, ᾱ) are elements of the convex hull M(β̄,ᾱ), the condition (iii) follows directly from the

hypothesis.
(iii) ⇒ (iv) For a particular control x and the elemental informations m, since Fφ{M (ξ , β̄, ᾱ), M (ξ , β̄, ᾱ)} = 0, it must

be that:

max
x∈X

Fφ{M (ξ , β̄, ᾱ), m(x, β̄, ᾱ)} ≥ 0

But, according to the hypothesis, we have that for the design ξ∗

max
x∈X

Fφ{M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)} ≤ 0.

Hence

max
x∈X

Fφ{M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)} = 0

= min
ξ

max
x∈X

Fφ{M (ξ , β̄, ᾱ), m(x, β̄, ᾱ)}.
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(iv) ⇒ (i) Suppose now that ξ∗ satisfies the hypothesis, then

max
x∈X

Fφ{M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ))} = 0,

that means that Fφ{M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)} ≤ 0, ∀x ∈ X . According to the definition of the matrices M ∈
M, any M can be written as M (ξ , β̄, ᾱ) = ∑r

i=n wim(xi, β̄, ᾱ), where
∑r

i=n wi = 1 and wi > 0 for every
i = 1, . . . , n.Then, since φ is differentiable at M (ξ , β̄, ᾱ), it holds that:

Fφ{M (ξ∗, β̄, ᾱ), M (ξ , β̄, ᾱ)} =
n∑

i=1

λiFφ{M (ξ∗, β̄, ᾱ), m(x, β̄, ᾱ)} ≤ 0

for every ξ ∈ �.
This means, clearly, that

φ(M (ξ , β̄, ᾱ)) − φ(M (ξ∗, β̄, ᾱ)) ≤ 0

for every ξ ∈ �, then ξ∗ is φ-optimal. �

D-optimality

Let consider now as design criterion the following function:

φ(M ) =
{

log det M if M is non-singular
−∞ otherwise

A design that maximizes such a φ function is called D-optimal design.
In the case of D-optimality the Fréchet and the Gâteaux derivatives have the following expression:
Gâteaux derivative

log det(M1 + εM2) − log det M1 = log det(I + εM2M −1
1 )

= log{1 + ε tr(M2M −1
1 )} + O(ε2) = ε tr(M2M −1

1 ) + O(ε2)

Hence, Gφ(M1, M2) = tr(M2M −1
1 ).

Fréchet derivative

Fφ(M1, M2) = Gφ(M1, M2 − M1) = tr((M2 − M1)M
−1
1 )

= tr(M2M −1
1 − I(k+l)) = tr(M2M −1

1 ) − (k + l)

where (k + l) is the number of the model parameters.
We are ready now to give an equivalence theorem which holds in the particular case of the D-criterion.

Theorem A.3 For a fixed parameters vector (β̄, ᾱ), the following properties are equivalent:

• ξ∗ is D-optimal;
• tr(M (ξ∗, β̄, ᾱ)−1m(x, β̄, ᾱ)) ≤ (k + l),∀x ∈ X ;
• ξ∗ minimize maxx∈X tr(M (ξ∗, β̄, ᾱ)−1m(x, β̄, ᾱ)), over all ξ ∈ �.

Proof The proof comes directly from the Theorem A.1 by imputing the Fréchet derivative for the D-criterion. �
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