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Abstract: Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous
species mainly distributed in tropical and subtropical regions. Here, we described and compared
the complete chloroplast genome sequences of ten representative species from Cucurbitaceae.
The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp
(M. charantia), and they shared the most common genomic features. 618 repeats of three categories and
813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions
were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and
their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy
transformation, and plant development. An unconventional translation initiation codon of psbL gene
was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic
analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively
original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome
sequences were useful for phylogenetic studies. It would also determine potential molecular markers
and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast
genome resources of Cucurbitaceae.

Keywords: Cucurbitaceae; chloroplast genome; structural comparison; selective pressures;
RNA editing; phylogeny

1. Introduction

As the fourth most economically important plant family, Cucurbitaceae consists of 115 proposed
genera with approximately 960 species distributed in tropical and subtropical areas [1]. The vast
majority of these plants are annual vines and woody lianas, and only a small proportion are shrubs
and trees [2]. Cultivars developed by breeders, especially melon (Cucumis melo), watermelon (Citrullus
lanatus), bottle gourd (Lagenaria siceraria), pumpkin (Cucurbita pepo), and cucumber (Cucumis sativus),
are the basis for industries [3]. Their fruits are not only edible, but also used by humans mostly as
durable containers, fishnet floats, and musical instruments [4]. The commercial use of derivatives from
medicinal species is increasing rapidly. For instance, flavonoids and saponins contained in Gynostemma
pentaphyllum [5] have radical scavenging and antiproliferative properties [6], and cucurbitane-type
compounds extracted from Hemsleya amabilis and Hemsleya carnosiflora exert anti-inflammatory
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functions in bronchitis and tuberculosis treatments [7-9]. These plants are also used as traditional
Chinese medicinal herbs because of their anticancer effect [6,10]. Therefore, over the last decades,
large amounts of research have paid much attention to the improvement of cultivated varieties and the
development of medicinal value. However, the most important basis of developing natural medicine
is the wild species’ identification, which is also very difficult. Take the genera Gomphogyne, Hemsleya,
and Gynostemma as examples: they are all morphologically creeping and herbaceous with 3-11-foliolate
leaves in above-ground plants. Although Gomphogyne ismonoecious, Gynostemma is dioecious, and
Hemsleya has enlarged underground tubers, it has been rather problematic to define the classification
of these species in the wild, especially without flowering or excavation [11].

In addition, the existing studies about Cucurbitaceae mainly focus on the history of domestication,
origin, and dispersal [1,12-15]. Nevertheless, the phylogeny of Cucurbitaceae family has not yet been
clearly solved. Due to the description and validation of new species, the number of interspecies and
the attribution problem of some genera remain uncertain, such as with Hemsleya and Gomphogyne.
Although some molecular-based phylogenic studies have been carried out on many Cucurbitaceae
genera, Hemsleya and Gomphogyne were either not involved [16-18] or just participated in systematic
surveys based on some specific fragments of DNA with a limited number of species within each
genus [19,20]. Therefore, we prefer using the whole complete chloroplast genomes (CPGs) to resolve
the phylogenic problem of the genera in the Cucurbitaceae family. Meanwhile, more DNA barcodes
from genomic resources are in demand, for use in the identification of species among genera in the
Cucurbitaceae family, and in further studies to reveal the genetic diversity, population structure, origin,
and evolution of these species.

Comparatively speaking, genome-wide datasets have an edge over traditional DNA markers
in providing information to effectively solve historically complex phylogenetic relationships [21-23].
The chloroplast genome (CPG) is a circular double-stranded DNA molecule which has maternal
inheritance in the majority of plants [24,25]. It is smaller than the nuclear genome in size, and has
a moderate rate of nucleotide evolution, but shows a difference in the rate of divergence between
protein coding (CDS) and noncoding (CNS) regions [26]. Previous studies have demonstrated that
most CPGs of angiosperms have a stable quadripartite structure: a pair of inverted repeats regions
(IRa and IRb), one large single-copy region (LSC) and one small single-copy region (SSC) [24]. The
common sizes of CPGs range from 120 kb to 160 kb usually caused by contractions and expansions of
IR regions [27]. The comparative analyses of complete CPGs could contribute to understanding the
complete CPG structure and evolution, identification of species and phylogenetic relationships [28].

In this study, comparative analyses were applied on complete CPGs of ten representative species
in Cucurbitaceae to explore structural differentiation and molecular evolution of CPG sequences and
increase the number of valuable complete CPG resources. The characterization of highly variable
regions would contribute to developing candidate DNA barcodes for future studies. Microsatellites
(SSRs) could be used as potential molecular polymorphic markers to reveal the genetic diversity and
population structure of Cucurbitaceae. The identification of protein-coding genes under selection
would play an important role in the analyses of adaptive evolution for plants in ecosystems.
Furthermore, this study would reconstruct the intergeneric relationships and locate the phylogenetic
position of genera Gomphogyne and Hemsleya in Cucurbitaceae.

2. Results

2.1. Genome Features

For three newly-obtained CPGs, the mean coverage of raw reads ranged from 1112.4 to 1392.7
(Table 1), and the lengths of consensus sequences were 157,334 bp (G. cissiformis var. cissiformis),
156,585 bp (G. cissiformis var. wvillosa) and 158,275 bp (H. lijiangensis). Each of them encoded
133 genes including 87 protein-coding genes, eight rIRNA genes, 37 tRNA genes, and one pseudogene
(Tables 1 and 2; Figure 1).
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The comparative analyses of whole CPGs from ten species of Cucurbitaceae showed that the
sizes of 10 CPGs ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), with an average CPG
sequence length of 157,264 bp. All of the CPGs displayed a typical quadripartite structure: an LSC
region (ranged from 86,642 bp to 88,374 bp) and an SSC region (ranged from 17,897 bp to 18,653
bp) which were separated by two IR regions (ranged from 25,193 bp to 26,242 bp; Table 1, Figure 2).
The LSC region and IR region had a significant correlational relationship with the overall genome
size, and each of the structural regions of the CPGs were not correlated with each other (Figure 2).
A comparison of CPG sequences among ten species showed that there was no dramatic difference
in compared features. The GC content percentage of C. lanatus (37.2%) was more than any of the
other genomes (36.7-37.1%), while M. charantia had the lowest GC content (36.7%). For four structural
regions, the GC content of IR region (42.7-43.1%) was clearly higher than that of the LSC (34.3-34.9%)
region and SSC (30.6-31.8%) region for each CPG (Table 1). The CPGs encoded 122 to 135 functional
genes including some pseudogenes, i.e., the infA gene in G. cissiformis var. cissiformis, G. cissiformis var.

villosa, H. lijiangensis, and G. pentaphyllum, the rps16 gene in C. sativus, and the ycfl gene in M. charantia
and L. siceraria (Tables 1 and 2).

Table 1. Genome features of the chloroplast genomes of ten Cucurbitaceae species.

Speci * G. cissiformis  * G. cissiformis *H. G.
pecies . . . . C. lanatus
var. cissiformis var. villosa lijiangensis pentaphyllum
Locations 24.20° N, 24.20° N, 27.17° N, / /
99.50° E 99.50° E 100.06° E
Assembly reads 1,274,004 1,505,442 1,483,091 / /
Mean coverage 1112.4 1358.4 1392.7 / /
Size (bp) 157,334 156,585 158,275 157,576 156,906
LSC (bp) 87,239 86,642 87,362 86,757 86,845
SSC (bp) 18,014 18,029 18,429 18,653 17,897
IRs (bp) 26,041 25,957 26,242 26,083 26,082
Number of total genes 133 133 133 133 122
Number of 87 87 87 87 85
protein-coding genes
Number of tRNA genes 37 37 37 37 29
Number of rRNA genes 8 8 8 8 8
Pseudogene infA infA infA infA /
Overall GC content (%) 37 37 37 37 37.2
GC content in LSC (%) 34.8 34.8 34.8 34.8 34.9
GC content in SSC (%) 311 31 31 30.6 315
GC content in IR (%) 42.8 427 42.8 42.8 42.8
GenBank number MH256801 MF784515 MG733988 KX852298 KY014105
Species C. grandis C. sativus C. moschata M. charantia L. siceraria
Locations / / / / /
Assembly reads / / / / /
Mean coverage / / / / /
Size (bp) 157,035 155,293 157,644 158,844 157,145
LSC (bp) 86,749 86,688 88,343 88,374 86,843
SSC (bp) 18,004 18,223 18,156 18,010 18,008
IRs (bp) 26,141 25,193 25,573 26,228 26,147
Number of total genes 132 132 135 130 130
Number of 85 85 85 85 86
protein-coding genes
Number of tRNA genes 39 38 42 38 37
Number of rRNA genes 8 8 8 8 8
Pseudogene / rps16 / yefl yefl
Overall GC content (%) 37.1 37.1 37.1 36.7 37.1
GC content in LSC (%) 34.8 34.8 34.9 34.3 34.9
GC content in SSC (%) 31.3 31.8 31.5 30.7 31.4
GC content in IR (%) 42.8 42.8 43.1 42.8 42.8
GenBank number KX147312 AJ970307 MF991116 MG022622 MG022623

* Three newly obtained chloroplast genomes.
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Complete
Chloroplast Genomes

G. cissiformis var. cissiformis
157,334 bp
G. cissiformis var. villosa
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H. lijiangensis
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Figure 1. Gene maps of chloroplast genomes of Cucurbitaceae. Genes on the inside of the large circle
are transcribed clockwise and those on the outside are transcribed counterclockwise. The genes
are color-coded based on their functions. Dashed area represents the GC composition of the
chloroplast genome.

Table 2. List of genes in the chloroplast genome of three newlysequenced species.

Category Gene Group Gene Name
Self-replication Ribosomal protein (small subunit) (14) :’; ;Zzsfpgfr;ﬁgw ps8 rps1l " rps12 (x2) rps14 rps15
Ribosomal protein (large subunit) (11) :prll;lgz (x2) rpl14 * rpl16 1pl20 rpl22 rpl23 (x2) 1pl32 1pl33
RNA polymerase (4) rpoA rpoB * rpoC1 rpoC2

*trnA-UGC (x2) trnC-GCA trnD-GUC trnE-UUC
trnF-GAA trnfM-CAU * trnG-UCC trnG-GCC trnH-GUG
trnl-CAU(x2) * trnl-GAU (x2) * trnK-UUU
trnL-CAA(x2) trnL-UAG * trnL-UAA trnM-CAU

Transfer RNAs (37) #rnN-GUU(x 2) trnP-UGG trnQ-UUG trnR-ACG(x2)
trnR-UCU trnS-GCU trnS-GGA trnS-UGA trnT-GGU
trnT-UGU trnV-GAC(x2) * trnV-UAC trnW-CCA
trnY-GUA

Ribosomal RNAs (8) rrm4.5(x2) rrn5(x2) rrm16(x2) rrmn23(x2)
Photosynthesis Photosystem I (5) psaA psaB psaC psal psa]
psbA psbB psbC psbD psbE psbF psbH psbl psb] psbK psbL
Photosystem 1II (15) psbM psbN psbT psbZ
Cytochrome b/f complex (6) petA * petB * petD petG petL petN

ATP synthase (6) atpA atpB atpE * atpF atpH atpl
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Table 2. Cont.

Category Gene Group Gene Name
NADH dehydrogenase (12) :l g}t[i}lfd; IVLZZ}IZS' K( % 2) ndhC ndhD ndhE ndhF ndhG ndhH
Rubisco large subunit (1) rbcL
Other genes Maturase (1) matK
membrane protein (1) cemA
Acetyl-CoA carboxylase gene (1) accD
ATP-dependent protease subunit (1) clpP
c-type Cytochrome biogenesis (1) ccsA
Assembly /stability of photosystem I (2)  ycf3 ycf4
Conserved reading frames (ycfs) (4) ycfl(x2) yef2(x2)
hypothetical chloroplast protein (2) orf70(x2)
Pseudogene Translation-related gene (1) infA

* Gene with intron(s).
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Figure 2. Relationships between complete chloroplast genome sizes and LSC, SSC and IR regions
lengths, respectively. (A-F) Correlational relationships among each region; (G) sizes of each part of ten
Cucurbitaceae complete chloroplast genomes.

2.2. IR/SC Boundary, Genome Rearrangement and Sequence Divergence

The IR/SC boundary areas of 10 CPGs of Cucurbitaceae species and two outgroups were
compared (Figure 3). The gene content and order were observed to have some differences, for example,
gene ycfl and gene rpl2 were lost in two LSC borders of M. charantia and L. siceraria; gene orf224 existed
in the IRb border of C. sativus and C. grandis; as well as the location of gene rps19 was diversified in
all of the examined species (Figure 3). The expansions and contractions of IR region were discovered.
Taking M. charantia as an example, gene rps19 that was located in the LSC region was 207 bp away
from the LSC/IRb boundary, while this distance was 0-6 bp in some other species, and gene rpl12 was
located in the IRb region, straddling the LSC/IRb border. Gene ycf1, located in IRb region, had 131 bp
beyond the IRb/SSC boundary, and the comparable region was 10-12 bp long in some other species.
This indicated that the relative position of the LSC/IRb boundary had moved backwards, and the
IRb/SSC boundary, forwards. Correspondingly, the ycfI gene, located in SSC region, had just 29 bp
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across the SSC/IRa boundary, while this similar region was 971-1186 bp in most of the other species.
Both of these phenomena demonstrated a contraction of two IR regions in the complete CPGs.

LSC /IRb IRb/SSC SSC /IRa IRa/LSC
LSC / IRb : . SSC IRa / LSC
4bp ;/4gbp 28bp, i J0bp 1184bp 48bp , & « 36bp
G. cissiformis var. cissiformis G [Y<Fi )y ndhi ol tl =y .th
(157,334bp) ~ 87,239bp : 26,041bp 2 18,014 bp 26,041bp 87,239bp
6bpx, | » 46bp 46bR | A12bp 1184bp 46bp_ ! 2 32ep
G. cissiformis var.villosa ~ <tps19 | <P < ycflj : trnH
(156,585 bp) 86,642 bp f 25,957 bp 18,029 bp 25,957 bp f 86,642bp
2bp, L2 ? 33bp | 44b
x 33bp 26bpx p 1186bp P, p
H. lijiangensis rps19 h CFR ndhH @l enH
(138,275 bp) 87,362bp 26,242 bp 18,429bp : 26,242bp ‘ 87,362bp
2bp, ¢ . 53b 26bpe. i 712b . A1186bp 53bp |, 46bp
&y i Gt ] > @l i
G. pentaphyllum 86.757b % 083 i : :
757 bp 083 bp 18,653bp : 26,083 bp i 86,757 bp
(157,576 bp) i :
2bPy i 4 59 385bp 5b 1052bp 59bp | _ 43bp
C. sativus <rE519 [orf223 ndhF cfl j @ﬁ‘\ ' trnH
(155,293 bp) 86,688 bp 25,193 bp 18,223bp 25,193bp 86,688bp
68b 6bp 2 7b; 1181bp 1502bp 97b
C. lanatus R\ ﬂ_d_‘}:ﬂ cfl jl AR [N
(156,906 bp) 86,845 bp 26,082 bp 17,897 bp 26,082 bp 86,845bp
208bp bp 4 71bp 497bp 109b,
C. moschata . ‘] ndhF yefl ‘ 7 @llanH
(157,644 bp) 88,343 bp 25,572bp 18,156 bp 25,572bp : 88,343bp
Obp_! 63bp 26bpx |_x Gbp 1183bp 63bp | _43bp
C. grandis ’ @ ndh' Cﬂj @\ ' trH
(157,035 bp) 86,7490 26,141bp 18,004bp 26,141bp : 86,749 bp
207bp  ixllbp 19bp, | 131bp 29bp 7bp | _37bp
- : -l
M. charantia & ENVR ~ |l
(158,844 bp) 88,374bp 26,228bp i 18,010bp : 26,228bp : 88,374bp
127b 64b 16bp =i _ 134bp | 428bp 64bp i 41bp
N ol ~
L. siceraria d [VefiDndhA ofl i @l
(157,145 bp) 86,843bp | 26,147bp j 18,008bp i 26,147 bp 86,843bp
46bp L usb | _x35b | A013bp 115bp | 13bp
C. acvigata @ Gl | ] BB 4l ot
- acvig 88,862bp | 25,674bp : 18,992 bp 25,674bp ; 88,862bp
(159,202 bp) g
dbpe_ | y56b 55bp x| v 43bp | 4995b 56bp_ | 4 5b
P P i Z20P
N. tabacum ps19); cfl ‘\; - trnH
(155,943 bp) 86,686 bp 25,342bp i 18,573 bp 25,342bp 86,686 bp

Figure 3. Comparison of the LSC, IR, and SSC border regions among the 10 Cucurbitaceae chloroplast

genomes. Number above the gene features means the distance between the ends of genes and the
borders sites. These features are not to scale.

The whole-genome alignment of the 10 CPGs showed that there were no rearrangement events
in Cucurbitaceae (Figure S1). Using G. cissiformis var. cissiformis as the reference, the alignment of
11 Cucurbitales CPGs were performed to investigate the level of sequence divergence (Figure S2).
The result showed a high sequence similarity within genus Gomphogyne, but great divergence among
different genera and families. As expected, the SC and CNS regions exhibit more differences than IRs
and CDS regions, respectively. Moreover, the percentage of variable features in coding and non-coding
regions, and the percentage of indels in each variation, were calculated based on two patterns of
sequence alignment: (1) two species within Gomphogyne; and (2) the represented species of nine
genera within Cucurbitaceae. The results showed that the percentage of variable features of CNS
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ranged from 0 to 43.00% for two Gomphogyne species and from 0 to 89.25% for nine Cucurbitaceae
genera, with an average level of 2.92% and 33.49% respectively. These percentages were much higher
than those of the CDS: from 0 to 16.05% for two Gomphogyne species, and from 0 to 42.64% for nine
Cucurbitaceae genera, with an average level of 0.41% and 7.49%, respectively (Figure 4, Table S3).
This also indicated that CDS was much more conservative than CNS. Mostly, the variations were
located in SC regions instead of IR regions. The results also suggested that the variations among nine
genera were higher than those between species within a single genus, and most variations were caused
by indels (Figure 4). In addition, the top- four highly-variable genes (accD, rpl22, ycfl, and ycfl) and
top-four highly divergent intergenic regions (trnR (UCU)-atpA, trnL (UAA)-trnF (GAA), rpl32-trnL
(UAG), and ndhA intron) were confirmed (Table S3) and primers for these regions were shown in
Supplementary Table S4. These regions could be used as candidate DNA fragments for further studies
related to genetics, phylogeny, and species identification.
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Figure 4. Percentage of variable characters in aligned Cucurbitaceae chloroplast genomes. (A) Coding
region (CDS) and (B) Noncoding region (CNS). These regions are oriented according to their locations
in the chloroplast genome.

2.3. Repeat Analysis and Microsatellites (SSR)

Three categories of repeats (tandem, dispersed, and palindromic repeats) were identified in the 11
Cucurbitales CPGs (Figure 5A, Tables S5, S6, and S8). A total of 618 repeats were identified for these
species including 163 tandem repeats, 247 dispersed repeats, and 208 palindromic repeats, indicating
the highest percentage (40%) of dispersed repeats (Figure 5B). Among different species, the number of
repeats for G. cissiformis var. cissiformis (76) and C. grandis (36) were the most and the least, respectively
(Figure 5A). Additionally, 813 SSRs were found, of which, the number of mono-, di-, tri-, tetra-, penta-,
and hexanucleotide repeats were 552, 121, 37, 79, 18, and 6, respectively. It was shown that the
mononucleotide repeats were most common, accounting for 68% of all, while the dinucleotides repeats
accounted for 15%, and another polynucleotide SSRs occurred at less frequently (Figure 5D, Tables S7
and S8). From the perspective of species, C. laevigata (125) had the most SSRs and G. cissiformis var.
cissiformis (58) had the least (Figure 5C).
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Figure 5. The type and presence of repeated sequences and simple sequence repeats (SSR) in the
chloroplast genomes of eleven Cucurbitales species. (A) Number of three-types repeats; (B)Percentage
of three repeat types; (C) Number of SSRs and their types; (D) Percentage of SSR types.

2.4. Selective Pressures Events

The non-synonymous (K, ) and synonymous (Ks) substitution ratio (K4/Ks) were calculated for
68 consensus protein-coding genes to estimate selective pressures. Although all of the K4/Ks (w)
values were less than 1.0 in codeml, the K4/K; ratio of five genes (cIpP, atpE, psbL, accD, and matK) were
within the range of 0.5 to 1.0 indicating a relaxed selection. Among them, the likelihood ratio test (LRT)
analysis showed several sites from three genes (accD, clpP, and matK), which were distributed in the
LSC region (Table 3, Figure 6), were under selection. We located the consistent selective sites under the
naive empirical Bayes (NEB) and the Bayes empirical Bayes (BEB) methods in the alignment of CPGs,
and found these amino acid sites had a high level of variation, for example, in the 308 site of accD
gene, the codon CGG could have the variables CAG, CTG, AAG, and GAA (Figure 6). Unfortunately,
there was only one K4/Kg (w) value that was greater than 1.0 (gene atpE), but no significant p-value
(p < 0.05, Table S9) was found using the KaKs-calculator.

Table 3.

Parameter estimates and log-likelihood values for different models in selective
pressure analysis.

Genes Model df InL/w Value LRTs No. of Sites (BEB) Consistent Sites
clpP MO (one ratio) 19 w = 0.96975
M1 (neutral) 20 —1396.7593 M1 vs. M2: 2 12S/N/L
M2 (selection) 22 —1389.6667 14.1852 ** AGT/AAT/CTT
M7 (beta) 20 —1396.7638 M7 vs. M8: 4 87 R/K/S
MS8 (beta&w) 22 —1389.6672 14.1933 ** CGA/AAA/TCA
atpE MO (one ratio) 19 w = 0.70941
M1 (neutral) 20 —787.914712 M1 vs. M2: 0 /
M2 (selection) 22 —785.703588 442225
M7 (beta) 20 —787.942937 M7 vs. M8: 0
M8 (beta&w) 22 —785.704169 447754
psbL MO (one ratio) 19 w = 0.61775
M1 (neutral) 20 —158.807141 M1 vs. M2: 0 /
M2 (selection) 22 —158.807091 0.00010
M7 (beta) 20 —158.807137 M7 vs. M8: 0
MS8 (beta&w) 22 —158.80712 0.00003
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Table 3. Cont.

Genes Model df InL/w Value LRTs No. of Sites (BEB) Consistent Sites
accD MO (one ratio) 19 w = 0.53161
M1 (neutral) 20 —3221.0459 M1 vs. M2: 1 308 R/Q/K/E/L
M2 (selection) 22 —3214.0011 14.0896 ** CGG/CAG/CTG/AAG/GAA
M7 (beta) 20 —3221.5205 M7 vs. M8: 4
M8 (beta&w) 22 —3214.0768  14.8875**
matK MO (one ratio) 19 w = 0.52255
M1 (neutral) 20 —3688.5152 M1 vs. M2: 1 337T/1/A
M2 (selection) 22 —3683.8284 9.3735 ** TCA/GGA/GCA
M7 (beta) 20 —3689.0422 M7 vs. M8: 8
MBS (beta&w) 22 —3683.9212 10.2421 **

** p <0.01; df: degree of freedom; the likelihood ratio tests, LRT = | df(M2/M8) — df(M1/M7)| x |InL(M2/M8) —
InL(M1/M?7)|; No. of Sites: the number of selective sites under the Bayes empirical Bayes (BEB) model; Consistent
sites: the sites appeared in both M1 vs. M2 and M7 vs. M8, showing the amino acids and their corresponding codons.

matK accD clpP

3 - 3

*G. cissiformis var. cissiformis GATCCAGGTCGTCTT GATTTTCTGTTTATG TCCAGGACTTCGAAR
*G. cissiformis var. villosa .

*H. Iijianfgensis

G. pentaphyllum

. sativus

C. lanatus

C.noschata

C. grandis

M. charantia

L. siceraria

R/Q/K/E/L

Figure 6. Alignment of selective sites of 10 Cucurbitaceae species. * marked three newly obtained CPGs.

2.5. Codon Usage Bias and Unconventional Initiation Codon

Codon usage of the protein-coding genes was analyzed in the CPGs of 10 Cucurbitaceae species.
The number of encoded codons ranged from 25,922 (C. sativus) to 26,828 (G. pentaphyllum) (Table S10).
Detailed codon analysis showed that the 10 Cucurbitaceae species had a similar codon constituent, and
close RSCU (relative synonymous codon usage) values (Table 510). Leucine (Leu) and Cysteine (Cys)
were the highest (10.60%) and lowest (1.20%) frequently used amino acids in these species, respectively
(Figure S3A, Table 510). The results revealed that most of the amino acid codons have preferences with
the exception of Met (Methionine—AUG) and Trp (Tryptophan—UGG). Three newly obtained CPGs
had 31 biased codons with RSCU > 1, while other CPGs had 30 (Table S10) due to the difference in
codon Ser (Serine—UCC), which were used more than 350 times in the three species and less than
336 times in other species (Table S10). It was illustrated that the genera Gomphogyne and Hemsleya
preferred using Serine more than any other genera. The codons had lower representation rates for
C or G at the third codon position, and the average GC content of the third codon base was 37.8%,
with the range from 37.6% to 38.0% (Table S11). It turned out that the CPGs of Cucurbitaceae species
had a strong bias toward A or T at the third codon position.

Interestingly, an unconventional initiation codon (Thr-TGC) of psbL gene was stumbled on when
three new species sequences were annotated. This phenomenon was also found in G. pentaphyllum after
a global alignment of ten Cucurbitaceae species. When the sequences including the start codon of the
psbL gene were blasting with the transcriptome dataset of G. pentaphyllum, it was indeed found that the
ACG start codon had been converted into an initiation codon, AUG (Figure 7). This could be explained
by the occurrence of RNA editing phenomenon during the translation process, which reverted
this change.
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A. H lijiangensis  G.cissiformis G. cissiformis  G.pentaphyllum
var.cissiformis var.villosa

M HLI FEONFES R GE IR GEORNGES MBS GV GV2RER GV 3 NGRTR N GR2AEGR3

1000 bp 1000 bp

500 bp 500 bp

I R R NI T TR T R T T

psbL PsbL psbL psbL

B. <@immm Q/:I <:: ‘_
DAYy RO s0ee Y OoeaY)

TErE Ao TGTCGTAGET TeTRGTACCT TGTLGTAGCT

5’ AAAAATGAGTAATAACCCCCAGTAGAGACTGGTACGATTCAATTCAACATTTTGTTCGTT -3~ DNA
5°- AAAAATGAGTAATAACCCCCAGTAGAGACTGGTACGATTCAATTCAACATTTTGTTCGTT -3’ ¢cDNA

5’- CGGATTTGATTGTGTICGTAGCTCTATAATTCGGATTAGGTT -3’ DNA
5°- CGGATTTGATTGTGTICATAGCTCTATAATTCGGATTAGGTT -3’ ¢cDNA
ACG — AUG

Figure 7. Result of unconventional initiation codon. (A) The PCR products electrophoresed in
1% agarose gel; (B) The PCR products sequences including start codon of gene psbL; (C)Blast
results of sequence fragment of G. pentaphyllum including the start codon of psbL in the published
transcriptome dataset.

2.6. Phylogenetic Analysis

All the ML and Bl trees were reconstructed based on five datasets with the species of Cucurbitaceae
released in NCBI. The best-fit models of ML and BI trees using the overall CPGs were GTR + 1 + G
and TVM + I + G, respectively, and that for other datasets were displayed above the tree clade in
Figure S4. It was shown that the phylogeny produced from the analyses of 27 complete CPG sequences
was well-supported. All nodes of the phylogenetic tree were strongly supported by the 1.00 Bayesian
posterior probabilities in BI analysis and 83-100% bootstrap values in ML analysis (Figure 8). It was
shown that plants of Cucurbitaceae were clustered into one clade. Genera Hemsleya and Gomphogyne,
constituted the earliest diverging lineage in this group, holding the closest relationship with genus
Gynostemma and this clade was identified as a sister to all other species. Although there were some
variations embodied in the phylogenetic positions of C. rehmii in Citrullus and G. pentagynum in
Gynostemma, the phylogenetic relationships of any other species were concordant among the genera of
Cucurbitales (Figure 54).
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C. colocynthis
C. rehmii
C. amarus Citrullus
100/1.0
C. mucosospermus
100/ 1.0

100/1.0
100/1.0

100/1.0 X
C. lanatus
L. siceraria Lagenaria

- G. pentaphyllum
100/191G, longipes

100/1.0

C. melo subsp. melo
C. sativus Cucumis
1 C. hystrix
Coccinia
100/1.0 C. maxima )
I Cucurbita
C. moschata
L—— M. charantia Momordica
100/10 [ G. laxiflorum
G. cardiospermum
100/1.0 83 /1.
G. caulopterum
woé]'o
100/1.0 . compressum
—— G. pentagynum Gynostemma
96/1.0 1%%/11’_7317‘356”415
G. burmanicum
100/

G. cissiformis var. cissiformis
G. cissiformis var. villosa Gomphogyne
H. lijiangensis Hemsleya
Corynocarpus laevigata

Nicotiana tabacum

0.02

Figure 8. Phylogenetic relationship of the 27 species inferred from ML and BI analyses based on
the complete cp genome sequences. The bootstrap values of ML analyses and Bayesian posterior
probabilities are shown beside the clades. Corynocarpus laevigata, and Nicotiana abacum were used as
outgroups. The clades in blue color showed the three newly sequenced species in our study.

3. Discussion

3.1. Evolution and Variation of Chloroplast Sequences

In angiosperms, most of the CPGs have evolved rapidly [29] and have some structural
changes, such as gene rearrangements [30], gene loss-and-gain [31] and gene inversion [32],
but no rearrangements events were found in any of our species after global alignment with the
published CPGs, even if they contained a large number of large repeat sequences, which may be
a reaction to the rearrangement of CPGs and sequence divergence in some other studies [33,34]. All ten
CPGs that we studied displayed a typical quadripartite structure, with two SCs and two IRs arranged
at regular intervals, and a highly conserved in genome structure and gene order., The pseudogene
was initially thought to have lost the ability of protein coding [35] but was, instead, an evolutionary
relic of the functional component [36]. In the present study, genes ycfl and rpl2 were both lost in our
species, while the ycf] gene was found to be a pseudogene in M. charantia and L. siceraria, but existed in
G. cissiformis var. cissiformis, G. cissiformis var. villosa, H. lijiangensis, and G. pentaphyllum. In the complete
CPGs of these aforementioned four species, plus Syzygium cumini and Ananas comosus [37,38], gene infA
was also regarded as a pseudogene, and it was also found to be lost in the CPGs of Alstroemeria aurea
and Arabidopsis thaliana [39,40].

The IR regions are highly conserved, and they are important in the stabilization of the CPG
structure [41]. This is a common evolutionary phenomenon in plants and mainly reflected in the
variation of CPGs in length [42,43]. Our results from the comparison of IR/SC boundary areas among
species also suggested expansions and contractions of the IR region. As expected, both mVISTA and
sequence divergence analysis indicated that CDS and IRs were more conserved than CNS and SCs.
The sequence divergence also revealed many significant differences among the CPGs of the family,
but a low level of differentiation between species within the genus Gomphogyne. When constructing
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phylogenetic trees with the sequences of four highly variable genes and four highly divergent intergenic
regions of each CPG, the results were derived from the phylogenetic analyses based on the entire CPGs
(Figure S4). These results indicated that the highly variable regions could be used in the phylogenetic
analyses of Cucurbitaceae. Further work is still necessary to determine whether these highly variable
regions could serve as candidate DNA barcodes to identify species. SSRs, which are also called
microsatellites, can be used to analyze the genetic diversity, population structure, and phylogeography
based on polymorphisms [26,44]. Thus, the SSR sequences we identified could contribute to molecular
and evolutionary ecological knowledge, which warrants further research at the population level.

3.2. Selective Genes and RNA Editing

Analysis of the adaptive evolution of genes has an important reference value in examining the
change of gene structure and functional mutations [45]. The percentage of nonsynonymous (K4) versus
synonymous (Ks) nucleotide substitutions (denoted by K4/Ks, or w value) is usually used to evaluate
the rate of gene divergence, and determine whether positive, purifying, or neutral selection has been
in operation [46]. The K4/Ks ratio may reveal the constraints of natural selection on organisms, and
the estimation of these mutations contribute greatly to understanding the dynamics of molecular
evolution [47]. If w > 1.0, the corresponding genes experience positive selection, while 0.5 < w < 1.0, and
w < 0.5 indicate relaxed selection and purifying selection, respectively [48]. Among our calculations,
there were five genes under relaxed selection (0.5 < w < 1.0, Table 3), and several selective sites were
found in three (accD, clpP, and matK) of the genes.

It is well established that acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) catalyzes the formation
of malonyl-CoA from acetyl-CoA, and it is considered to be the regulatory enzyme of fatty acid
synthesis [49,50]. The accD gene exactly encodes the 3-carboxyl transferase subunit of acetyl-CoA
carboxylase [51,52]. It is an essential gene required for leaf development [50], and has great effects on
leaf longevity and seed yield [53]. However, this gene has been lost, or defined as a pseudogene, in some
species of Primulaceae, Acoraceae, and Poales [22,54]. The cIpP gene encodes the ATP-dependent clp
protease proteolytic subunit [55]. This protein is an essential component to form the protein complex of
clp protease (endopeptidase clp) which is active and probably involved in the turnover of chloroplast
proteins [56]. It was reported that the loss of clpP gene product (the clpP protease subunit) would lead
to ablation of the shoot system of tobacco plants, suggesting that clpP-mediated protein degradation is
essential for shoot development [57,58]. The matK (maturase K) gene is a plant chloroplast gene [59]
which is located within the intron of the trnK gene (Figure 1). The protein it encodes is an intron
maturase which is involved in the cutting and splicing of Group II RNA transcriptional introns [60,61].
The matK retains only a well-conserved domain X, and remnants of a reverse transcriptase domain [61].
Usually, the matK gene sequence is effectively used as a DNA barcoding fragment for angiosperms,
in studies of plant systematics [62-64].

In summary, the coding proteins of these selective genes were all enzymes functioning in
chloroplast protein synthesis, gene transcription, energy transformation, and plant development.
The majority of wild species in Cucurbitaceae are creeping herbs, mainly distributed in moist
mountains, forests, thickets, and streamside, and they may have some mechanisms for adapting
to complex living conditions. Therefore, the species may have produced some corresponding
differentiation in morphology during the long process of evolution. Consequently, we inferred
that the chloroplast functional genes which were under selection might play key roles during the
adaptation and development of the Cucurbitaceae species to terrestrial ecosystems.

Codon usage bias plays an important role in the evolution of CPG. The main factor that contributed
to biased codon usage is the GC content, which is also important during the evolution of genomic
structure, such as stability of replication, transcription, and translation [65,66]. The observed GC
content level indicated that the CPGs in Cucurbitaceae were GC-lacking, and that there was a strong
bias towards A/T at the third codon position, consistent with the existing CPG research [67-70].
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The presence of translation-preferred codons might be the result of both mutation preference and
natural selection during the CPG evolutionary process [71].

The genetic information in land plant chloroplast DNA is sometimes altered at the transcript
level by a process known as RNA editing [72]. This process of the post-transcriptional modification of
precursor RNAs to alter their nucleotide sequences [73]. It sometimes occurs through the insertion and
deletion of nucleotides, or specific nucleotide substitution (mostly C to U conversion) [72]. Since the
first evidence of RNA editing was found in chloroplast in the rpl2 transcript of maize [74], it has been
hunted out and systematically studied in the protein-coding transcripts from many major lineages
of land plants [75], such as Arabidopsis thaliana [76], N. tabacum [49], Zea mays [77], Oryza sativa [78],
Cucumis melo, and Cucurbita maxima [79]. Most of the studies suggested that RNA editing occasionally
created start or stop codons which shorten the size of translation products [72,80,81], even producing
a new gene in one striking case [80]. Our results revealed an unconventional initiation codon in the
psbL gene, having a function in producing the PSII-L protein in the photosystem II (PSII) complex [82],
caused by nucleotide substitution which was generated by RNA editing on the second position of
start codon (ACG to AUG). This phenomenon was also found in bell pepper [83], tobacco [84,85],
spinach [73], and Ampelopsis brevipedunculata [86]. RNA editing is very common in plant chloroplast
genomes. It can modify mutations, change reading frames, and regulate the expression of chloroplast
genes [87], acting as a correction mechanism in the chloroplast of plants.

3.3. Phylogeny of Cucurbitaceae

The number of studies using complete CPG sequences for assessing phylogenetic relationships
among angiosperms has been increasing rapidly [21,88-90]. Our phylogenetic trees (both ML and
BI trees) indicated a clear relationship of the genera in Cucurbitaceae with high bootstrap values.
The phylogenetic trees demonstrated that the genera Gomphogyne, Hemsleya, and Gynostemma
constituted the earliest diverging lineage in Cucurbitaceae. This was consistent with the proposal
that these three genera were relatively original genera belonging to the family Cucurbitaceae based
on morphology [91]. All in all, our results suggested that the CPG data can effectively resolve the
phylogenetic relationships of these genera in Cucurbitaceae. In fact, for this large family, our study
was just a drop in the bucket. Some studies pointed out that the lack of samples might also affect the
results of the phylogenetic analysis [22]. Unfortunately, our study could not roundly figure out the
relationships among genera due to the limited sample size. More species from more genera should be
included in the future. Furthermore, our phylogenetic study was based solely on chloroplast DNA.
In order to comprehensively understand of the systematic evolution of Cucurbitaceae, nuclear DNA
analyses are required to investigate the effect of gene introgression and hybridization on phylogeny.
Our phylogenetic studies provided a valuable resource that should contribute to the future taxonomy,
phylogeny, and evolutionary history studies of the Cucurbitaceae family.

4. Materials and Methods

4.1. Plant Materials and DNA Extraction

Healthy leaves of three species (G. cissiformis var. cissiformis, G. cissiformis var. villosa, and
H. lijiangensis) were collected from adult plants in Yunnan province, China (Table 1). Voucher specimens
were deposited in the Evolutionary Botany Laboratory of Northwest University (Shaanxi, China).
Total genomic DNA were extracted from silica-dried leaf materials with simplified CTAB protocol [92].
Data from seven complete CPGs (Table 1) [26,93-95] were recovered from the National Center of
Biotechnology Information (NCBI) in order to conduct the follow-up analyses.

4.2. lllumina Sequencing, Assembly, and Annotation

[lumina raw reads were collected using an Illumina Hiseq 2500 platform. The quality-trim with
all of the raw reads was performed using CLC Genomics Workbench v7.5 (CLC bio, Aarhus, Denmark)
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with the default parameter set. The programs MITObim v1.7 (University of Oslo, Oslo, Norway) [96]
and MIRA v4.0.2 (DKFZ, Heidelberg, Germany) [97] were used to perform the reference-guided
assembly twice, to reconstruct the CPGs with published G. pentaphyllum (KX852298) and C. melo
(JF412791) as references, respectively. A few gaps, dubious bases, and low-coverage regions in the
assembled CPGs were corrected by Sanger sequencing, whereby pairs of primers were designed
(Table S1) using Primer 3 version 4.0.0 (Whitehead Institute for Biomedical Research, Massachusetts,
USA) [98]. The software DOGMA, Dual Organellar Genome Annotator (University of Texas at
Austin, Austin, TX, USA) [99], was used to annotate the complete CPGs, and corrected by comparing
with the complete CPGs of the references mentioned above using GENEIOUS R8 (Biomatters Ltd.,
Auckland, New Zealand). The circular CPG maps were drawn using online software OGDRAW
(http:/ /ogdraw.mpimp-golm.mpg.de) (Max planck Institute of Molecular Plant Physiology, Potsdam,
Germany). All of the newly generated complete CPG sequences were submitted to GenBank (Table 1).

4.3. Comparison of Complete Chloroplast Genomes

The mVISTA (The Regents of the University of California, Oakland, CA, USA) [100] software
was employed to discover the interspecific variation among the complete CPG sequences of eleven
species (ten Cucurbitaceae species and Corynocarpus laevigata, Corynocarpaceae, HQ207704), and the
alignments with annotations were visualized using G. cissiformis var. cissiformis as reference. In order
to analyze the expansions and contractions, as well as the variation in junction regions among ten
Cucurbitaceae species, the IR region borders and gene rearrangements were surveyed by the plug-in
program, Mauve, in GENEIOUS R8. To analyze the bivariate correlational relationship between the
overall CPG sizes and each of the structural regions of CPGs, i.e., LSC region, SSC region and IR region,
we used IBM SPSS Statistics v21.0 (SPSS Inc., Chicago, IL, USA) with Pearson’s one-tail test, and the
significant value was p < 0.05.

4.4. Sequence Divergence

The multiple alignments of the CPGs were carried out using MAFFT version 7.017
(Osaka University, Suita, Japan) [101]. DnaSP v5.0 (Universitat de Barcelona, Barcelona, Spain) [102]
was used to compute the variable sites across the complete CPGs, LSC, SSC, and IR regions of all the
species. To investigate the sequence divergence patterns, MEGA 5.0 (Tokyo Metropolitan University,
Tokyo, Japan) [103] was employed for statistical analysis of the variations of CPGs and percentage of
indels among each region. The percentage of variable characters for each coding and noncoding region
were calculated based on the method of Zhang [104].

4.5. Microsatellites and Repeated Sequences

Microsatellites (SSRs) and three categories of repeated sequences were detected in all eleven
Cucurbitaceous species. The software, MISA (Institute of Plant Genetics and Crop Plant Research,
Gatersleben, Germany)) [105] was utilized to seek the microsatellites (SSRs) with thresholds of 10,
5,4, 3, 3, and 3, for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. The online
program, Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html) (Mount Sinai School of
Medicine, New York, NY, USA) [106], was used to find the tandem repeat sequences, which were
at least 10 bp in length. The alignment parameters for match, mismatch, and indels were set to
be 2, 7, and 7, respectively. To search out the size and location of dispersed and palindromic
repeats, the online program REPuter (https:/ /bibiserv2.cebitec.uni-bielefeld.de/reputer) (University
of Bielefeld, Bielefeld, Germany) [107] was performed with parameters of 30 bp minimal repeat size,
and the similarity percentage of two repeat copies was set to at least 90%.

4.6. Selective Pressure Analysis

Selective pressures were analyzed for consensus protein-coding genes among ten Cucurbitaceae
species. PAML with codeml program (University College London, London, UK) [108] was performed
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to calculate the nonsynonymous (K4 ) and synonymous (Kg) substitution ratio. In order to estimate
the w value (w = K /Kg) of every gene sequence, the method reported by Yang and Nielsen [109]
was adopted. Adaptive evolution of genes was confirmed by computing likelihood ratio tests (LRTs).
The KaKs-calculator (Chinese Academy of Sciences, Beijing, China) [110] was also used to calculate
Ka, Ks, and the Kp /Kg ratio, based on a model-averaging method.

4.7. Codon Usage Bias and Unconventional Initiation Codon

Codon usage and RSCU values [111] were estimated for all exons in the consensus protein-coding
genes with the CodonW v1.4.2 program (University of Nottingham, Nottingham, UK) [112]. For the
purpose of verifying the existence of unconventional initiation codon, we designed pairs of primers
(Table S1) for polymerase chain reaction (PCR) amplification of target fragments within four species
(three new species and G. pentaphyllum). The products of PCR were tested using 1% agarose gel
electrophoresis and sequenced. The obtained sequences were mapped to the corresponding CPGs
using the software GENEIOUS R8 (Biomatters Ltd., Auckland, New Zealand). Due to the lack of
RNA sequence data, we blasted a 101 bp CPG sequence fragment of G. pentaphyllum, including
the start codon of psbL gene, in the published transcriptome dataset of G. pentaphyllum (accession
number in NCBI: SRX1364750) [113] using the online program BLASTn (https:/ /blast.ncbi.nlm.nih.gov;
U.S. National Library of Medicine, Bethesda, Rockville, MD, USA).

4.8. Phylogenetic Relationships

To reconstruct the phylogenetic relationship, 15 published complete CPG sequences from
Cucurbitales were also selected in the analyses (Table S2). In total, 27 sequences were aligned using
the MAFFT v7.017 program (Osaka University, Suita, Japan) [101]. Due to the differentiation of the
molecular evolutionary rate among the different CPG regions, phylogenetic relationship analyses
were performed using the following five datasets: (1) the overall CPG sequences; (2) the large-single
copy region (LSC); (3) the small single-copy region (SSC); (4) one inverted repeats region (IRb);
(5) consensus protein coding genes (CDS); and (6) eight highly variable regions (HVR). The best-fitting
model for each dataset was determined by software Modeltest 3.7 (Brigham Young University,
Provo, UT, USA) [114] under the Akaike information criterion. Bayesian inference (BI) was performed
by MrBayes 3.12 (SwedishMuseum of Natural History, Stockholm, Sweden) [115] using the following
parameters: Markov chain Monte Carlo simulations algorithm (MCMC) for 1 x 10° generations with
four incrementally-heated chains. The maximum likelihood (ML) trees were implemented with RAXML
v7.2.8 (Heidelberg Institute for Theoretical Studies, Heidelberg, Germany) [116] with 1000 replicates.
In all analyses, C. laevigata and N. tabacum (Z00044) were chosen as outgroups.

5. Conclusions

The comparative analyses of complete CPGs contribute towards understanding the complete
CPG structure and evolution, the identification of species, and the determination of phylogenetic
relationships. Here, we have successfully applied Illumina sequencing to determine the complete
CPGs of three herbaceous plants from the Cucurbitaceae, further enriching the valuable resources
for the complete CPGs of higher plants. The results revealed that they shared most of the common
genomic features with other species of Cucurbitaceae. Sequence divergence analysis showed high
conservatism of the coding and IR regions. The coding proteins of three selective genes (accD, clpP and
matK) were screened out, and they would contribute to analyzing the adaptive evolution. Evidence
for RNA editing was demonstrated involving an unconventional initiation codon in the psbL gene.
Phylogenetic analyses revealed that the genera Gomphogyne, Hemsleya, and Gynostemma were the
earliest diverging lineage in Cucurbitaceae. The study suggested that the complete chloroplast genome
sequences were useful for phylogenetic studies. This would enrich the valuable complete chloroplast
genome resources of Cucurbitaceae, and determine potential SSR molecular markers and candidate
DNA barcodes for coming phylogenetic and evolutionary population studies.
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Supplementary Materials: The following are available online. Figure S1. Genome rearrangement events of 10
Cucurbitaceae species, comparing with C. laevigata and N. tabacum; Figure S2. Sequence identity plots among 11
chloroplast genomes, with G. cissiformis var. cissiformis as a reference by using mVISTA. The vertical scale indicates
the identity percentage ranging from 50% to 100%. The horizontal axis corresponds to the coordinates within
the chloroplast genome. Coding and non-coding regions are marked in blue and pink, respectively. Annotated
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