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Abstract
In recent years, the incidence of fatigue has been increasing, and the effective prevention and treatment of fatigue has become 
an urgent problem. As a result, the genetic research of fatigue has become a hot spot. Transcriptome-level regulation is the 
key link in the gene regulatory network. The transcriptome includes messenger RNAs (mRNAs) and noncoding RNAs 
(ncRNAs). MRNAs are common research targets in gene expression profiling. Noncoding RNAs, including miRNAs, lncR-
NAs, circRNAs and so on, have been developed rapidly. Studies have shown that miRNAs are closely related to the occur-
rence and development of fatigue. MiRNAs can regulate the immune inflammatory reaction in the central nervous system 
(CNS), regulate the transmission of nerve impulses and gene expression, regulate brain development and brain function, 
and participate in the occurrence and development of fatigue by regulating mitochondrial function and energy metabolism. 
LncRNAs can regulate dopaminergic neurons to participate in the occurrence and development of fatigue. This has certain 
value in the diagnosis of chronic fatigue syndrome (CFS). CircRNAs can participate in the occurrence and development of 
fatigue by regulating the NF-κB pathway, TNF-α and IL-1β. The ceRNA hypothesis posits that in addition to the function of 
miRNAs in unidirectional regulation, mRNAs, lncRNAs and circRNAs can regulate gene expression by competitive binding 
with miRNAs, forming a ceRNA regulatory network with miRNAs. Therefore, we suggest that the miRNA-centered ceRNA 
regulatory network is closely related to fatigue. At present, there are few studies on fatigue-related ncRNA genes, and most 
of these limited studies are on miRNAs in ncRNAs. However, there are a few studies on the relationship between lncRNAs, 
cirRNAs and fatigue. Less research is available on the pathogenesis of fatigue based on the ceRNA regulatory network. 
Therefore, exploring the complex mechanism of fatigue based on the ceRNA regulatory network is of great significance. In 
this review, we summarize the relationship between miRNAs, lncRNAs and circRNAs in ncRNAs and fatigue, and focus 
on exploring the regulatory role of the miRNA-centered ceRNA regulatory network in the occurrence and development 
of fatigue, in order to gain a comprehensive, in-depth and new understanding of the essence of the fatigue gene regulatory 
network.
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Background

With the accelerated pace of life, fatigue has become an 
important factor affecting people’s quality of life. One survey 
report found that more than half of the population feels tired, 
and more than a third clearly stated that fatigue had greatly 
reduced the quality of life and work efficiency (Watanabe 

2008). The causes of fatigue are complex and can have seri-
ous consequences. Fatigue can be a symptom that accompa-
nies other diseases, such as malignant tumors, multiple scle-
rosis, iron deficiency anemia, stroke or Parkinson’s disease. 
It can be an independent disease. It is also a common side 
effect of anticonvulsants, analgesics, antidepressants, etc. (Li 
et al. 2016) The World Health Organization has listed fatigue 
as one of the main factors endangering human health in the 
twenty-first century. The effective prevention and treatment 
of fatigue has become an urgent problem.
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mRNA is a Common Research Object of the Fatigue 
Gene Expression Profile

Since the beginning of the twenty-first century, various 
scholars have proposed that fatigue has genetic suscepti-
bility. Since then, increasing evidence shows that fatigue 
is closely related to gene changes (Helliwell et al. 2020; 
Lievesley et al. 2014), and the gene set of upregulated and 
downregulated genes in chronic fatigue has been revealed 
(Norheim et al. 2011; Frampton et al. 2011; Nguyen et al. 
2017; Rajeevan et  al. 2015). Gene chip research of the 
fatigue gene expression profile has been carried out.

Ribonucleic acids (RNAs) are essential polymeric mol-
ecules in many biological processes, such as encoding, 
decoding, regulating and expressing genetic information. 
It is one of the four major macromolecules that constitute 
all known life forms. Messenger RNAs (mRNAs) transfer 
genetic information from deoxyribonucleic acid (DNA) 
to ribosomes. The coding sequence of mRNA determines 
the type and order of amino acids in protein, which is the 
"bridge" of biological information transmission between 
DNA and proteins (Costa et al. 2010). Therefore, mRNAs 
are common genetic research objects.

MiRNAs are Closely Related to the Occurrence 
and Development of Fatigue

MiRNAs are 17–25 nucleotides long and control gene 
expression at the post-transcriptional level (Matsuyama and 
Suzuki 2019; Ha et al. 2014; Pu et al. 2019). Under certain  
conditions, miRNAs can also activate targeted mRNAs 
(Correia et  al. 2019; Stavast et  al. 2019). MiRNA can  
regulate the expression of mitochondrial-related genes and 
affect the morphology and function of mitochondria which 
play an important role in the process of energy metabolism  
(Konovalova et al. 2019; He et al. 2014). Studies have shown 
that damage to mitochondrial DNA (mtDNA) leads to  
mitochondrial dysfunction and energy metabolism disorders, 
which is the underlying pathophysiological mechanism of 
chronic fatigue syndrome (Yamano et al. 2016; El-Hattab 
et al. 2017). Some other scholars have confirmed through 
experiments that the decrease of oxygen metabolism in  
the central nervous system can lead to the limitation of  
muscle activity and fatigue (Halley et al. 2019; Rupp et al. 
2015). Thus miRNAs are involved in the regulation of  
mitochondrial function and energy metabolism and affect 
the fatigue of the body. Therefore, mRNAs are commonly 
targeted for genetic research.

In recent years, a large number of studies in China and 
elsewhere have shown that immune inflammation is an 
important mechanism of fatigue (Capuron and Miller 2011; 
Haroon et al. 2012). MiRNAs can be used as key regulators of 

inflammatory response in the central nervous system (CNS) 
(Slota and Booth 2019). MiRNAs participate in immune 
response, regulate cytokines and participate in the develop-
ment and differentiation of lymphocytes (Soltanzadeh et al. 
2018; Leung et al. 2018). MiRNAs are involved in the devel-
opment of chronic fatigue syndrome (CFS) by regulating 
immune inflammatory response (Brenu et al. 2014). Some 
studies have shown that the differential expression of miR-
NAs in peripheral blood mononuclear cells (PBMC) of CFS 
patients can regulate the function of immune cells, such as T 
cells, B cells, NK cells and macrophages, and participate in 
immune and inflammatory reactions, thus affecting the occur-
rence and development of fatigue (Petty et al. 2016; Brenu 
et al. 2012).

A study using gene chip technology found that 34 kinds 
of miRNAs were overexpressed in the peripheral blood 
of patients with chronic fatigue syndrome. Among them, 
the expression of hsa-mir-99b and hsa-mir-330-3p was 
upregulated in B cells and NK cells. These two miRNAs 
can be transfected into NK cells, resulting in gene expres-
sion changes, NK cell activation and cytotoxicity reduction, 
which leads to immune dysfunction (Petty et al. 2016). In 
another study, researchers measured the miRNAs in NK 
cells and CD8+ T cells of CFS patients, and found that 
the expression levels of miR-21 in NK cells and CD8+ T 
cells, and miR-17-5p, miR-10a, miR-103, miR-152, miR-
146a, miR-106, miR-223 and mi R-191 in NK cells were 
significantly lower than those in the normal control group. 
These miRNAs are involved in cell apoptosis, cell cycle and 
immune response, and thus affect cell function (Brenu et al. 
2012). Screening of peripheral blood samples of patients 
with clinically diagnosed CFS and comparison with age-
matched healthy controls revealed that hsa-miR-99b, hsa-
miR-330-3p, hsa-miR-30c and hsa-miR-126 in NK cells can 
become effective biomarkers for CFS.

MiRNAs also play an important role in the regulation 
of gene expression and participate in the occurrence and 
development of fatigue. MiRNA expression disorder can 
cause a variety of human diseases, such as tumors and car-
diovascular, metabolic, rheumatic and neurological diseases 
(Bhayani et al. 2012). Studies of Cui (Cui et al. 2016) have 
confirmed that miRNAs, such as let-7b-5P, miR-148a-3P, 
miR-124-3P, miR-107-3P and miR-370-3P, can regulate the 
transmission of nerve impulses and gene expression, regu-
late the tolerance of the hypothalamus to acupuncture treat-
ment and affect the fatigue of the body.

Due to the quickening pace of life and the increasing 
mental stress in modern society, central fatigue has gar-
nered increasing attention. According to Leavitt (Leavitt 
and DeLuca 2010), the core mechanism of central fatigue is 
closely related to the impairment of nerve pathway conduc-
tion function and abnormal regulation of neurotransmitters. 

1968 Journal of Molecular Neuroscience (2021) 71:1967–1974



1 3

MiRNAs play an important role in brain development and 
brain function. The loss of the enzyme Dicer in a developing 
cerebral cortex leads to the decrease of specific miRNAs, 
apoptosis of new neurons, thinning of the cerebral cortex 
and decrease of dendritic branches, which indicates that 
miRNA plays an important role in brain development. For 
example, miR-124 enriched in the brain begins on day 13 of 
the embryo (E13) and remains highly expressed throughout 
adulthood. It can promote the differentiation of neural pro-
genitor cells into neurons and is inhibited by the repressor 
element-1-silencing transcription (REST). Therefore, the 
REST-miR-124 axis plays an important role in the control of 
neuronal phenotype (Follert et al. 2014; Petri et al. 2014). In 
conclusion, based on the important role of miRNAs in regu-
lating brain development and brain function, we speculate 
that miRNAs are involved in the occurrence and develop-
ment of central fatigue (Fig. 1).

MiRNAs are involved in the development of chronic 
fatigue syndrome (CFS) by regulating immune inflammatory 
response. For example, hsa-miR-99b and hsa-miR-330-3P 
in B cells; miR-21 in CD8+T cells; hsa-miR-99b, hsa-miR-
330-3P, miR-21, miR-17-5p, miR-10a, miR-103, miR-152, 
miR-146a, miR-106, miR-223, mi R-191, hsa-miR-30c and 
hsa-miR-126 in NK cells can be effective biomarkers of 
CFS. Besides, miRNAs such as let-7b-5P, miR-148a-3P, 

miR-124-3P, miR-107-3P and miR-370-3P can regulate the 
transmission of nerve impulses and gene expression, so as 
to regulate the tolerance of the hypothalamus to acupuncture 
treatment and affect the fatigue of the body. MiR-124 can 
also promote the differentiation of neural progenitor cells 
into neurons, which plays an important role in regulating 
brain development and brain function (Fig. 2).

MiRNAs are involved in the occurrence and development 
of fatigue by regulating mitochondrial function and energy 
metabolism, regulating immune inflammatory reaction in 
the central nervous system (CNS), regulating nerve impulse 
transmission and gene expression and regulating brain devel-
opment and brain function.

MiRNAs, lncRNAs and circRNAs Can Form 
the Regulatory Network of ceRNAs

The regulation of gene expression is a complex interactive 
process, and transcriptome-level regulation is the key link 
in the gene regulatory network. Transcriptome generally 
refers to the collection of all transcripts in a cell, includ-
ing messenger RNAs (mRNAs) and noncoding RNAs 
(ncRNAs); in a narrow sense, it refers to the collection 
of all mRNAs. NcRNAs are RNA molecules that do not 
translate into proteins, but participate in the regulation 

Fig. 1   MiRNAs associated with fatigue
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of various cellular and biological processes (Zhao et al. 
2019). Besides miRNAs, ncRNAs also include lncRNAs, 
circRNAs and so on.

Long noncoding RNAs (lncRNAs) are a class of at least 
200 nucleotides in length. Although the number of lncRNAs 
are much larger than that of miRNAs, the mechanism of 
regulating gene expression and cell function of lncRNAs 
is still unclear (Fang and Fullwood 2016; Jarroux et al. 
2017). CircRNAs are endogenous ncRNAs with a covalently 
closed continuous loop structure (Chen et al. 2019; Chen 
and Zhao 2018). In recent years, studies have shown that 
circRNAs are widely expressed in tissues, saliva, blood and 
exosomes (Denzler et al. 2014) (Fig. 3).

Transcriptome RNAs includes mRNA and ncRNA. 
Besides miRNAs, ncRNAs also includes lncRNAs, circR-
NAs and so on. In 2011, Salmena et al. (2011) proposed 
the hypothesis of endogenous competitive RNA (ceRNA), 
which revealed a new mechanism of RNA interaction. This 
hypothesis posits that, in addition to gene silencing by bind-
ing to mRNAs, miRNAs can form a miRNA-mRNA network 
to regulate gene expression, and lncRNAs and circRNAs can 
regulate gene expression by competitively binding to the 
miRNA binding site MREs (Kartha and Subramanian 2014). 
CeRNAs are related to many biological processes, and the 
disruption of the balance between ceRNAs and miRNAs 
is crucial in the occurrence and development of diseases 
(Cesana et al. 2011).

The Regulatory Role of miRNAs is the Core 
of the ceRNA Network

The research of ncRNA is developing rapidly, and it is a hot 
spot in current research (Baril et al. 2015). Research in the field 
of ncRNA has been advancing remarkably fast and remains a 
focus of intense research (Mallela and Nishikura 2012; Yang 
et al. 2013). After more than 20 years of extensive research, it 
is believed that at least 60% of the transcriptome is controlled 
by miRNAs. MiRNAs play a key role in the ncRNA regulatory 
network (Kole et al. 2012) (Fig. 4).

Previous studies have demonstrated that miRNAs can 
cause gene silencing by binding to mRNA. MiRNA-mRNA 
regulates gene expression through multiple networks. In 
addition to the traditional one-way miRNA regulation of 
mRNA function, lncRNAs and circRNAs can regulate gene 
expression by competitive binding to miRNA binding site 
MREs.

Fig. 2   The role of miRNAs in 
the development of fatigue

Fig. 3   Classification of transcriptome RNAs Fig. 4   MiRNAs play a key role in the regulatory network of ceRNA

1970 Journal of Molecular Neuroscience (2021) 71:1967–1974



1 3

The Correlation Between the ceRNA Regulatory 
Network and Fatigue

MiRNAs, lncRNAs and circRNAs play an important role 
in regulating brain function and brain diseases (Chen and 
Qin 2015; Andersen and Lim 2018; Hanan et al. 2017). It 
has been reported that ncRNAs are dynamically expressed in 
human brain, which has a precise spatiotemporal expression 
pattern and mediates a wide range of biological processes. 
The disorder of ncRNAs may not only lead to brain dysfunc-
tion, but also lead to mental disorders (Kang et al. 2011; 
Zhang et al. 2017; Hawrylycz et al. 2012; Guennewig and 
Cooper 2014).

Recent studies have shown that lncRNAs are highly 
expressed in the brain, and their roles in regulating brain 
development and function have been widely studied 
(Andersen and Lim 2018; Quan et al. 2017). Among them, 
many lncRNAs are functional lncRNAs that regulate brain 
development, including rhabdomyosarcoma 2-associated 
transcript (RMST) which is regulated by the repressor  
element-1-silencing transcription factor (REST) and is  
an indispensable factor in neurogenesis. RMST is brain- 
specific and highly expressed during the differentiation  
of dopaminergic neurons (Uhde et  al. 2010). LncRNA 
NEAT1 gene knockout can effectively reduce the damage of  
dopaminergic neurons in vivo (Yan et al. 2018). Dopamine 
(DA) is an important excitatory neurotransmitter in the  
central nervous system, which can actively regulate emotions,  
improve memory and relieve fatigue (Leite et  al. 2010; 
McMorris et al. 2018). Therefore, lncRNAs can participate 
in the occurrence and development of fatigue by regulating 
dopaminergic neurons. In addition, 10 ultra-long lncRNAs 

were detected in peripheral blood mononuclear cells of 44 
CFS patients. The results showed that the levels of lncRNAs 
NTT, MIAT and EmX2OS in CFS patients were significantly 
higher than those in healthy controls. In addition, the levels of  
NTT and EmX2OS increased with the severity of the disease. 
This study revealed the function and potential diagnostic 
value of lncRNAs in CFS (Yang et al. 2018).

In recent years, increasing evidence has shown that 
circRNAs are regulatory factors of neuroinflammation 
(Nuzziello and Liguori  2019). MALAT1 was recently 
reported to promote the inflammatory response in micro-
glia via the MyD88/IRAK1/TRAF6 signalling pathway 
(Wang and Zhou 2018) and via miR-199b/IKKβ/NF-κB 
signalling, and to promote the production of proinflamma-
tory cytokines (TNF-α and IL-1β) by acting as a ceRNA 
for miR-199b (Zhou et al. 2018). Neuroinflammatory reac-
tion is closely related to fatigue (Capuron and Miller 2011). 
Proinflammatory cytokines, especially IL-1β, are the key 
to inducing fatigue (Lampa et al. 2012). High-intensity 
repeated exercise to the state of fatigue was shown to lead 
to an inflammatory reaction of the central nervous system, 
leading to significant upregulation of IL-1β and TNF-α in 
the brain of mice (Zhang 2015). Chronic fatigue syndrome 
(CFS) is characterized by activated immune inflammatory 
pathways, including increased pro-inflammatory cytokines 
and activation of NF-κB (Morris and Maes 2012). NF-κB 
can induce the transcription of TNF-α and IL-1β (Wu et al. 
2019, 2020; Han et al. 2019). It can be concluded that the 
NF-κB pathway, TNF-α and IL-1β are closely related to 
fatigue. CircRNAs may participate in the occurrence and 
development of fatigue by regulating the NF-κB pathway, 
TNF-α and IL-1β (Fig. 5).

Fig. 5   The regulatory network 
of ceRNA with miRNAs as the 
core is related to fatigue 
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MiRNAs in ncRNA are closely related to the occurrence 
and development of fatigue, and lncRNAs and circRNAs are 
also related to the occurrence and development of fatigue. 
lncRNAs can participate in the occurrence and development 
of fatigue by regulating dopaminergic neurons. lncRNAs 
also have potential diagnostic value in the occurrence and 
development of CFS. The NF-κB signaling pathway, TNF-α 
and IL-1β are involved in the development of fatigue. The 
ceRNA hypothesis points out that in addition to the function 
of unidirectional miRNAs in regulating mRNAs, lncRNAs 
and circRNAs can regulate gene expression by competitive 
binding with miRNAs, forming a ceRNA regulatory network 
with miRNAs. Therefore, the regulatory network of ceRNAs 
with miRNAs as the core is closely related to fatigue.

Conclusions

The regulation of gene expression is a complex interac-
tive process, and transcriptome-level regulation is the 
key link in the gene regulatory network. The transcrip-
tome includes mRNA and ncRNA. mRNA is a common 
research target in fatigue gene expression profiling. The 
miRNAs in ncRNAs are closely related to the occurrence 
and development of fatigue, and lncRNAs and circRNAs 
are related to the occurrence and development of fatigue. 
The ceRNA hypothesis posits that in addition to the func-
tion of unidirectional miRNAs in regulating mRNA, 
lncRNAs and circRNAs can regulate gene expression 
by competitive binding with miRNAs, forming a ceRNA 
regulatory network with miRNAs. Therefore, we suggest 
that the miRNA-centered ceRNA regulatory network is 
closely related to fatigue. At present, there are few studies 
on fatigue-related ncRNA microarrays, and most of the 
limited studies are on the miRNA microarray in ncRNAs. 
However, few genetic studies have been carried out on the 
pathogenesis of fatigue based on the ceRNA regulatory 
network. The pathogenesis of fatigue is complex, and the 
genetic research of fatigue is a hot spot. To elucidate the 
pathogenesis of fatigue, we need to find the key molecules 
of the regulatory network composed of related factors. 
Further exploration of the regulatory role of the miRNA-
centered ceRNA regulatory network in the occurrence and 
development of fatigue will lead to a comprehensive, in-
depth and new understanding of the essence of the fatigue 
gene regulatory network.
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