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Abstract 

Background:  Burkina Faso conducted its first nationally representative household malaria survey in 2010/2011. The 
survey collected among others, information on malaria interventions, treatment choices and malaria parasite preva-
lence in children aged 6–59 months.

Methods:  In this study, Bayesian geostatistical models were employed to assess the effects of health interventions 
related to insecticide-treated bed nets (ITN), indoor residual spray (IRS), artemisinin-based combination therapy (ACT) 
coverage associated with childhood malaria parasite risk at national and sub-national level, after taking into account 
geographical disparities of climatic/environmental and socio-economic factors. Several ITN coverage measures were 
calculated and Bayesian variable selection was used to identify the most important ones. Parasitaemia risk depicting 
spatial patterns of infections were estimated.

Results:  The results show that the predicted population-adjusted parasitaemia risk ranges from 4.04 % in Kadiogo 
province to 82 % in Kompienga province. The effect of ITN coverage was not important at national level; however ITNs 
have an important protective effect in Ouagadougou as well as in three districts in the western part of the country 
with high parasitaemia prevalence and low to moderate coverage. There is a large variation in ACT coverage between 
the districts. Although at national level the ACT effects on parasitaemia risk was not important, at sub-national level 
18 districts around Ouagadougou deliver effective treatment.

Conclusion:  The produced maps show great variations in parasitaemia risk across the country and identify the dis-
tricts where interventions are being effective. These outputs are valuable tools that can help improve malaria control 
in Burkina Faso.
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Bayesian geostatistical models

© 2016 Diboulo et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Malaria is holoendemic in Burkina Faso with most trans-
mission occurring during or shortly after the rainy season 
between July to December. Ninety-nine percent of infec-
tion is attributed to Plasmodium falciparum. The overall 
prevalence of infection in children aged 6–59 months is 
estimated at 66 % [Burkina Faso Demographic and Health 
Survey-Multiple Indicator Cluster (BFDHS-MICS 2010)] 

[1]. The under-five severe malaria attributable death has 
been dropped from 8.1  % in 2000 to 3.3  % in 2010 [2]. 
The government has made tremendous efforts to achieve 
the objectives of the 2006–2010 National Malaria Strate-
gic Plan and implemented special programmes, such as 
home-based malaria management in 2008, universal cov-
erage of insecticide-treated bed nets (ITN) in 2010, inter-
mittent preventive therapy (IPT) for high-risk groups in 
2005, piloting of the indoor residual spray (IRS) in cer-
tain health districts since 2010, larval control and sani-
tation programmes, introduction of effective tools for 
malaria control mainly the rapid diagnostic test (RDT) 
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at all health facilities in 2010 and actual availability of 
artemisinin-based combination therapy (ACT) in health 
facilities in 2007 [2].

Burkina Faso carried out the first malaria indicator sur-
vey (MIS) in 2010, a nationally representative household 
survey in the country compiling malaria-related indi-
cators. MIS surveys generate a number of indicators of 
malaria intervention coverage that can be used to assess 
progress towards the goals of the global malaria action 
plan (GMAP) [3]. These indicators measure ownership, 
use and access of ITNs, implementation of IRS, access to 
ACT and to intermittent preventive treatment for preg-
nant women (IPTp). MIS data have been used to assess 
effects of interventions [4–10]. Some studies reported 
protective effects [4, 7] for specific interventions and oth-
ers did not find any effect [9, 10]. In the analysis of the 
Senegal MIS data of 2008, using geostatistical variable 
selection, it appeared that among the various indicators of 
ITN ownership, only few were able to estimate a protec-
tive effect of ITN intervention on parasitaemia risk [4].

Intervention effects are likely to vary in space because 
there is often geographical variation in the intervention 
coverage and their effects are related to malaria ende-
micity [11–13]. Recently, the effects of vector-control 
interventions on changes of malaria parasite risk were 
estimated at different spatial resolutions in six sub-Saha-
ran African countries using Bayesian geostatistical mod-
els with spatially varying covariates. Results suggested 
that some interventions may not show any effect when 
looked upon at national level while they can have a pro-
tective effect at sub-national level [7].

Samadoulougou et  al. [6] used the Burkina Faso MIS 
2010 data to estimate the spatial distribution of malaria 
risk among children under five of age in Burkina. The 
authors included only ITN use as an intervention-related 
predictor and estimated an overall effect at country level, 
which was not statistically significant.

In this study, MIS data were analysed using Bayes-
ian geostatistical models to assess the effects of different 
malaria interventions at national as well as sub-national 
level (50 health districts) in the country. Bayesian vari-
able selection within geostatistical models allowed to 
screen different coverage measures for each intervention 
and spatially structured regression coefficients measured 
the effects of interventions at district level. Predictive 
maps of the disease burden adjusted for climatic effects 
were also produced.

Methods
Country profile
Burkina Faso lies mostly between latitudes 9° and 15°N 
and longitudes 6°W and 3°E. It is made up of two major 
types of countryside. The larger part of the country is 

covered by a “peneplain”, which forms gently undulat-
ing landscapes with, in some areas, a few isolated hills. 
The southwest of the country forms a sandstone massif 
bordered with sheer cliffs up to 150 m high. Burkina is a 
relatively flat country with an average altitude of around 
400 m. Four main rivers drain the country: the Mouhoun, 
the Nakambé, the Nazinonand the Komoé. The Mouhoun 
is one of the country’s only two rivers which flow year-
round, the other being Komoé, which flows to the south-
west. Burkina Faso has a primarily tropical climate with 
two very distinct seasons. In the rainy season, the coun-
try receives between 600 and 900 mm of annual rainfall 
and malaria is known for a seasonal recrudescence dur-
ing this period at which it accounts for the main cause of 
fever and mortality in the country. The rainy season lasts 
approximately 4 months, May/June to September, and is 
shorter in the north of the country. In the dry season, the 
harmattan, a hot dry wind blows from the Sahara carry-
ing dust and dirt that contribute to high morbidity from 
lower respiratory infections.

Survey data
The MIS was conducted by the National Institute for 
Statistics and Demography (INSD) with the techni-
cal assistance of ICF Macro from April 2010 to January 
2011 using standardized malaria indicator questionnaire. 
The collected data include information on malaria indi-
cators, education, demographics, and socio-economic 
characteristics.

A random sample of 574 (176 and 398 respectively in 
urban and rural settings) clusters and 15,000 households 
were selected through a stratified two-stage sampling 
procedure. The clusters were the census units established 
by INSD in the census carried out in 2006 (Récensement 
Général de la Population et de l’Habitat, RGPH-2006). 
At the first stage, 574 clusters were drawn with prob-
ability proportional to the number of households in each 
cluster. The sampling procedure was stratified by area 
type (urban/rural) of the cluster and by the administra-
tive regions (13 regions). At the second sampling stage, 
a count of households in each of these 574 clusters pro-
vided a list of households from which was derived the 
final households sample with an equal probability sys-
tematic sampling. As part of the final sampling, one in 
every two households was randomly selected and every 
child between 6 and 59 months of age was tested for par-
asitaemia. Two malaria diagnostic tests were performed, 
namely RDT and blood smear test (microscopy). Analy-
ses in this study are based on the results of microscopic 
examination since it is considered as the gold standard 
[14]. Geographic information was collected at the cen-
troid of the clusters. Figure 1 shows the observed preva-
lence reported in 540 survey locations.
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The MIS data were used to construct intervention 
coverage measures related to ITN such as the number 
of ITNs per child under 5  years (ITNpU5), the propor-
tion of children under five who slept under an ITN the 
night preceding the survey (ITNsU5) and the total num-
ber of ITNs per household member (ITNpPR). An indoor 
residual spray (IRS) coverage indicator was defined as 
the proportion of households sprayed with an insecticide 
within the last 12  months. A ‘case management’ cover-
age measure was generated as a proxy of health system 
performance. It was defined by the proportion of chil-
dren under five in the cluster who had received timely a 
first line ACT out of those reported to have fever 2 weeks 
prior the survey visit (ratio of ACT per reported recent 
fever).

Socioeconomic status (SES) was captured by mother’s 
education and wealth index. The latter was calculated as 
a weighted sum of household assets; the weights were 

obtained through principal component analysis [15]. 
Socioeconomic quintiles ranging from the poorest to the 
wealthiest were included as a categorical variable in the 
analysis.

Climatic data
Malaria transmission is environmentally driven; there-
fore remotely sensed (RS) climatic and environmental 
proxies were used as predictors in the models to take into 
account their potential effects on parasitaemia. In par-
ticular, the following climatic and environmental factors 
were included in the models: land surface temperature 
day (LSTD) and night (LSTN), rainfall estimates (RFE), 
normalized difference vegetation index (NDVI), altitude, 
urban–rural extent, proximity to the rice field (within 
5 km radius from the survey locations) and the shortest 
Euclidean distance to nearest water body calculated in 
ArcGIS 10 (ESRI; Redlands, CA, USA). Table 1 indicates 

Fig. 1  Observed prevalence at survey locations, Burkina Faso MIS 2010
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the sources of these data as well as their spatial and tem-
poral resolution.

Bayesian geostatistical modelling
Three Bayesian geostatistical logistic regression models 
were fitted, firstly to estimate the geographical distribu-
tion of malaria risk based on climatic predictors (model 
1); secondly to assess the effects of malaria related inter-
ventions (i.e. ITN, IRS and ACT coverage) at national 
level after adjusting for climatic and socio-economic (i.e. 
wealth index, mothers education) confounders (model 2) 
and thirdly to assess the effects of the above mentioned 
interventions at the level of the health district (model 3). 
The climatic model (model 1) was fitted on the number 
of malaria-infected children at cluster level. The models 
with intervention effects (models 2 and 3) were applied 
on the binary outcome indicating the infection status of 
a child and considering the age of a child (in years) as a 
covariate. All models included cluster-specific random 
effects, arising from a Gaussian stationary process with 
covariance matrix capturing correlation between any pair 
of cluster locations as a function of their distance. Bayes-
ian geostatistical variable selection was applied in model 
1 to identify the most important set of climatic predictors 
(including their best functional form) [16]. In particular, 
for each climatic predictor an indicator was introduced 
to estimate the probabilities of excluding or includ-
ing the predictor into the model in linear or categori-
cal form. The categories of the predictors were defined 
using their quartiles. The final model included variables 
and functional forms with inclusion probability of more 
than 50  %. Model 2 contained the most important cli-
matic/environmental predictors selected in model 1 as 
well as age, SES, ITN, IRS and ACT coverage measures. 
Geostatistical variable selection was applied to select the 
best ITN coverage measure (i.e. ITNpU5, ITNsU5 and 

ITNpPR) by introducing binary indicators specifying the 
exclusion or inclusion of each measure from the model.

The effects of malaria interventions (i.e. ITN, IRS and 
ACT coverage) at sub-national level were estimated from 
the geostatistical model 3 which includes the interven-
tion coverage measures as spatially varying covariates, 
following model formulations used by Giardina et  al. 
[7]. A conditional autoregressive (CAR) prior distribu-
tion [17] was considered to introduce a neighbour-based 
spatial structure on the regression coefficients related to 
each intervention effect in the study [7, 18]. Neighbours 
were defined as the adjacent areas (health districts) of 
each health district and used to create a matrix of spatial 
weights taking the value of one for a direct neighbour and 
zero otherwise. Model 3 utilizes the ITN coverage meas-
ure, which was selected in model 2.

Bayesian kriging [19] was employed to predict the 
malaria parasite risk over a regular grid of 226,627 pixels 
at 1 km2 resolution covering the entire study area. Pop-
ulation adjusted risk estimates were obtained at district 
level by combining pixel-level risk estimates with popu-
lation data of children under 5  years. The analysis was 
carried out in STATA 13 (Stata corporation, College Sta-
tion, Texas, USA) and OpenBUGS version 3.2.3 rev 1012 
(Imperial College and Medical Research Council, Lon-
don, UK). Parameter estimates were summarized by their 
posterior median and the corresponding 95  % Bayesian 
credible interval (BCI). Modelling details are given in 
Additional file 1.

The predictive model was validated on a test subset of 
the data. A randomly selected sample of 432 locations 
(80 % of the data location) was used as a training set for 
the model fit. The predictive performance of the model 
was assessed by calculating the proportion of observed 
prevalence data at the remaining 20  % of the test loca-
tions, correctly estimated within Highest Posterior 

Table 1  Environmental and climatic data

Source Data Period Spatial resolution Temporal 
resolution

Moderate resolution imaging spectroradiometer 
(MODIS) terra

Day and night land surface tempera-
ture (LST)

2010–2011 1 × 1 km2 8 days

Moderate resolution imaging spectroradiometer 
(MODIS) terra

Normalized difference vegetation 
index (NDVI)

2010–2011 0.25 × 0.25 km2 8 days

Afripop Population data 2010 1 × 1 km2 NA

Africa data disseminating services Rainfall 2010–2011 8 × 8 km2 10 days

Digital elevation model (altitude) Shuttle radar topographic mission 
(SRTM)

2000 1 × 1 km2 NA

National database of land use Rice cultivation field 2002 0.25 × 0.25 km2 NA

Health mapper Water bodies – 1 × 1 km2 NA

Global rural and urban mapping project Urban rural extent 2010 1 × 1 km2 NA
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Density Intervals (HPDI) of probability coverage ranging 
from 50 to 95 %.

Results
A total of 5741 children aged between 6 and 59 months 
from 574 clusters were tested for parasitaemia using 
blood smear test results. The overall observed malaria 
parasite prevalence was 65 %. Thirty-four (5.92 %) clus-
ters had no data thus reducing the actual number of clus-
ters to 540 (Fig. 1).

The ratio of ITN to children under 5 years old ranges 
from 0.33 in district of Orodara to 1.52 in Nanoro dis-
trict with 11 out of the 50 districts in the country having 
a ratio above 1. 80 % of the 50 health districts have IRS 
coverage less than 1  %. The maximum IRS coverage of 
50 % was found in the districts of Diebougou and Toma. 
The percentage of households falling in the lowest social-
economic quintile ranges from 1.6  % (in Tenkodogo) to 
63.33 % (in Gorom-gorom). Table 2 gives a summary of 
the raw coverage measures per health district. The high-
est proportion of fever cases receiving ACT is 22 % and it 
is observed in the districts of Tenkodogo in the East cen-
tral and Koudougou in the Central part of the country. 
Figure  4 (right) depict the ITNpU5, ITNsU5 and ACT 
coverage at health district level, respectively.

The results of variable selection are presented in 
Table  3. In particular, Bayesian geostatistical variable 
selection applied in the climatic model 1 indicated that 
the most important factors related to parasitaemia risk 
are LSTN (Night Land Surface Temperature) in linear 
form and the proximity to rice cultivation (categorical) 
with 74.10 and 74.50 % posterior inclusion probabilities, 
respectively. The place of residence (rural/urban) stood 
out as one of most important predictors with a poste-
rior inclusion probability of 87.20 %. Geostatistical vari-
able selection of the ITN coverage measures (model 2) 
showed that the proportion of children that slept under 
a net (ITNsU5) had the highest probability (equal to 
32.02 %) to be included in the model among the ones that 
were assessed. The inclusion probability of less than 50 % 
indicates that ITNsU5 is less likely to have an important 
effect at national scale. However, ITNsU5 was included in 
model 3 as a spatially varying covariate to assess impor-
tant effects at sub-national levels and identify health dis-
tricts that the ITN interventions are associated with the 
parasitaemia risk.

The predictive performance of the model (model2) is 
shown in Fig. 2. Eighty-two (82 %) of test locations were 
falling into all credible intervals with probability areas 
greater than 50 %.

Parameter estimates of the three models are given 
in Table  4. In particular the climatic model 1 showed a 
negative correlation of the parasitaemia risk with LSTN 

and distance to rice fields. Moreover, living in rural 
areas increases the odds of being infected by about 3.91 
times (95  % BCI: 2.88, 5.22). The minimum distance at 
which the spatial correlation is less than 5 % is equal to 
10.61  km (95  % BCI: 2.39–20.82). Model 2 assesses the 
effects of malaria interventions on parasite risk after 
adjusting for climatic and socio-economic confound-
ers. Results show that none of the health intervention 
measures is an important predictor of parasitaemia risk 
at national level. However, the model indicates that the 
odds of malaria infection decreases with better socio-
economic conditions reaching a 68  % reduction within 
the least poor group, OR = 0.32 (95 % BCI: 0.24–0.43). 
An increasing gradient of malaria risk was also observed 
with age with the oldest age group (4–5 years old) having 
odds of 2.08 times higher than infants. Furthermore, the 
model reveals a decreasing trend of parasitaemia odds 
with increasing mother’s education level although this 
decrease is not statistically important. The additional SES 
and malaria interventions related predictors in model 
2 were able to explain some of the spatial correlation in 
the model. This is reflected in the estimate of the range 
parameter, which reduced to 3 km compared to 10.6 km 
in model 1.

Figure  3a–c depict the predicted parasitaemia risk 
maps (median (a), 2.5th (b) and 97.5th (c) percentiles 
of the posterior predictive distribution estimated from 
model 2) in children less than 5  years of age at 1  km2 
spatial resolution in Burkina Faso. Estimates show that 
malaria parasitaemia risk ranges from 36 to 71 % across 
the country while the median predicted prevalence is 
59  %. The Southwest, Comoe, Cascade, East, Central-
west, Boucle du Mouhoun and the Sahel regions bear the 
highest prevalence. The central, the North, the east cen-
tral and regions appear to be the less burdened regions. 
The total number of infected children under 5 years old 
in the country was estimated to be 1097,296. Table  5 
presents the population-adjusted and estimated number 
of infected under five children under 5  years of age per 
province and region.

Spatially structured coefficients of intervention cover-
age measures obtained by model 3 allowed estimation of 
the effect of ITN, IRS and ACT at health district level. 
Figure 4 presents the different coverage (right hand side 
maps) and intervention effects (left hand side maps) for 
each health district estimated from model 3 with the 
spatially varying covariates. ACT coverage appears to 
be an important health system component associated 
with decreased malaria parasitaemia risk in a number 
of the health districts. However the strongest effects 
are observed in the districts of Ouagadougou, Koudou-
gou, Kaya, Zorgho, Koupela and Tenkodogo. ITN usage 
shows a protective effect in only four health districts 
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Table 2  Summary of raw malaria coverage measures per health district

Health district Number  
of clusters

ITNpU5 (%) ACT (%)  
(# of fever cases)

IRS (%)  
(# of clusters)

ITNsU5 (%) HH in lowest 
quintile (%)

Banfora 26 109 3 (50) 4 (1) 76 4.37

Barsalogho 6 50 2 (9) 0 (0) 50 23.94

Batie 4 73 1 (7) 0 (0) 38 59.26

Bogande 14 63 1 (26) 0 (0) 54 44.91

Boromo 4 67 0 (16) 0 (0) 56 8.93

Boulsa 9 50 3 (14) 0 (0) 47 13.04

Bousse 6 95 3 (5) 0 (0) 80 24.00

Dande 7 64 1(17) 0 (0) 58 10.00

Dano 12 61 4 (38) 0 (0) 43 47.62

Dedougou 11 73 3 (23) 0 (0) 56 15.53

Diapaga 9 121 0 (6) 0 (0) 63 59.46

Diebougou 4 133 8 (14) 50 (2) 33 14.63

Djibo 15 49 6 (33) 0 (0) 53 39.35

Dori 11 92 2 (11) 0 (0) 60 44.00

Fada N’gourma 17 97 3 (24) 0 (0) 73 28.48

Gaoua 14 109 4 (52) 0 (0) 71 47.76

Gorom-gorom 9 46 11 (14) 0 (0) 38 63.33

Hounde 5 78 0 (21) 0 (0) 50 9.33

Kaya 18 37 12 (4) 0 (0) 39 14.18

Kombissiri 6 46 10 (33) 0 (0) 20 12.50

Kongoussi 10 57 2 (6) 0 (0) 42 23.08

Koudougou 14 68 21 (38) 7 (1) 23 7.24

Koupela 15 84 10 (16) 0 (0) 58 26.04

Leo 7 66 9 (16) 0 (0) 62 14.63

Manga 13 51 2 (34) 0 (0) 21 18.52

Nanoro 4 152 9 (10) 0 (0) 100 14.29

Nouna 10 63 2 (22) 0 (0) 57 13.04

Orodara 9 33 3 (31) 0 (0) 24 20.00

Ouagadougou 36 98 13 (45) 6 (2) 42 1.16

Ouahigouya 24 136 4 (51) 0 (0) 90 15.15

Ouargaye 4 60 1 (4) 0 (0) 17 22.86

Pama 6 86 1 (8) 17 (1) 50 32.95

Po 12 54 4 (18) 0 (0) 42 31.67

Reo 11 75 6 (17) 0 (0) 55 37.23

Sapone 10 60 7 (14) 0 (0) 22 3.28

Sebba 9 87 1 (6) 11 (1) 50 51.11

Secteur 15 13 55 7 (29) 0 (0) 67 7.96

Secteur 22 12 62 8(39) 0 (0) 60 6.84

Seguenega 6 121 1 (25) 0 (0) 53 5.00

Sindou 7 68 2 (31) 0 (0) 63 7.23

Solenzo 8 85 13 (15) 0 (0) 64 20.48

Tenkodogo 18 51 22 (60) 0 (0) 58 1.06

Titao 5 116 1 (20) 0 (0) 58 25.37

To 8 66 5(22) 0 (0) 30 23.46

Toma 4 55 1 (19) 0.5(2) 67 3.64

Tougan 9 56 0 (26) 22 (2) 24 2.02

Yako 10 142 3 (31) 0 (0) 65 19.54

Zabre 4 87 7 (10) 0 (0) 88 52.08

Ziniare 19 104 5 (48) 0 (0) 49 15.00
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namely Ouagadougou, Ziniare, Ouahigouya and Sebba. 
IRS which is in a pilot phase in the district of Diebougou 
(South-west) did not show any effect.

Discussion
This is the first study in Burkina Faso to estimate the 
spatial effects of malaria interventions on the geographi-
cal distribution of parasite risk. Different ITN coverage 
measures related to bed net use and ownership were 
calculated and the effects of ITN, IRS and case manage-
ment coverage on the spatial pattern of malaria risk were 
studied after taking into account disease variation due 
to climatic and socio-economic factors. Georeferenced 
estimates of the parasite risk were obtained as well as the 
number of infected children. This study analysed the Bur-
kina Faso MIS survey data of 2010 and employed Bayes-
ian geostatistical models with spatially varying covariates 

using geostatistical variable selection to identify the most 
relevant bed net coverage indicators. The geostatistical 
variable approach identified a list of the most important 
climatic and environmental predictors. Weiss et  al. [20] 
have proposed a list potential predictors that could be 
used to improve malaria modelling.

The most important ITN coverage measure was the 
proportion of children under 5 years old sleeping under 
bed net, with however a low posterior probability to be 
included in the model equal to 32.02 % followed by far by 
the number of ITN per under five (2.46 %) and the num-
ber of ITN per household member (0.20 %). This finding 
support previous results showing that contingent upon 
the setting and the prevailing conditions, ITN ownership 
and ITN use may show different ability in capturing ITN 
intervention effects on parasitaemia [4].

Overall, the effect of interventions in Burkina Faso was 
not significantly associated with change in malaria par-
asitaemia risk at country level. These results are in line 
with the findings of Giardina et al. [7] in a multisite study. 
The lack of statistically important ITN intervention 
effects may be explained by the fact that at country-level, 
a sizeable percentage (37.97 %) of children under the age 
of 5  years still do not sleep under ITN. However when 
analysed at sub-national level (health district level) some 

ITNpU5 over 100 % indicate more than one net per person

Table 2  continued

Health district Number  
of clusters

ITNpU5 (%) ACT (%)  
(# of fever cases)

IRS (%)  
(# of clusters)

ITNsU5 (%) HH in lowest 
quintile (%)

Zorgho 15 140 11 (74) 7 (1) 91 11.68

Table 3  Results of  variable selection for  the climatic pre-
dictors and  ITN coverage measures based on  Bayesian 
geostatistical logistic regression models

Posterior inclusion probabilities larger than 50 % indicate an important predictor
a  Categorical form

Posterior inclusion probability (%)

Variable Model 1 Model 2

Altitude 28

Distance to water body 2

NDVI 3.30

LSTD 6.20

LSTN 74.10

Rainfall 1.60

Distance to rice growing area 0.30

Altitudea 5.70

Distance to water bodya 4

Area type (urban/rural)a 87.20

NDVIa 0.20

LSTDa 4.50

LSTNa 3.50

Rainfalla 1

Distance to rice growing areaa 74.50

ITN coverage

 ITN per person (ITNpPR) – 0.20

 U5 sleep under net (ITNsU5) – 32.02

 ITN per under 5 years (ITNpU5) – 2.46

Fig. 2  Proportion of test locations falling in the Highest Posterior 
Density intervals (HPDIs)
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interventions show protective effects in certain districts. 
For instance ITN use, which appeared to have not an 
important effect at national level proved to be an effec-
tive intervention in four health districts namely Oua-
gadougou, Ziniare in the central region of the country, 
Ouahigouya in the North and Seeba in the Sahel region. 
Among factors that might affect ITN effectiveness fea-
ture the inadequate coverage and the uneven distribution 

of ITN and the usage among households and health dis-
tricts [21].

Indeed, malaria is holoendemic in Burkina Faso and 
the transmission occurs throughout the year. In such set-
tings, even significant reductions in the total exposure 
would not necessarily warrant substantial reductions in 
parasitaemia [22–25]. Furthermore, there is still low ITN 
utilization compliance (62.03  %) among children under 

Table 4  Posterior median and 95 % Bayesian credible intervals (BCI) of the geostatistical model based on environmental/
climatic, malaria intervention coverage and SES predictors

Model 1 includes only climatic factors

Model 2 includes climatic factors, age, SES, intervention measures

Model 3 has spatially varying covariates for IRS, ACT and ITNsU5
a  Minimum distance in kilometer at which the spatial correlation is lower than 5 %
b  Posterior median

Geostatistical model 1 Geostatistical model 2 Geostatistical model 3

Variables OR (95 % BCI) OR (95 % BCI) OR (95 % BCI)

 LSTN 0.78 (0.69, 0.88) 0.81 (0.72, 0.90) 0.82 (0.72, 0.93)

 Rice field proximity 0.49 (0.27, 0.81) 0.56 (0.34, 0.98) 0.73 (0.43, 0.99)

  No 1.00 1.00 1.00

  Yes 0.49 (0.27, 0.81) 0.56 (0.34, 0.98) 0.73 (0.43, 0.99)

Area type

 Urban 1 1 1

 Rural 3.91 (2.88, 5.22)  2.50 (1.89, 3.35) 2.36 (1.79, 3.13)

SES

 Most poor 1 1

 Very poor 0.76 (0.61, 0.95) 0.77 (0.61, 0.96)

 Poor 0.90 (0.71, 1.14) 0.92 (0.73, 1.16)

 Less poor 0.70 (0.55, 0.89) 0.71 (0.56, 0.90)

 Least poor 0.32 (0.24, 0.43) 0.33 (0.25, 0.45)

Age (years)

 0–1 1 1

 1–2 1.56 (1.23, 1.56) 1.21 (0.95, 1.55)

 2–3 1.72 (1.35, 2.21) 1.71(1.33, 2.19)

 3–4 1.88 (1.48, 2.41) 1.87 (1.47, 2.39)

 4–5 2.08 (1.62, 2.67) 2.07 (1.61, 2.65)

Mother’s education

 No education 1 1

  Primary 1.08 (0.89, 1.31) 0.85 (0.71, 1.03)

  Secondary 1.06 (0.74, 1.54) 0.88 (0.61, 1.27)

  Higher 1.44 (0.29, 6.49) 0.42 (0.05, 2.13)

Case management (ACT) – 1.45 (0.49, 4.21) 0.13 (−1.49, 1.67)

U5 sleep under net (ITNsU5) – 1.66 (0.89, 3.08) 0.25 (−0.37, 0.90)

House Spray (IRS) – 1.14 (0.17, 7.23) 0.11 (−1.75, 1.70)

Variances

 Gaussian process 0.87 (0.66, 1.15) 0.6 (0.44, 0.80) 0.55(0.39, 073)

 Spatially varying ITNsU5 0.57 (0.38, 0.88)b

 Spatially varying IRS 0.76 (0.42, 1.75)b

 Spatially varying ACT 0.75 (0.42, 1.84)b

 Range (km)a 10.61 (2.39, 20.82) 3.00 (0.40, 10.00) 2.70 (0.44, 9.75)
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the age of 5 years. This study found a protective effect of 
ITN usage in specific districts. This result supports find-
ings reporting that the ITN intervention is expected to be 
more effective in low transmission settings with the high-
est ITN usage [26]. Districts where ITN use was found to 
be protective are located in low to mild transmission set-
tings where coverage of ITN use ranges from 42 to 90 % 
[27].

ACT showed a protective effect in 19 health districts. 
However it is worth noting that except Gorom-gorom 
in the Sahel region, Solenzo in the North West (Boucle 
du Mouhoun), secteur 15 and 22 in the West (Hauts-
bassins) and Diebougou in the Southwest, the remain-
ing districts where ACT showed a protective effect are 
located in the central region. A close inspection of the 
coverage levels shows that ACT tends to be effective in 
districts where a minimum level of coverage is achieved 
(above 5 %). This finding supports the hypothesis that the 
effectiveness of a given intervention is related to both its 
coverage as well as the transmission levels. Indeed, the 
ACT effect is presumably related to the very low cover-
age [28]. High levels of transmission are also believed to 
limit the effect of ACT. Findings from a study conducted 
in Tanzania suggested that the percentage reductions in 
prevalence of infection and incidence of clinical episodes 

achieved by ACT were much higher in areas with low ini-
tial transmission [28]. ITN interventions, however, aim at 
reducing the malaria transmission intensity by reducing 
the chances that an individual will be bitten by an infec-
tive Anopheles mosquito [29]. However low compliance 
in ITN use may seriously reduce the potential impact of 
ITNs [27, 30]. Therefore, conjugated efforts to increase 
both the ACT coverage (in order to reduce the preva-
lence) and ITN use (to further reduce the transmission) 
are required to warrant a synergetic effect towards a 
better and effective control of the disease [31]. Findings 
from a continental study that used data from 32 malaria-
endemic African countries showed that ITN intervention 
was the most important and effective malaria interven-
tion accounting for an estimated 68 % decline in malaria 
parasite rate in 2015 [32]. The geostatistical model was 
able to identify districts with important protective ITN 
effects, although at country level the effect was not 
important.

IRS was not associated with malaria parasitaemia risk 
most probably owing to an extremely low percentage of 
houses sprayed within the last 12 months (0.92 %) prior 
to the survey.

Malaria is known to be a climate-driven disease and 
among the most important climatic factors features 

Fig. 3  Predicted parasitaemia risk map in children under 5 years old based on the a median b 2.5th percentiles and c 97.5th percentiles of the 
posterior predictive distribution estimated from model 2 at 1 km2 resolution. Province boundaries are overlaid
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Table 5  Population-adjusted and estimated number of infected children under 5 years old per province and region

Region Province Observed  
prevalence (%)

Population  
of children

Population adjusted 
estimated prevalence

Estimated 
number 
of infected 
children

Boucle du Mouhoun Bales 79 37,601 17.72 17,646

Banwa 78 47,308 16.92 21,975

Kossi 76 48,528 28.96 18,321

Mouhoun 74 52,335 20.85 21,159

Nayala 81 28,425 19.12 13,828

Sourou 63 38,168 21.79 18,577

Cascades Comoe 59 71,772 33.13 32,656

Leraba 55 20,765 25.44 8000

Centre Kadiogo 34 243,402 4.04 139,826

Centre-Est Boulgou 62 98,226 10.91 41,548

Koulpelogo 75 47,315 18.04 18,495

Kouritenga 52 59,702 7.44 24,678

Centre-Nord Bam 60 50,553 11.46 24,229

Namantenga 78 60,409 16.08 27,146

Sanmatenga 62 109,630 13.10 46,970

Centre-Ouest Boulkiemde 64 87,305 8.20 34,159

Sanguie 88 51,241 14.39 24,188

Sissili 75 37,038 28.00 16,542

Ziro 77 31,847 27.71 12,820

Centre-Sud Bazega 67 39,878 15.11 17,614

Nahouri 71 27,251 20.69 11,722

Zounweogo 75 42,191 13.65 18,243

Est Gnagna 74 78,380 18.22 31,657

Gourma 66 59,266 33.75 22,215

Komandjari 41 15,841 47.24 7041

Kompienga 73 15,690 81.72 5842

Tapoa 67 67,016 38.67 25,250

Haut-Bassins Houet 52 148,488 10.68 76,584

Kenedougou 65 44,522 25.62 20,182

Tuy 75 35,504 21.55 18,267

Nord Loroum 72 25,989 20.06 12,062

Passore 56 57,802 9.67 25,994

Yatenga 66 99,943 9.80 47,657

Zandoma 60 30,413 8.98 13,394

Plateau central Ganzourgou 66 56,713 10.46 27,228

Kourweogo 52 24,218 9.90 11,251

Oubritenga 65 42,149 10.15 18,400

Sahel Oudalan 72 35,453 46.15 14,507

Seno 63 47,034 19.54 23,291

Soum 85 62,279 31.43 26,560

Yagha 51 28,730 34.73 12,464

Sud-Ouest Bougouriba 59 17,941 24.32 7492

Ioba 83 33,185 15.01 14,889

Noumbiel 87 12,456 36.51 5086

Poni 76 45,305 26.78 19,638
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temperature. The model-based parasitaemia risk map 
depicts a strong spatial with lower parasitaemia risk 
estimated in the cities (urban settings) relative to rural 

settings. The results show a negative association between 
increased night temperature and malaria transmis-
sion. Laboratory experiments observed the shortest 

Fig. 4  Coverage of ITNpU5, ITNsU5 and ACT (right) and IRS, ITNsU5 and ACT intervention effect maps (left). Important effects are indicated with (*) 
and correspond to 95 % Bayesian credible intervals that do not include 0
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Anopheles gambiae s.s larval survival (<7 days) at 10–12 
and 38–40  °C and the highest larval mortality occur-
ring between 30 and 32 °C, with death (rather than adult 
emergence) representing over 70 % of the terminal events 
in mosquitoes originally from Lagos (Nigeria) [33]. In 
Burkina Faso, the monthly mean temperature in the hot-
test and driest period (March–May) is constantly well 
above 31  °C. Land surface night temperature, therefore 
appears to be an important predictor of malaria trans-
mission. Furthermore, the behavioural high temperature 
avoidance experiment showed that An. gambiae, the 
most efficient malaria vector species in Burkina Faso, was 
more sensitive to increased temperatures than its sibling 
species, Anopheles arabiensis [33]. In nature, this prob-
ably results in short distance flights to seek cooler spots, 
typically the shaded resting sites under vegetation out-
doors or cool dark comers indoors. The highly endophilic 
nature of An. gambiae protects the mosquito from the 
highly variable and more extreme external climate. This 
may explain the negative association between increased 
LSTN and the transmission because during the hot night 
spells local populations rest outdoor thus reducing know-
ingly or unknowingly the contact human-vector. The 
authors also found that female temperature avoidance 
was most pronounced in hungry females (which avoid 
temperatures above 25  °C), less strong in blood-feds 
(above 30 °C) and least strong in newly emerged females 
(above 32  °C). High night temperatures were also found 
to affect An. gambiae (one of the most predominant and 
effective malaria vector in Burkina Faso) behaviour and 
vectorial capacity [34, 35]. A significant negative associa-
tion between temperature and malaria infection was also 
found in a previous study in Burkina Faso [6]; However 
the authors did not consider day and night temperatures 
separately and the climatic data considered in this study 
do not span the study period (April 2010–January 2011). 
The map of nighttime land surface temperatures (LSTN) 
is also provided (see Additional file 2).

The present study estimated a negative association 
between malaria parasitaemia and proximity with rice 
growing areas. The rice growing areas used in this study 
were extracted from the National land use database 
with cartographic scale coverage of 1/200,000 which 
features only large and economically relatively impor-
tant rice growing areas. Furthermore, as exposed to an 
increased risk of malaria infection, surrounding popu-
lations receive relatively high attention from the local 
government including regular sensitization campaigns 
(Information Education and Communication). Conse-
quently, as an income generating activity, the local popu-
lation is relatively well off. This makes it easier to access 
health care and other protective measures. This effect is 
known in Burkina Faso as the “paddy paradox” defined 

as the occurrence of large populations of vectors but low 
amounts of malaria transmission where irrigated rice is 
grown.

The negative association has been reported in other 
studies in Burkina Faso, Ghana, Gambia and Tanzania 
[36–39] The potential explanation might be that the irri-
gated rice fields are preferred habitats for An. arabiensis, 
which has a lesser vectorial capacity than other species 
[36].

Furthermore it is hypothesized that the “paddy para-
dox” is due to young pre-gravid mosquitoes dispersing 
more widely than gravid ones, not necessarily to low 
survival in the mosquito [37]. The map of the distance 
between the clusters and the nearest rice-paddy field in 
kilometre is also provided (see Additional file 3).

The predicted spatial distribution of malaria parasi-
taemia risk ranges from 36 to 71  % across the country 
while the median predicted prevalence is 59 %. The pre-
dicted parasitaemia map shows the higher risks in the 
Southwest, South-Central and the Eastern region of the 
country. The above mentioned regions coincide with the 
regions of country bearing the highest vegetation density 
and receiving the highest annual rainfall relative to the 
northern part which receives less rainfall and is more 
“desertic”. The predicted parasitaemia risk map shows 
similarities as well as discrepancies with the previous 
mapping efforts. Compared to the P. falciparum ende-
micity map of the Malaria Atlas Project (MAP), common 
patterns were found in the northern and northeastern 
parts of the country, which appeared to be less burdened 
[40]. Discrepancies were identified regarding the high-
est burden areas which MAP places in the northwestern 
part of the country while our map estimates in south-
western Burkina Faso. Samadoulougou et  al. [6] indi-
cated that the northern and southwestern regions have 
the highest and lowest malaria risk respectively. The 
above discrepancies may be explained by the different 
climatic/environmental and other covariates used in the 
predictive models.

This study estimated higher number of infected chil-
dren in the cities despite the relatively low prevalence 
observed in the urban settings. This finding is consist-
ent with the results from previous study that used the 
BFDHS-MICS 2010 data [6]. Differences were observed 
between raw and population-adjusted parasitaemia 
risk estimates which is explained by the low prevalence 
observed in densely populated areas. For example the 
province of Kadiogo, one of the smallest provinces with 
the highest population density and the lowest popula-
tion-adjusted raw parasitaemia risk (34 %), shows an even 
lower parasitaemia risk adjustment for the population 
(4.04  %). Similar results were found using Senegal MIS 
2008 data [4].
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An increasing risk gradient with age was found. Infants 
had the lowest risk while older children had the highest 
risk. An association was observed between socio-eco-
nomic status and malaria risk, with children within the 
least poor quintile being substantially at reduced risk. 
Similar results were observed in a previous study in Bur-
kina Faso and in other malaria endemic areas [4, 6].

Conclusions
This study provides estimates of the effects of malaria 
interventions at country as well as at local scale. The esti-
mated risk and intervention effect maps are valuable tools 
for identifying high-risk areas and areas with less effec-
tive interventions in order to improve malaria control in 
Burkina Faso. These outputs can serve as benchmarks to 
evaluate the effectiveness of future control interventions 
and progress of the efforts towards disease control.
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