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ABSTRACT

Transcription factors (TFs) play an important role in
gene regulation. The interconnections among TFs,
chromatin interactions, epigenetic marks and cis-
regulatory elements form a complex gene transcrip-
tion apparatus. Our previous work, ChIP-Array, com-
bined TF binding and transcriptome data to construct
gene regulatory networks (GRNs). Here we present
an enhanced version, ChIP-Array 2, to integrate ad-
ditional types of omics data including long-range
chromatin interaction, open chromatin region and
histone modification data to dissect more compre-
hensive GRNs involving diverse regulatory compo-
nents. Moreover, we substantially extended our mo-
tif database for human, mouse, rat, fruit fly, worm,
yeast and Arabidopsis, and curated large amount of
omics data for users to select as input or backend
support. With ChIP-Array 2, we compiled a library
containing regulatory networks of 18 TFs/chromatin
modifiers in mouse embryonic stem cell (mESC). The
web server and the mESC library are publicly free and
accessible at http://jjwanglab.org/chip-array.

INTRODUCTION

Deciphering gene regulatory network (GRN) is crucial to
understanding the mechanisms of various biological pro-
cesses and the onset of diseases. Gene transcription can
be regulated by multiple factors, such as transcription reg-
ulation, epigenetics and post-translational modifications.
Previous version of ChIP-Array incorporates in vivo tran-
scription factor (TF) binding and transcriptome data to
construct a GRN for a TF (1). The TF’s bindings are
detected by chromatin immunoprecipitation followed by

high-throughput technologies (ChIP-seq/chip/exo, collec-
tively, ChIP-X), and the transcriptome data are obtained
before and after the TF’s perturbation, by either microarray
or RNA-sequencing. However, TFs often collaborate with
other factors for gene regulation. Recent studies showed
that interplay among different TFs, chromatin modifiers
and/or epigenetic marks comprehends the functional di-
versity of gene regulation (2–5). For example, super en-
hancers aggregating multiple TFs, transcription cofactors,
chromatin regulators and polymerase are found to be as-
sociated with highly expressed genes that control cell iden-
tity and disease (6). Some enhancers can locate as far as
100 kb away from their target genes through chromatin
loops, which is hard to identify with traditional technology.
Fortunately, the development of advanced chromatin con-
formation capturing technologies, such as Hi-C and Chro-
matin Interaction Analysis by Paired-End Tag sequenc-
ing (ChIA-PET), enables us to detect long-range enhancers
with less false positives (7). Thus, the omics data quanti-
fying these chromatin events provide valuable information
to improve GRN construction. Other information, for in-
stance, genome-wide open chromatin regions are also help-
ful to improve the quality of TF-target identification, since
TF binding can be impeded and dissociated by nucleosome
(8), and most of TF binding sites (TFBSs) identified by the
Encyclopedia of DNA Elements (ENCODE) consortium
are located in high DNA-accessible regions (9).

In spite of the development of high-throughput technolo-
gies and the emergence of multiple omics data conducted
on different regulatory factors, existing tools have not suf-
ficiently integrated those data for GRN construction. Most
of these tools either combine only ChIP-X and transcrip-
tome data to reduce the false-positive rate (2,10–12), or re-
quire a large number of samples to build their models for
the identification of interactions among different types of
factors, such as genetic variation, DNA methylation and
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miRNA (5,13,14) (Supplementary Section 4). Hence, we de-
veloped our enhanced version of ChIP-Array, which is able
to incorporate not only ChIP-X and transcriptome data,
but also long-range chromatin interaction, open chromatin
region and histone modification data, to construct GRNs.

The new version can also construct regulatory networks
triggered by a cellular event, such as a change in histone
modification, or a cellular perturbation (knock in, knock
out, drug treatment, or pathogen infection). To take advan-
tages of public omics data, we also manually curated large
volume of omics data of various cell types/lines for users
to use in combination with their own data. The algorithm
for target identification is also enhanced. In addition to di-
rectly determining the targets as the intersection of TFBS-
enriched and differentially expressed genes (DEGs) in pre-
vious version, we offer another target detection method,
‘Rank Product’, which is based on relative peak position
to transcription start site (TSS), peak intensity and gene ex-
pression change (2,15). Besides, we substantially extended
our TF motif database to 6584 position weight matrices
(PWMs) of 4727 TFs, and for more species including hu-
man, mouse, rat, fruit fly, worm, yeast and Arabidopsis. To
provide better user experience, the web interface is more
user-friendly. The events, including TF-binding, long-range
chromatin interaction, open chromatin region and histone
modification, around a TSS, are intuitively displayed in
JBrowse (16). Furthermore, enriched Gene Ontology (GO)
and Pathways from the resulting GRN are displayed in
the result page. With this new web server, we constructed
a network library containing regulatory networks of 18
TFs/chromatin modifiers in mouse embryonic stem cell
(mESC) and made it freely accessible.

DESCRIPTION OF ChIP-ARRAY 2

Input data

The main input data contain three parts (Supplemen-
tary Table S2): (i) a list of genomic positions containing
TF/chromatin modifier’s binding peak regions, differential
histone modification regions or differential DNA methy-
lation regions. The centered regulator in the constructed
GRN can be a TF, a type of histone modification or a bio-
logical perturbation, respectively; (ii) a list of differentially
expressed genes under the perturbation of a TF/chromatin
modifier, or other treatment; (iii) other types of omics data
such as long-range chromatin interactions, Dnase hypersen-
sitive sites (DHS) and various histone modifications. For
TF binding data, users can either upload their own data, or
use our curated ChIP-X data or TFBSs predicted by PWMs
(17,18). Besides the general format ‘BED’ and ‘GFF’, the
server supports peak files generated by popular peak calling
tools including CisGenome (19) and MACS (20). To take
into account the biological replicates, users can use the peak
file generated by PePr (21). To consider differential TF bind-
ing or histone modification between two experimental con-
ditions, users can use peak file generated by DBChIP (22)
and DiffBind (23). For transcriptome data, ChIP-Array 2
is able to read the standard output of LIMMA (24) and
Cuffdiff (25). The server also supports a simple format (gene
ID, log2(fold change) and statistical value) for the essential
information of gene expression changes. For convenience, in

the transcriptome profile, most commonly-used array probe
names and various gene IDs from different platforms and
sources can be recognized by ChIP-Array 2. Users can ei-
ther upload other types of omics data in the ‘BED’ for-
mat or select our curated data from the web server (Sup-
plementary Section 2.1). They can also select the infor-
mation of enhancers from VISTA database (26) and other
experimentally-validated enhancers we curated from liter-
ature (Supplementary Section 2.2) for target detection. A
sample result and a copy of sample data are available for
users to browse before they run their own jobs.

Workflow

The main workflow of ChIP-Array 2 is shown in Figure 1A,
ChIP-X and transcriptome data will be combined to detect
direct targets, using either the ‘Direct’, by which the targets
will be determined as intersection of ChIP peak-enriched
genes and DEGs, or ‘Rank Product’ method (Supplemen-
tary Section 1.2). In the later method, genes are ranked by
both peak abundance and expression changes, and scored
by the rank product. When a cutoff is used, genes with
higher peak abundance and higher expression change are
chosen. Here higher peak abundance denotes more peaks
with higher intensity and shorter distance to TSS. To de-
tect TF-target relation involved in enhancer-promoter in-
teraction, long-range chromatin interaction data is used to
incorporate the TSSs with peaks located in the distal inter-
acting regions. If the direct target is a TF, the same method
will be applied to detect its downstream targets with our
curated ChIP-X data, or putative TFBSs predicted by Po-
sition Weigh Matrix (PWM) method (Supplementary Sec-
tion 1.1). When putative TFBSs are used, open chromatin
regions and histone modifications are further used to filter
out the inactive, non-tissue-specific TFBSs. Finally, the re-
sults will be presented in a web page, and all the interme-
diate and resultant files are downloadable for users to per-
form further analysis. Complement to single factor analy-
sis, we offer an opportunity for users to study the synergy
among regulatory factors by co-occupancy analysis (Sup-
plementary Section 1.3).

Result page

As shown in Figure 1B, the result page consists of four
main parts. The first part is a GRN shown in CytoscapeWeb
(27) or rendered by HTML5 using cytoscape.js (http://js.
cytoscape.org/) if flash is not supported by user’s browser.
By default, the number of nodes is limited to about 80 to
avoid heavy burden of displaying the network. However,
users can choose to show the full network by clicking the
link on the right side. Each node or edge is clickable to show
the details including the regulation relations, open chro-
matin regions, histone modifications and binding regions.
These regions can be highlighted in next tab in JBrowse.
If the TFBSs are detected by ChIP-X data, the motif en-
richment analysis will be performed by MEME Suite (28),
which can discover de novo motifs enriched in the surround-
ing region. MEME Suite will also compare the discovered
motifs and the known motifs in our database, and find
the potential co-occupied factors for the query factor. The
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Figure 1. Workflow (A) and results (B) of ChIP-Array 2. (A) Direct targets are identified by combining ChIP-X and transcriptome data. Interplays between
the TF of interest and other regulatory factors/target genes are supported by other omics data. Then indirect targets are detected by curated ChIP-X data
or predicted TFBSs with the assistance of other omics data. (B) The results are composed of four parts: the resulting GRN shown in CytoscapeWeb, motif
enrichment analysis by MEME Suite, functional enrichment analysis, and visualization in JBrowse.

server can also perform gene set enrichment analysis for
the network inferred, against Gene Ontology (GO) terms
and annotated pathways. A gene/gene-set overlap matrix is
generated accordingly, in which a gene is highlighted if it
is present in a particular GO term/pathway. For humans,
the gene sets of GO and pathways are downloaded from
MSigDB (29). The gene sets for other species are obtained
from http://bioinformatics.sdstate.edu/gskb/db/, generated
by bioinformatics research group of South Dakota State
University.

EXAMPLES

With the omics data we collected from Gene Expression
Omnibus (GEO) (Supplementary Table S3), we built a
TF/chromatin modifier GRN library for mESC. It contains
GRNs controlled by 18 TFs/chromatin modifiers. This li-
brary combines data from ChIP-seq of the TFs/chromatin
modifiers, transcriptome profiling under their perturba-
tions, together with ChIA-PET, DNase-seq and ChIP-
seq of H3K4me3, H3K4me1, H3K27ac, H3K27me3 and
H3K9me3. GRNs can be viewed in ‘mESC Library’. Inte-
gration of diverse omics data significantly improves the tar-
get detection and our understanding of gene transcription
regulation (Figure 2 and Supplementary Section 4). For ex-
ample, with ChIA-PET data, ChIP-Array 2 is able to find
gene clusters that are highly related to the functions of the
TF of interest (Figure 2A). Pou5f1 (also known as Oct4, an
important TF for the pluripotency of mESC), which binds
on the promoters of Sox2 and Fgf4, is well known to reg-

ulate these two genes (30,31). Through long-range interac-
tion, we found that both genes are connected to Ier2, whose
promoter is also bound by Pou5f1. Ier2 is a member of
immediate early response proteins that can be induced by
the cytokine leukaemia inhibitory factor (LIF), and consis-
tently shows significant down-regulation under the knock-
down of Pou5f1 in mESC (32–34). Results from ChIP-
Array 2 indicate the co-regulation of Ier2, Sox2 and Fgf4
by Pou5f1 via the aggregating evidence of Pou5f1 binding,
down-regulation under Pou5f1 knockdown and the physi-
cal interactions among their promoters, which has not been
reported by individual studies generating these omics data.
Besides, long-range chromatin interaction links TF binding
sites in distal elements to the target gene promoter.

ChIP-Array 2 also shows target genes that do not have
significant TF binding sites in promoters, but are physi-
cally linked to a distal element with a strong TF binding
signal (Figure 2B). For instance, although previous stud-
ies have reported high correlation between the expressions
of Pou5f1 and Slc7a3 (5,32), the mechanism on how they
are regulated was not clear. ChIP-Array 2 provides the di-
rect evidence on how Pou5f1 regulates Slc7a3 through an
inter-chromosomal interaction between an enhancer and
the Slc7a3 promoter. These targets may be overlooked by
previous methods in which long-range chromatin interac-
tions were not considered. In addition, ChIP-Array 2 al-
lows the study of interplays between TF and histone mod-
ifications (Figure 2C). Tcl1 and Cdx2 are two targets acti-
vated and repressed by Pou5f1, respectively. Promoters of
both genes are bound by Pou5f1, however, Tcl1 promoter is
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Figure 2. Example targets of Pou5f1 identified by ChIP-Array 2 with multiple omics data. (A) A group of genes and distal elements connect to each other
through long-range chromatin interactions. Each of the genes has the Pou5f1 binding signals from ChIP-seq, and knockdown of Pou5f1 significantly
changes the gene expression. (B) Distal elements containing ChIP-seq peaks or putative TFBSs may link to the target genes without significant binding
sites. These targets may be overlooked by previous tools where the long-range chromatin interactions are not considered. (C) Target genes can be activated
(Tcl1) or suppressed (Cdx2) by Pou5f1 when the histone modifications at their promoters are different. (D) Histone modification marks and open chromatin
regions are used to filter the putative TFBSs for indirect target identification. Since they indicate the tissue-specific accessibility of the TFBSs, TFBSs located
in these regions are more likely to be active than those beyond the regions. Thus, putative TFBSs outside of histone modification marks and open chromatin
regions are not considered for indirect target inference.

modified with H3K4me3 but not H3K27me3, while Cdx2
promoter is bivalently modified by both marks in mESC.
This implies that different histone modifications at Pou5f1
binding promoters may act differently, causing up- or down-
regulation effects on the targets. Moreover, incorporating
these histone modifications, as well as data identifying open
chromatin regions, we successfully filtered inactive putative
TFBSs predicted by sequence scanning when detecting in-
direct targets. Figure 2D shows two example genes. When
searching indirect targets of Pou5f1, both Pipox and Elf5
contain predicted Sox2 binding sites on their promoters.
They are significantly down- and up-regulated respectively
when Pou5f1 is knocked down. Since Sox2 is a direct target
of Pou5f1, both Pipox and Elf5 are identified as indirect tar-
gets of Pou5f1 by the old version of ChIP-Array. However,
combining the histone modifications and open chromatin
regions via ChIP-Array 2, which mark the chromatin ac-
cessibility of TFBSs, we found that only Pipox is the true
target of Sox2. Elf5 is filtered out because of lacking any
marks to support the activity of the predicted Sox2 bind-
ing site on its promoter. The direct regulation between Sox2
and Pipox is also confirmed by a ChIP-seq peak of Sox2 on
its promoter and expression change when Sox2 is knocked
down, while Elf5 shows no evidence in these studies (data
not shown) (32,35,36). All these findings can be visualized

via JBrowse in the Pou5f1 network stored in ChIP-Array 2
mESC library by inputting the genomic positions of these
genes and ticking the relevant data tracks in the full-screen
mode of JBrowse.

DISCUSSION

ChIP-Array 2 integrates ChIP-X and transcriptome data,
together with other omics data to construct GRNs. How-
ever, it does not require all the above data, and can run even
without either ChIP-X or transcriptome data. If transcrip-
tome data are not provided, only direct targets will be de-
tected by ChIP-X data or predicted TFBSs, but no indirect
targets will be inferred due to the high false-positive rate.
Without ChIP-X data for direct target detection, TFBSs ob-
tained by computational prediction will be utilized to infer
the putative targets. To reduce the false positives, users are
encouraged to use at least one type of omics data to detect
active binding sites for the query factor. Unlike a standalone
program, which may run hours for a job, ChIP-Array 2 aims
to produce the results in tens of minutes, or even minutes.
Some of the parameters are set in advance to reduce run-
ning time, but the flexibility may be lost accordingly. For
instance, the putative TFBSs are scanned at several certain
cutoffs, and then stored on the server, so that users can only
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select the cutoffs that we used in the pre-scanning. For the
motif analysis, we just use peaks in promoters of targets, ig-
noring other peaks since it may take up to hours for motif
discovery. Users can download the job and extract all the
peaks and perform the whole-genome motif analysis using
standalone MEME Suite.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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